Research Article
BibTex RIS Cite

Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events

Year 2025, Volume: 29 Issue: 1, 137 - 150

Abstract

Epigenetic alterations in regulatory genes, genetic factors, and genomic instability, which cause breast cancer, can also contribute to disease resistance. HORMAD , which encode proteins containing HORMA domains and are involved in homologous recombination, have important roles in cancer emergence and progression. In this study, we uncovered putative breast cancer therapeutic targets by examining HORMAD1 and HORMAD2 genetic and epigenetic alterations. mRNA levels of HORMAD1 and HORMAD2 in breast cancer samples and normal breast tissues, as well as mRNA levels in normal, breast cancer, and metastatic breast cancer samples, were analyzed using TNMplot. Prognostic value, genetic alterations, epigenetic alterations, genetic variations, ROC plots, functional prediction, and immune infiltration of HORMAD1 and HORMAD2 were conducted with KMPlotter, cBioportal, methsurv, ClinVar, ROC Plotter, PredictSNP, PANTHER, and TIMER 2.0, respectively. Both HORMAD1 and HORMAD2 mRNA levels were lower in breast cancer samples, and lower in metastatic breast cancer samples. Patients expressing higher HORMAD1 and HORMAD2 levels had favorable overall survival (OS) rates than the opposite groups. HORMAD1 and HORMAD2 gene amplifications and deletions were also observed. Pathway enrichment analyses showed that Wnt signaling alterations contributed to cell proliferation. Increased DNA methylation levels were identified in HORMAD2 when compared with HORMAD1 in patients. Two 1021C>T (Q334) and 430A>G (T144A) variants of HORMAD1 were shown to have clinical significance in patients. Also, functional prediction mutant analysis of HORMAD1 confirmed that S287F exerted a deleterious effect on amino acid impact, however, further investigations are warranted. Receiver operating characteristic (ROC) plot data indicated a significant correlation between HORMAD2 levels and anti-human epidermal growth factor receptor 2 (HER2) sensitivity. Genetic and epigenetic changes in HORMAD1 and HORMAD2 genes may be used as indicators and targets for overcoming breast cancer resistance and limiting metastasis in breast cancer cells via Wnt targeting. Further research is required to verify our findings.

References

  • [1] Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022; 95(1130): 20211033. https://doi.org./10.1259/bjr.20211033
  • [2] Hartkopf AD, Grischke EM, Brucker SY. Endocrine-resistant breast cancer: Mechanisms and treatment. Breast Care (Basel). 2020; 15(4): 347-354. https://doi.org./10.1159/000508675
  • [3] Ramos A, Sadeghi S, Tabatabaeian H. Battling chemoresistance in cancer: Root causes and strategies to uproot them. Int J Mol Sci. 2021; 22(17):9451. https://doi.org./10.3390/ijms22179451.
  • [4] Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021; 124(1): 13-26. https://doi.org./10.1038/s41416-020-01161-4
  • [5] Rimawi MF, De Angelis C, Schiff R. Resistance to Anti-HER2 Therapies in Breast Cancer. Am Soc Clin Oncol Educ Book. 2015 (35): e157-e164. https://doi.org./10.14694/EdBook_AM.2015.35.e157
  • [6] Fath MK, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Oryani MA, Shakeri F, Nasirzadeh F, Khalesi B, Nabi Afjadi M, Zalpoor H, Mard-Soltani M, Zahra Payandeh Z. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022; 27(1): 52. https://doi.org./10.1186/s11658-022-00344-6.
  • [7] Li A, Schleicher SM, Andre F, Mitri ZI. Genomic alteration in metastatic breast cancer and ıts treatment. Am Soc Clin Oncol Educ Book. 2020 (40): 30-43. https://doi.org./10.1200/EDBK_280463
  • [8] Liu K, Wang Y, Zhu Q, Li P, Chen J, Tang Z, Shen Y, Cheng X, Lu LY, Liu Y. Aberrantly expressed HORMAD1 disrupts nuclear localization of MCM8-MCM9 complex and compromises DNA mismatch repair in cancer cells. Cell Death Dis. 2020 ;11(7): 519. https://doi.org./10.1038/s41419-020-2736-1.
  • [9] Shin YH, Choi Y, Erdin SU, Yatsenko SA, Kloc M, Yang F, Wang JP, Meistrich ML, Rajkovic A. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 2010; 6(11): e1001190. https://doi.org./10.1371/journal.pgen.1001190
  • [10] Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, Cooke HJ, Stewart AF, Wassmann K, Jasin M, Keeney S, Toth A. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol. 2011; 13(5): 599-610. https://doi.org./10.1038/ncb2213
  • [11] Liu M, Chen J, Hu L, Shi X, Zhou Z, Hu Z, Sha J. HORMAD2/CT46.2, a novel cancer/testis gene, is ectopically expressed in lung cancer tissues. Mol Hum Reprod. 2012; 18(12): 599-604. https://doi.org./10.1093/molehr/gas033
  • [12] Watkins J, Weekes D, Shah V, Gazinska P, Joshi S, Sidhu B, Gillet C, Pinder S, Vanoli F, Jasin M, Mayrhofer M, Isaksson A, Cheang MCU, Mirza H, Frankum J, Lord CJ, Ashworth A, Vinayak S, Ford JM, Telli ML, Grigoriadis A, Tutt ANJ. Genomic complexity profiling reveals that HORMAD1 overexpression contributes to homologous recombination deficiency in triple-negative breast cancers. Cancer Discov. 2015; 5(5): 488-505. https://doi.org./10.1158/2159-8290.Cd-14-1092
  • [13] Chen B, Tang H, Chen X, Zhang G, Wang Y, Xie X, Liao N. Transcriptomic analyses identify key differentially expressed genes and clinical outcomes between triple-negative and non-triple-negative breast cancer. Cancer Manag Res. 2019; 11: 179-190. https://doi.org./10.2147/cmar.S187151
  • [14] Wang X, Tan Y, Cao X, Kim JA, Chen T, Hu Y, Wexler M, Wang X. Epigenetic activation of HORMAD1 in basal-like breast cancer: role in Rucaparib sensitivity. Oncotarget. 2018; 9(53): 30115-30227. https://doi.org./10.18632/oncotarget.25728
  • [15] Lin Q, Hou S, Guan F, Lin C. HORMAD2 methylation-mediated epigenetic regulation of gene expression in thyroid cancer. J Cell Mol Med. 2018; 22(10): 4640-4652. https://doi.org/10.1111/jcmm.13680
  • [16] Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance. Front Pharmacol. 2023; 14:1230822 https://doi.org./10.3389/fphar.2023.1230822
  • [17] Savio AJ, Daftary D, Dicks E, Buchanan DD, Parfrey PS, Young JP, Weisenberger D, Green RC, Gallinger S, McLaughlin JR, Knight JA, Bapat B. Promoter methylation of ITF2, but not APC, is associated with microsatellite instability in two populations of colorectal cancer patients. BMC Cancer. 2016; 16: 113. https://doi.org./10.1186/s12885-016-2149-9
  • [18] Zong B, Sun L, Peng Y, Wang Y, Yu Y, Lei J, Zhang Y, Guo S, Li K, Liu S. HORMAD1 promotes docetaxel resistance in triple negative breast cancer by enhancing DNA damage tolerance. Oncol Rep. 2021; 46(1):138. https://doi.org./10.3892/or.2021.8089
  • [19] El-Botty R, Vacher S, Mainguené J, Briaux A, Ibadioune S, Dahmani A, Montaudon E, Nemati F, Huguet L, Sourd L, Morriset L, Château-Joubert S, Dubois T, Maire V, Lidereau R, Rapinat A, Gentien D, Coussy F, Bièche I, Marangoni E. HORMAD1 overexpression predicts response to anthracycline-cyclophosphamide and survival in triple-negative breast cancers. Mol Oncol. 2023;17(10):2017-2028. https://doi.org./10.1002/1878-0261.13412
  • [20] Lin Q, Hou S, Guan F, Lin C. HORMAD2 methylation-mediated epigenetic regulation of gene expression in thyroid cancer. J Cell Mol Med. 2018; 22(10): 4640-4652. https://doi.org./10.1111/jcmm.13680.
  • [21] Pohl SG, Brook N, Agostino M, Arfuso F, Kumar AP, Dharmarajan A. Wnt signaling in triple-negative breast cancer. Oncogenesis. 2017; 6(4): e310. https://doi.org./10.1038/oncsis.2017.14
  • [22] Liu K, Cheng L, Zhu K, Wang J, Shu Q. The cancer/testis antigen HORMAD1 mediates epithelial–mesenchymal transition to promote tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway in lung cancer. Cell Death Discov. 2022; 8(1): 136. https://doi.org./10.1038/s41420-022-00946-1
  • [23] Motwani J, Rodger EJ, Stockwell PA, Baguley BC, Macaulay EC, Eccles MR. Genome-wide DNA methylation and RNA expression differences correlate with invasiveness in melanoma cell lines. Epigenomics. 2021; 13(8): 577-598. https://doi.org./10.2217/epi-2020-0440
  • [24] Bartha Á, Győrffy B. TNMplot.com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021; 22(5):2622. https://doi.org./10.3390/ijms22052622
  • [25] Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021; 19: 4101-4109. https://doi.org/10.1016/j.csbj.2021.07.014
  • [26] Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Anders Jacobsen, Caitlin J Byrne, Michael L Heuer, Erik Larsson, Yevgeniy Antipin, Boris Reva, Arthur P Goldberg, Chris Sander, Nikolaus Schultz. The cbio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2012; 2(5): 401-404. https://doi.org./10.1158/2159-8290.Cd-12-0095
  • [27] Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6(269): pl1. https://doi.org./10.1126/scisignal.2004088
  • [28] Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: A web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018; 10(3): 277-288. https://doi.org./10.2217/epi 2017-0118
  • [29] Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015; 43(W1): W566-W570. https://doi.org./10.1093/nar/gkv468
  • [30] Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, Kattman BL, Maglott DR. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018; 46(D1): D1062-D1067. https://doi.org./10.1093/nar/gkx1153
  • [31] Fekete JT, Győrffy B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti HER2 therapy using transcriptomic data of 3,104 breast cancer patients. Int J Cancer. 2019; 145(11): 3140-3151. https://doi.org./10.1002/ijc.32369
  • [32] Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J. PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014; 10(1): e1003440. https://doi.org./10.1371/journal.pcbi.1003440
  • [33] Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity. Genom Res. 2005; 15(7): 978-986. https://doi.org./10.1101/gr.3804205
  • [34] Capriotti E, Fariselli P, Calabrese R, Casadio R. Predicting protein stability changes from sequences using support vector machines. Bioinformatics. 2005; 21 (Suppl 2):ii54-58. https://doi.org./10.1093/bioinformatics/bti1109
  • [35] Ramensky V, Bork P, Sunyaev S. Human non‐ synonymous SNPs: server and survey. Nucleic Acids Res. 2002; 30(17): 3894-3900. https://doi.org./10.1093/nar/gkf493
  • [36] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4): 248-249. https://doi.org./10.1038/nmeth0410-248
  • [37] Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012; 40(Web Server issue): W452-457. https://doi.org./10.1093/nar/gks539
  • [38] Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007; 35(11): 3823-3835. https://doi.org./10.1093/nar/gkm238
  • [39] Tang H, Thomas PD. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics. 2016; 32(14): 2230-2232. https://doi.org./10.1093/bioinformatics/btw222
  • [40] Pejaver V, Mooney SD, Radivojac P. Missense variant pathogenicity predictors generalize well across a range of function-specific prediction challenges. Hum Mutat. 2017; 38(9): 1092-1108. https://doi.org./10.1002/humu.23258
  • [41] Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day INM, Gaunt TR. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013; 34(1): 57-65. https://doi.org./10.1002/humu.22225
  • [42] Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006; 62(4): 1125-1132. https://doi.org./10.1002/prot.20810
  • [43] Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006; 22(22): 2729 2734. https://doi.org./10.1093/bioinformatics/btl423
  • [44] Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020; 48(W1): W509-w514. https://doi.org./10.1093/nar/gkaa407
There are 44 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Adam Hermawan This is me

Herwandhani Putri This is me

Publication Date
Submission Date December 8, 2023
Acceptance Date March 23, 2024
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Hermawan, A., & Putri, H. (n.d.). Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events. Journal of Research in Pharmacy, 29(1), 137-150.
AMA Hermawan A, Putri H. Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events. J. Res. Pharm. 29(1):137-150.
Chicago Hermawan, Adam, and Herwandhani Putri. “Analyzing Genetic and Epigenetic HORMAD Alterations in Breast Cancer Resistance and Metastatic Events”. Journal of Research in Pharmacy 29, no. 1 n.d.: 137-50.
EndNote Hermawan A, Putri H Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events. Journal of Research in Pharmacy 29 1 137–150.
IEEE A. Hermawan and H. Putri, “Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events”, J. Res. Pharm., vol. 29, no. 1, pp. 137–150.
ISNAD Hermawan, Adam - Putri, Herwandhani. “Analyzing Genetic and Epigenetic HORMAD Alterations in Breast Cancer Resistance and Metastatic Events”. Journal of Research in Pharmacy 29/1 (n.d.), 137-150.
JAMA Hermawan A, Putri H. Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events. J. Res. Pharm.;29:137–150.
MLA Hermawan, Adam and Herwandhani Putri. “Analyzing Genetic and Epigenetic HORMAD Alterations in Breast Cancer Resistance and Metastatic Events”. Journal of Research in Pharmacy, vol. 29, no. 1, pp. 137-50.
Vancouver Hermawan A, Putri H. Analyzing genetic and epigenetic HORMAD alterations in breast cancer resistance and metastatic events. J. Res. Pharm. 29(1):137-50.