Research Article
BibTex RIS Cite

Year 2024, Volume: 28 Issue: 6, 2147 - 2163, 28.06.2025
https://doi.org/10.29228/jrp.889

Abstract

References

  • [1] Santos ÉM dos, Macedo LM de, Tundisi LL, Ataide JA, Camargo GA, Alves RC, Oliveira MB, Mazzola PG. Coffee by products in topical formulations. Trends Food Sci Technol. 2021; 111: 280–291. https://doi.org/10.1016/j.tifs.2021.02.064.
  • [2] Echeverria MC, Nuti M. Valorisation of the residues of coffee agro-industry: Perspectives and limitations. Open Waste Manag J. 2017; 10(1): 13–22. https://doi.org/10.2174/1876400201710010013.
  • [3] Wang S, Ye X, Sun Y, Liang J, Yue P, Gao X. Nanocomplexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Food Chem. 2021; 336(2020): 127707. https://doi.org/10.1016/j.foodchem.2020.127707.
  • [4] Velotto S, Palmeri R, Alfeo V, Gugino IM, Fallico B, Spagna G, Todaro A. The effect of different technologies in pomegranate jam preparation on the phenolic compounds, vitamin C and antioxidant activity. Food Biosci. 2023; 53: 102525. https://doi.org/10.1016/j.fbio.2023.102525.
  • [5] Esquivel P, Jiménez VM. Functional properties of coffee and coffee by-products. Food Res Int. 2012; 46(2): 488-495. https://doi.org/10.1016/j.foodres.2011.05.028.
  • [6] Kieu Tran TM, Kirkman T, Nguyen M, Van Vuong Q. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon. 2020; 6(7): e04498. https://doi.org/10.1016/j.heliyon.2020.e04498.
  • [7] Bagdas D, Gul Z, Meade JA, Cam B, Cinkilic N, Gurun MS. Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and ınflammation. Curr Neuropharmacol. 2019; 18(3): 216–228. https://doi.org/10.2174/1570159x17666191021111809.
  • [8] Rante H, Subehan, Wulandari R, Evary YM. Antibacterial activity of robusta coffee (Coffea robusta L.) peel extract against human pathogenic bacteria. J Exp Biol Agric Sci. 2021; 9: 264–268. https://doi.org/10.18006/2021.9(Spl-2 ICOPMES_2020).S264.S268.
  • [9] Boonphang O, Ontawong A, Pasachan T, Phatsara M, Duangjai A, Amornlerdpison D, Jinakote M, Srimaroeng C. Antidiabetic and renoprotective effects of Coffea arabica pulp aqueous extract through preserving organic cation transport system mediated oxidative stress pathway in experimental type 2 diabetic rats. Molecules. 2021; 26(7): 1907. https://doi.org/10.3390/molecules26071907.
  • [10] Tseng YP, Liu C, Chan LP, Liang CH. Coffee pulp supplement affects antioxidant status and favors anti-aging of skin in healthy subjects. J Cosmet Dermatol. 2022; 21: 1-11. https://doi.org/10.1111/jocd.14341.
  • [11] Bonfigli M, Godoy E, Reinheimer MA, Scenna NJ. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J Food Eng. 2017; 207: 56–72. https://doi.org/10.1016/j.jfoodeng.2017.03.011.
  • [12] Ramli NS, Ismail P, Rahmat A. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). Sci World J. 2014; 2014: 964731. https://doi.org/10.1155/2014/964731.
  • [13] Chemat F, Zill-E-Huma, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem. 2011; 18(4) :813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023.
  • [14] Wang Y, Xiong X, Huang G. Ultrasound-assisted extraction and analysis of maidenhairtree polysaccharides. Ultrason Sonochem. 2023; 95: 106395. https://doi.org/10.1016/j.ultsonch.2023.106395.
  • [15] Bruno Romanini E, Misturini Rodrigues L, Finger A, Perez Cantuaria Chierrito T, Regina da Silva Scapim M, Scaramal Madrona G. Ultrasound assisted extraction of bioactive compounds from BRS Violet grape pomace followed by alginate-Ca2+ encapsulation. Food Chem. 2021; 338: 128101. https://doi.org/10.1016/j.foodchem.2020.128101.
  • [16] González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Carrera C, Ferreiro-González M, Barbero GF, Palma M. Flavonol composition and antioxidant activity of onions (Allium cepa l.) based on the development of new analytical ultrasound-assisted extraction methods. Antioxidants. 2021; 10(2):273. https://doi.org/10.3390/antiox10020273.
  • [17] Vichapong J, Santaladchaiyakit Y, Burakham R, Srijaranai S. Cloud-point extraction and reversed-phase high performance liquid chromatography for analysis of phenolic compounds and their antioxidant activity in Thai local wines. J Food Sci Technol. 2014; 51(4) :664–672. https://doi.org/10.1007/s13197-011-0556-0.
  • [18] Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res Int. 2012; 48(2): 410–427. https://doi.org/10.1016/j.foodres.2012.05.004.
  • [19] Majid H, Silva FVM. Kanuka bush leaves for Alzheimer’s disease: Improved inhibition of β-secretase enzyme, antioxidant capacity and yield of extracts by ultrasound assisted extraction. Food Bioprod Process. 2021; 128: 109–120. https://doi.org/10.1016/j.fbp.2021.04.018.
  • [20] Hu W, Gong H, Li L, Chen S, Ye X. Ultrasound treatment on stability of total and ındividual anthocyanin extraction from blueberry pomace: Optimization and comparison. Molecules. 2019; 24(14): 2621. https://doi.org/10.3390/molecules24142621.
  • [21] Vardanega R, Santos DT, De Almeida MA. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacogn Rev. 2014; 8(16): 88–95. https://doi.org/10.4103/0973-7847.134231.
  • [22] Chen ZL, Wang C, Ma H, Ma Y, Yan JK. Physicochemical and functional characteristics of polysaccharides from okra extracted by using ultrasound at different frequencies. Food Chem. 2021; 361: 130-138. https://doi.org/10.1016/j.foodchem.2021.130138.
  • [23] Myo H, Khat-udomkiri N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason Sonochem. 2022; 89: 106-127. https://doi.org/10.1016/j.ultsonch.2022.106127.
  • [24] Fernandez-Gomez B, Ramos S, Goya L, Mesa MD, del Castillo MD, Martín MÁ. Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Res Int. 2016; 89: 1015–1022. https://doi.org/10.1016/j.foodres.2016.03.006.
  • [25] Konieczka PP, Aliaño-González MJ, Ferreiro-González M, Barbero GF, Palma M. Characterization of arabica and robusta coffees by ion mobility sum spectrum. Sensors (Switzerland). 2020; 20(11): 3123. https://doi.org/10.3390/s20113123.
  • [26] Kumar K, Srivastav S, Sharanagat VS. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason Sonochem. 2021; 70: 105325. https://doi.org/10.1016/j.ultsonch.2020.105325.
  • [27] Reche C, Rosselló C, Dalmau E, Eim V, Simal S. Quantification of microstructural changes in artichoke by-products by image analysis after high-power ultrasound-assisted extraction of bioactive compounds. LWT. 2022; 171: 114-127. https://doi.org/10.1016/j.lwt.2022.114127.
  • [28] Cui L, Ma Z, Wang D, Niu Y. Ultrasound-assisted extraction, optimization, isolation, and antioxidant activity analysis of flavonoids from Astragalus membranaceus stems and leaves. Ultrason Sonochem. 2022; 90: 106190. https://doi.org/10.1016/j.ultsonch.2022.106190.
  • [29] Tena N, Asuero AG. Up-to-date analysis of the extraction methods for anthocyanins: Principles of the techniques, optimization, technical progress, and ındustrial application. Antioxidants. 2022; 11(2): 286. https://doi.org/10.3390/antiox11020286.
  • [30] Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017; 61(1): 1361779. https://doi.org/10.1080/16546628.2017.1361779.
  • [31] Ramirez-Martinez JR. Phenolic compounds in coffee pulp: Quantitative determination by HPLC. J Sci Food Agric. 1988; 43: 135–144. https://doi.org/10.1002/jsfa.2740430204.
  • [32] Parra-Campos A, Ordóñez-Santos LE. Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in French meringue. Food Chem. 2019; 285: 59–66. https://doi.org/10.1016/j.foodchem.2019.01.158.
  • [33] Bonilla-Hermosa VA, Duarte WF, Schwan RF. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour Technol. 2014; 166: 142–150. https://doi.org/10.1016/j.biortech.2014.05.031.
  • [34] Bueno JM, Ramos-Escudero F, Sáez-Plaza P, Muñoz AM, Navas MJ, Asuero AG. Analysis and antioxidant capacity of anthocyanin pigments. Part I: General considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem. 2012; 42(2): 102–125. https://doi.org/10.1080/10408347.2011.632312.
  • [35] Ngamkhae N, Monthakantirat O, Chulikhit Y, Boonyarat C, Maneenet J, Khamphukdee C, Kwankhao P, Pitiporn S, Daodee S. Optimization of extraction method for Kleeb Bua Daeng formula and comparison between ultrasound assisted and microwave-assisted extraction. J Appl Res Med Aromat Plants. 2022; 28(7): 100369. https://doi.org/10.1016/j.jarmap.2022.100369.
  • [36] Ochoa S, Durango-Zuleta MM, Felipe Osorio-Tobón J. Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food Bioprod Process. 2020; 122: 111–123. https://doi.org/10.1016/j.fbp.2020.04.007.
  • [37] Lin S, Meng X, Tan C, Tong Y, Wan M, Wang M, Zhao Y, Deng H, Kong Y, Ma Y. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method. Ultrason Sonochem. 2022; 89: 106102. https://doi.org/10.1016/j.ultsonch.2022.106102.
  • [38] Panić M, Gunjević V, Cravotto G, Radojčić Redovniković I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using nades. Food Chem. 2019; 300: 125185. https://doi.org/10.1016/j.foodchem.2019.125185.
  • [39] Fu X, Wang D, Belwal T, Xie J, Xu Y, Li L, Zou L, Zhang L, Luo Z. Natural deep eutectic solvent enhanced pulse ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Lwt. 2021; 144(3): 111220. https://doi.org/10.1016/j.lwt.2021.111220.
  • [40] Cvjetko Bubalo M, Ćurko N, Tomašević M, Kovačević Ganić K, Radojcic Redovnikovic I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016; 200: 159–166. https://doi.org/10.1016/j.foodchem.2016.01.040.
  • [41] Ferarsa S, Zhang W, Moulai-Mostefa N, Ding L, Jaffrin MY, Grimi N. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food Bioprod Process. 2018; 109: 19–28. https://doi.org/10.1016/j.fbp.2018.02.006.
  • [42] Coelho TLS, Silva DSN, dos Santos Junior JM, Dantas C, Nogueira AR de A, Lopes Júnior CA, Vieira EC. Multivariate optimization and comparison between conventional extraction (CE) and ultrasonic-assisted extraction (UAE) of carotenoid extraction from cashew apple. Ultrason Sonochem. 2022; 84: 105980. https://doi.org/10.1016/j.ultsonch.2022.105980.
  • [43] Contreras-Hernández MG, Ochoa-Martínez LA, Rutiaga-Quiñones JG, Rocha-Guzmán NE, Lara-Ceniceros TE, Contreras-Esquivel JC, Prado-Barragan LA, Rutiaga-Quinones OM. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production. Bioresour Technol. 2018; 249: 439–446. https://doi.org/10.1016/j.biortech.2017.10.009.
  • [44] Stanek N, Zarębska M, Biłos Ł, Barabosz K, Nowakowska-Bogdan E, Semeniuk I, Blaszkiewicz J, Kulesza R, Matejuk R, Szkutnik K. Influence of coffee brewing methods on the chromatographic and spectroscopic profiles, antioxidant and sensory properties. Sci Rep. 2021; 11(1)21377. https://doi.org/10.1038/s41598-021-01001-2.
  • [45] Ahmad R, Aldholmi M, Alqathama A, Althomali E, Aljishi F, Mostafa A, Alqarni AM, Shaaban H. The effect of natural antioxidants, pH, and green solvents upon catechins stability during ultrasonic extraction from green tea leaves (Camellia sinensis). Ultrason Sonochem. 2023; 94(1): 106337. https://doi.org/10.1016/j.ultsonch.2023.106337.
  • [46] Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud. 2020; 8(2): 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834.
  • [47] Patwardhan DM, Amurutkar SS, Kotwal TS, Wagh MP. Application of quality by design to different aspects of pharmaceuticals technologies. Int J Pharm Sci Res. 2017; 8(9): 3649-3662. https://doi.org/10.13040/IJPSR.0975 8232.8(9).3649-62.
  • [48] Hu G, Peng X, Wang X, Li X, Li X, Qiu M. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity. Food Res Int. 2020; 132: 109-121. https://doi.org/10.1016/j.foodres.2020.109121.
  • [49] Chang CC, Yang M., Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal. 2020; 10(3): 178–182. https://doi.org/10.38212/2224-6614.2748 .
  • [50] Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry; Wrolstad, R. E., Ed.; John Wiley & Sons: New York, 2001; unit F1.2.1−1.
  • [51] Juwitaningsih T, Roza D, Silaban S, Hermawati E, Windayani N. Phytochemical screening, antibacterial, antioxidant, and anticancer activity of coffee parasite acetone extract (Loranthus ferrugineus Roxb). Pharmacia. 2022; 69(4): 1041 1046. https://doi.org/10.3897/pharmacia.69.e91427 .
  • [52] Patil US, Deshmukh OS. Preliminary phytochemical screening of six medicinal plants used as traditional medicine. Int J Pharma Bio Sci. 2016; 7: 77–81. https://doi.org/10.46501/ijmtst061019.
  • [53] Pratiwi G, Ramadhiani AR, Shiyan S. Understanding the combination of fractional factorial design and chemometrics analysis for screening super-saturable quercetin-self nano emulsifying components. Pharmacia. 2022; 69: 273–284. https://doi.org/10.3897/pharmacia.69.e80594.
  • [54] Shiyan S, Hertiani T, Martien R, Nugroho AK. Optimization and validation of RP-HPLC/UV detection for several compounds simultaneously in semi-purified extract of white tea. Rasayan J Chem. 2019; 12(3): 1098–1109. https://doi.org/10.31788/RJC.2019.1235276 .

Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design

Year 2024, Volume: 28 Issue: 6, 2147 - 2163, 28.06.2025
https://doi.org/10.29228/jrp.889

Abstract

Robusta coffee fruit peel contains many polyphenolic compounds, so the antioxidant activity is high. These compounds require special extraction techniques to obtain optimal results. This study aims to determine the optimal extraction process conditions for producing polyphenol compounds (flavonoids and anthocyanins) with strong antioxidant activity. The robusta fruit peel extraction process uses the ultrasound assisted extraction (UAE) method and is analyzed using the full factorial design (FFD) application. Factors in determining the optimal extract consist of extraction time (10-45 minutes), extraction temperature (25-50°C), and solvent pH (2-5). The observed responses included percent yield, total flavonoids, anthocyanin levels, and antioxidant activity. The results of the extraction optimization yielded the optimal extract at an extraction time of 45 minutes, an extraction temperature of 50°C, and a pH of 2. The optimum extract has a yield value of 17.25%, TFC 242.26 mgCE/g, anthocyanins 367.04 mg/100 g, and IC50 22.11 µg/mL. Extract optimization results show a good value with desirability of 0.997. The optimum extract contains 0.21% water content and 0.26% dry shrinkage. The optimum results of the phytochemical screening of the extract contained phenolic compounds, flavonoids, tannins, saponins, and alkaloids. The optimum extract verification results obtained yield percent values of 17.10%, TFC 250.28 mgCE/g, anthocyanins 391.20 mg/100 g, and antioxidant activity 24.54 µg/mL. The response results show values supporting verification, as evidenced by 95% CI and 95% TI range values.

References

  • [1] Santos ÉM dos, Macedo LM de, Tundisi LL, Ataide JA, Camargo GA, Alves RC, Oliveira MB, Mazzola PG. Coffee by products in topical formulations. Trends Food Sci Technol. 2021; 111: 280–291. https://doi.org/10.1016/j.tifs.2021.02.064.
  • [2] Echeverria MC, Nuti M. Valorisation of the residues of coffee agro-industry: Perspectives and limitations. Open Waste Manag J. 2017; 10(1): 13–22. https://doi.org/10.2174/1876400201710010013.
  • [3] Wang S, Ye X, Sun Y, Liang J, Yue P, Gao X. Nanocomplexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Food Chem. 2021; 336(2020): 127707. https://doi.org/10.1016/j.foodchem.2020.127707.
  • [4] Velotto S, Palmeri R, Alfeo V, Gugino IM, Fallico B, Spagna G, Todaro A. The effect of different technologies in pomegranate jam preparation on the phenolic compounds, vitamin C and antioxidant activity. Food Biosci. 2023; 53: 102525. https://doi.org/10.1016/j.fbio.2023.102525.
  • [5] Esquivel P, Jiménez VM. Functional properties of coffee and coffee by-products. Food Res Int. 2012; 46(2): 488-495. https://doi.org/10.1016/j.foodres.2011.05.028.
  • [6] Kieu Tran TM, Kirkman T, Nguyen M, Van Vuong Q. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon. 2020; 6(7): e04498. https://doi.org/10.1016/j.heliyon.2020.e04498.
  • [7] Bagdas D, Gul Z, Meade JA, Cam B, Cinkilic N, Gurun MS. Pharmacologic overview of chlorogenic acid and its metabolites in chronic pain and ınflammation. Curr Neuropharmacol. 2019; 18(3): 216–228. https://doi.org/10.2174/1570159x17666191021111809.
  • [8] Rante H, Subehan, Wulandari R, Evary YM. Antibacterial activity of robusta coffee (Coffea robusta L.) peel extract against human pathogenic bacteria. J Exp Biol Agric Sci. 2021; 9: 264–268. https://doi.org/10.18006/2021.9(Spl-2 ICOPMES_2020).S264.S268.
  • [9] Boonphang O, Ontawong A, Pasachan T, Phatsara M, Duangjai A, Amornlerdpison D, Jinakote M, Srimaroeng C. Antidiabetic and renoprotective effects of Coffea arabica pulp aqueous extract through preserving organic cation transport system mediated oxidative stress pathway in experimental type 2 diabetic rats. Molecules. 2021; 26(7): 1907. https://doi.org/10.3390/molecules26071907.
  • [10] Tseng YP, Liu C, Chan LP, Liang CH. Coffee pulp supplement affects antioxidant status and favors anti-aging of skin in healthy subjects. J Cosmet Dermatol. 2022; 21: 1-11. https://doi.org/10.1111/jocd.14341.
  • [11] Bonfigli M, Godoy E, Reinheimer MA, Scenna NJ. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J Food Eng. 2017; 207: 56–72. https://doi.org/10.1016/j.jfoodeng.2017.03.011.
  • [12] Ramli NS, Ismail P, Rahmat A. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). Sci World J. 2014; 2014: 964731. https://doi.org/10.1155/2014/964731.
  • [13] Chemat F, Zill-E-Huma, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem. 2011; 18(4) :813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023.
  • [14] Wang Y, Xiong X, Huang G. Ultrasound-assisted extraction and analysis of maidenhairtree polysaccharides. Ultrason Sonochem. 2023; 95: 106395. https://doi.org/10.1016/j.ultsonch.2023.106395.
  • [15] Bruno Romanini E, Misturini Rodrigues L, Finger A, Perez Cantuaria Chierrito T, Regina da Silva Scapim M, Scaramal Madrona G. Ultrasound assisted extraction of bioactive compounds from BRS Violet grape pomace followed by alginate-Ca2+ encapsulation. Food Chem. 2021; 338: 128101. https://doi.org/10.1016/j.foodchem.2020.128101.
  • [16] González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Carrera C, Ferreiro-González M, Barbero GF, Palma M. Flavonol composition and antioxidant activity of onions (Allium cepa l.) based on the development of new analytical ultrasound-assisted extraction methods. Antioxidants. 2021; 10(2):273. https://doi.org/10.3390/antiox10020273.
  • [17] Vichapong J, Santaladchaiyakit Y, Burakham R, Srijaranai S. Cloud-point extraction and reversed-phase high performance liquid chromatography for analysis of phenolic compounds and their antioxidant activity in Thai local wines. J Food Sci Technol. 2014; 51(4) :664–672. https://doi.org/10.1007/s13197-011-0556-0.
  • [18] Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res Int. 2012; 48(2): 410–427. https://doi.org/10.1016/j.foodres.2012.05.004.
  • [19] Majid H, Silva FVM. Kanuka bush leaves for Alzheimer’s disease: Improved inhibition of β-secretase enzyme, antioxidant capacity and yield of extracts by ultrasound assisted extraction. Food Bioprod Process. 2021; 128: 109–120. https://doi.org/10.1016/j.fbp.2021.04.018.
  • [20] Hu W, Gong H, Li L, Chen S, Ye X. Ultrasound treatment on stability of total and ındividual anthocyanin extraction from blueberry pomace: Optimization and comparison. Molecules. 2019; 24(14): 2621. https://doi.org/10.3390/molecules24142621.
  • [21] Vardanega R, Santos DT, De Almeida MA. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacogn Rev. 2014; 8(16): 88–95. https://doi.org/10.4103/0973-7847.134231.
  • [22] Chen ZL, Wang C, Ma H, Ma Y, Yan JK. Physicochemical and functional characteristics of polysaccharides from okra extracted by using ultrasound at different frequencies. Food Chem. 2021; 361: 130-138. https://doi.org/10.1016/j.foodchem.2021.130138.
  • [23] Myo H, Khat-udomkiri N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason Sonochem. 2022; 89: 106-127. https://doi.org/10.1016/j.ultsonch.2022.106127.
  • [24] Fernandez-Gomez B, Ramos S, Goya L, Mesa MD, del Castillo MD, Martín MÁ. Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Res Int. 2016; 89: 1015–1022. https://doi.org/10.1016/j.foodres.2016.03.006.
  • [25] Konieczka PP, Aliaño-González MJ, Ferreiro-González M, Barbero GF, Palma M. Characterization of arabica and robusta coffees by ion mobility sum spectrum. Sensors (Switzerland). 2020; 20(11): 3123. https://doi.org/10.3390/s20113123.
  • [26] Kumar K, Srivastav S, Sharanagat VS. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason Sonochem. 2021; 70: 105325. https://doi.org/10.1016/j.ultsonch.2020.105325.
  • [27] Reche C, Rosselló C, Dalmau E, Eim V, Simal S. Quantification of microstructural changes in artichoke by-products by image analysis after high-power ultrasound-assisted extraction of bioactive compounds. LWT. 2022; 171: 114-127. https://doi.org/10.1016/j.lwt.2022.114127.
  • [28] Cui L, Ma Z, Wang D, Niu Y. Ultrasound-assisted extraction, optimization, isolation, and antioxidant activity analysis of flavonoids from Astragalus membranaceus stems and leaves. Ultrason Sonochem. 2022; 90: 106190. https://doi.org/10.1016/j.ultsonch.2022.106190.
  • [29] Tena N, Asuero AG. Up-to-date analysis of the extraction methods for anthocyanins: Principles of the techniques, optimization, technical progress, and ındustrial application. Antioxidants. 2022; 11(2): 286. https://doi.org/10.3390/antiox11020286.
  • [30] Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017; 61(1): 1361779. https://doi.org/10.1080/16546628.2017.1361779.
  • [31] Ramirez-Martinez JR. Phenolic compounds in coffee pulp: Quantitative determination by HPLC. J Sci Food Agric. 1988; 43: 135–144. https://doi.org/10.1002/jsfa.2740430204.
  • [32] Parra-Campos A, Ordóñez-Santos LE. Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in French meringue. Food Chem. 2019; 285: 59–66. https://doi.org/10.1016/j.foodchem.2019.01.158.
  • [33] Bonilla-Hermosa VA, Duarte WF, Schwan RF. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour Technol. 2014; 166: 142–150. https://doi.org/10.1016/j.biortech.2014.05.031.
  • [34] Bueno JM, Ramos-Escudero F, Sáez-Plaza P, Muñoz AM, Navas MJ, Asuero AG. Analysis and antioxidant capacity of anthocyanin pigments. Part I: General considerations concerning polyphenols and flavonoids. Crit Rev Anal Chem. 2012; 42(2): 102–125. https://doi.org/10.1080/10408347.2011.632312.
  • [35] Ngamkhae N, Monthakantirat O, Chulikhit Y, Boonyarat C, Maneenet J, Khamphukdee C, Kwankhao P, Pitiporn S, Daodee S. Optimization of extraction method for Kleeb Bua Daeng formula and comparison between ultrasound assisted and microwave-assisted extraction. J Appl Res Med Aromat Plants. 2022; 28(7): 100369. https://doi.org/10.1016/j.jarmap.2022.100369.
  • [36] Ochoa S, Durango-Zuleta MM, Felipe Osorio-Tobón J. Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food Bioprod Process. 2020; 122: 111–123. https://doi.org/10.1016/j.fbp.2020.04.007.
  • [37] Lin S, Meng X, Tan C, Tong Y, Wan M, Wang M, Zhao Y, Deng H, Kong Y, Ma Y. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa extracted using an ultrasonic-microwave-assisted natural deep eutectic solvent extraction method. Ultrason Sonochem. 2022; 89: 106102. https://doi.org/10.1016/j.ultsonch.2022.106102.
  • [38] Panić M, Gunjević V, Cravotto G, Radojčić Redovniković I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using nades. Food Chem. 2019; 300: 125185. https://doi.org/10.1016/j.foodchem.2019.125185.
  • [39] Fu X, Wang D, Belwal T, Xie J, Xu Y, Li L, Zou L, Zhang L, Luo Z. Natural deep eutectic solvent enhanced pulse ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Lwt. 2021; 144(3): 111220. https://doi.org/10.1016/j.lwt.2021.111220.
  • [40] Cvjetko Bubalo M, Ćurko N, Tomašević M, Kovačević Ganić K, Radojcic Redovnikovic I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016; 200: 159–166. https://doi.org/10.1016/j.foodchem.2016.01.040.
  • [41] Ferarsa S, Zhang W, Moulai-Mostefa N, Ding L, Jaffrin MY, Grimi N. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food Bioprod Process. 2018; 109: 19–28. https://doi.org/10.1016/j.fbp.2018.02.006.
  • [42] Coelho TLS, Silva DSN, dos Santos Junior JM, Dantas C, Nogueira AR de A, Lopes Júnior CA, Vieira EC. Multivariate optimization and comparison between conventional extraction (CE) and ultrasonic-assisted extraction (UAE) of carotenoid extraction from cashew apple. Ultrason Sonochem. 2022; 84: 105980. https://doi.org/10.1016/j.ultsonch.2022.105980.
  • [43] Contreras-Hernández MG, Ochoa-Martínez LA, Rutiaga-Quiñones JG, Rocha-Guzmán NE, Lara-Ceniceros TE, Contreras-Esquivel JC, Prado-Barragan LA, Rutiaga-Quinones OM. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production. Bioresour Technol. 2018; 249: 439–446. https://doi.org/10.1016/j.biortech.2017.10.009.
  • [44] Stanek N, Zarębska M, Biłos Ł, Barabosz K, Nowakowska-Bogdan E, Semeniuk I, Blaszkiewicz J, Kulesza R, Matejuk R, Szkutnik K. Influence of coffee brewing methods on the chromatographic and spectroscopic profiles, antioxidant and sensory properties. Sci Rep. 2021; 11(1)21377. https://doi.org/10.1038/s41598-021-01001-2.
  • [45] Ahmad R, Aldholmi M, Alqathama A, Althomali E, Aljishi F, Mostafa A, Alqarni AM, Shaaban H. The effect of natural antioxidants, pH, and green solvents upon catechins stability during ultrasonic extraction from green tea leaves (Camellia sinensis). Ultrason Sonochem. 2023; 94(1): 106337. https://doi.org/10.1016/j.ultsonch.2023.106337.
  • [46] Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud. 2020; 8(2): 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834.
  • [47] Patwardhan DM, Amurutkar SS, Kotwal TS, Wagh MP. Application of quality by design to different aspects of pharmaceuticals technologies. Int J Pharm Sci Res. 2017; 8(9): 3649-3662. https://doi.org/10.13040/IJPSR.0975 8232.8(9).3649-62.
  • [48] Hu G, Peng X, Wang X, Li X, Li X, Qiu M. Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity. Food Res Int. 2020; 132: 109-121. https://doi.org/10.1016/j.foodres.2020.109121.
  • [49] Chang CC, Yang M., Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal. 2020; 10(3): 178–182. https://doi.org/10.38212/2224-6614.2748 .
  • [50] Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry; Wrolstad, R. E., Ed.; John Wiley & Sons: New York, 2001; unit F1.2.1−1.
  • [51] Juwitaningsih T, Roza D, Silaban S, Hermawati E, Windayani N. Phytochemical screening, antibacterial, antioxidant, and anticancer activity of coffee parasite acetone extract (Loranthus ferrugineus Roxb). Pharmacia. 2022; 69(4): 1041 1046. https://doi.org/10.3897/pharmacia.69.e91427 .
  • [52] Patil US, Deshmukh OS. Preliminary phytochemical screening of six medicinal plants used as traditional medicine. Int J Pharma Bio Sci. 2016; 7: 77–81. https://doi.org/10.46501/ijmtst061019.
  • [53] Pratiwi G, Ramadhiani AR, Shiyan S. Understanding the combination of fractional factorial design and chemometrics analysis for screening super-saturable quercetin-self nano emulsifying components. Pharmacia. 2022; 69: 273–284. https://doi.org/10.3897/pharmacia.69.e80594.
  • [54] Shiyan S, Hertiani T, Martien R, Nugroho AK. Optimization and validation of RP-HPLC/UV detection for several compounds simultaneously in semi-purified extract of white tea. Rasayan J Chem. 2019; 12(3): 1098–1109. https://doi.org/10.31788/RJC.2019.1235276 .
There are 54 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Angle Kitt Clearn This is me 0009-0004-0705-2302

Shaum Shiyan 0000-0002-8817-0658

Galih Pratiwi This is me 0000-0002-1057-4441

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Clearn, A. K., Shiyan, S., & Pratiwi, G. (2025). Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design. Journal of Research in Pharmacy, 28(6), 2147-2163. https://doi.org/10.29228/jrp.889
AMA Clearn AK, Shiyan S, Pratiwi G. Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design. J. Res. Pharm. July 2025;28(6):2147-2163. doi:10.29228/jrp.889
Chicago Clearn, Angle Kitt, Shaum Shiyan, and Galih Pratiwi. “Multivariate Optimization of Ultrasound-Assisted Extraction Rich Polyphenol from Robusta Coffee Fruit Peel (Coffea Canephora) Using Factorial Design”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 2147-63. https://doi.org/10.29228/jrp.889.
EndNote Clearn AK, Shiyan S, Pratiwi G (July 1, 2025) Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design. Journal of Research in Pharmacy 28 6 2147–2163.
IEEE A. K. Clearn, S. Shiyan, and G. Pratiwi, “Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design”, J. Res. Pharm., vol. 28, no. 6, pp. 2147–2163, 2025, doi: 10.29228/jrp.889.
ISNAD Clearn, Angle Kitt et al. “Multivariate Optimization of Ultrasound-Assisted Extraction Rich Polyphenol from Robusta Coffee Fruit Peel (Coffea Canephora) Using Factorial Design”. Journal of Research in Pharmacy 28/6 (July2025), 2147-2163. https://doi.org/10.29228/jrp.889.
JAMA Clearn AK, Shiyan S, Pratiwi G. Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design. J. Res. Pharm. 2025;28:2147–2163.
MLA Clearn, Angle Kitt et al. “Multivariate Optimization of Ultrasound-Assisted Extraction Rich Polyphenol from Robusta Coffee Fruit Peel (Coffea Canephora) Using Factorial Design”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 2147-63, doi:10.29228/jrp.889.
Vancouver Clearn AK, Shiyan S, Pratiwi G. Multivariate optimization of ultrasound-assisted extraction rich polyphenol from robusta coffee fruit peel (Coffea canephora) using factorial design. J. Res. Pharm. 2025;28(6):2147-63.