Research Article
BibTex RIS Cite

Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet

Year 2025, Volume: 29 Issue: 1, 310 - 321

Abstract

Mentawai taro (Colocasia esculenta var. Mentawai, Araceae) corm is a staple food for local people in
Mentawai islands, West Sumatra, Indonesia. This study aimed to determine whether the incorporation of fiber and
starch extracted from Mentawai taro corm could improve adiposity and plasma lipid profiles and intestinal microbiota
composition in mice fed a fatty diet. Adult male mice (n = 24) were assigned to four groups of diet treatments: normal
diet (ND), high-fat diet (HFD), and HFD supplemented with 20% of fiber or starch from Mentawai taro corm,
respectively. After 12-week treatment, body weight, adipose tissues, plasma lipid profiles and intestinal microbiota
composition were investigated. The results showed that the incorporation of fiber and starch of Mentawai taro corm was
capable of substantially preventing the excessive body weight increase against HFD. Moreover, fiber and starch could
significantly suppress the increase of white adipose tissue mass and adipocyte hypertrophy while preventing the
reduction of brown adipose tissue mass and adipocyte hypertrophy. The fiber and starch also could effectively reduce
total plasma cholesterol, low-density lipoprotein-cholesterol, and triglyceride levels. The result also indicated that the
fiber and starch of Mentawai taro corm could modulate the diversity of intestinal microbiota by promoting the health
beneficial taxa while suppressing the pathogenic taxa. Overall, the fiber effectivity in managing the detrimental effects of
fatty diet outperformed the starch of Mentawai taro corm. Hence, it could be recommended as a potent supplement to
combat diet-induced metabolic problems, particularly obesity, dyslipidemia, and gut dysbiosis.

References

  • [1] Chong B, Kong G, Shankar K, Chew HSJ, Lin C, Goh R, Chin YH, Tan DJH, Chan KE, Lim WH, Syn N, Chan SP, Wang JW, Khoo CM, Dimitriadis GK, Wijarnpreecha K, Sanyal A, Noureddin M, Siddiqui MS, Foo R, Mehta A, Figtree GA, Hausenloy DJ, Chan MY, Ng CH, Muthiah M, Mamas MA, Chew NWS. The global syndemic of metabolic diseases in the young adult population: A consortium of trends and projections from the Global Burden of Disease 2000-2019. Metabolism. 2023; 141:155402. http://dx.doi.org/10.1016/j.metabol.2023.155402. the Global
  • [2] Peng J, Lü M, Wang P, Peng Y, Tang X. The global burden of metabolic disease in children and adolescents: Data from Burden of https://doi.org/10.1016/j.metabol.2023.155691.
  • [3] Disease 2000-2019. Metabolism. 2023;148:155691. Chan KE, Koh TJL, Tang ASP, Quek J, Yong JN, Tay P, Tan DJH, Lim WH, Lin SY, Huang D, Chan M, Khoo CM, Chew NWS, Kaewdech A, Chamroonkul N, Dan YY, Noureddin M, Muthiah M, Eslam M, Ng CH. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: A meta-analysis and systematic review of 10 739 607 ındividuals. J Clin Endocrinol Metab. 2022;107(9): 2691-2700. http://dx.doi.org/10.1210/clinem/dgac321.
  • [4] Frigolet ME, Dong-Hoon K, Canizales-Quinteros S, Gutiérrez-Aguilar R. Obesity, adipose tissue, and bariatric surgery. Bol Med Hosp Infant Mex. 2020;77(1): 3-14. http://dx.doi.org/10.24875/BMHIM.19000115.
  • [5] Zhang K, Ma Y, Luo Y, Song Y, Xiong G, Ma Y, Sun X, Kan C. Metabolic diseases and healthy aging: identifying environmental and behavioral risk factors and promoting public health. Front Public Health. 2023;11:1253506. http://dx.doi.org/10.3389/fpubh.2023.1253506.
  • [6] Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim. 2020;69(3): 326-335. http://dx.doi.org/10.1538/expanim.19-0148
  • [7] Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular ınflammatory response and cognitive function. Nutrients. 2019;11(11):2579. http://dx.doi.org/10.3390/nu11112579.
  • [8] Suffee N, Baptista E, Piquereau J, Ponnaiah M, Doisne N, Ichou F, Lhomme M, Pichard C, Galand V, Mougenot N, Dilanian G, Lucats L, Balse E, Mericskay M, Le Goff W, Hatem SN. Impacts of a high-fat diet on the metabolic profile and the phenotype of atrial myocardium in mice. Cardiovasc Res. 2022;118(15): 3126-3139. http://dx.doi.org/10.1093/cvr/cvab367.
  • [9] Qi Y, Wang X. The role of gut microbiota in high-fat-diet-ınduced diabetes: lessons from animal models and humans. Nutrients. 2023;15(4):922. http://dx.doi.org/10.3390/nu15040922.
  • [10] Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-fat, western-style diet, systemic ınflammation, and gut microbiota: a narrative review. Cells. 2021;10(11):3164. http://dx.doi.org/10.3390/cells10113164.
  • [11] Shi X, Zhou X, Chu X, Wang J, Xie B, Ge J, Guo Y, Li X, Yang G. Allicin Improves metabolism in high-fat diet ınduced obese mice by modulating the gut microbiota. Nutrients. 2019;11(12):2909. http://dx.doi.org/10.3390/nu11122909.
  • [12] Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced obesity: Role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10): 1127-1137. http://dx.doi.org/10.1017/S0007114520000380.
  • [13] Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the relative abundance of gut bacteria correlate with lipid profiles in healthy adults. Microorganisms. 2023;11(11):2656. http://dx.doi.org/10.3390/microorganisms11112656.
  • [14] Park J, Oh SK, Doo M, Chung HJ, Park HJ, Chun H. Effects of consuming heat-treated dodamssal brown rice containing resistant starch on glucose metabolism in humans. Nutrients. 2023;15(10):2248. http://dx.doi.org/10.3390/nu15102248.
  • [15] Harris KF. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutr Rev. 2019;77(11): 748-764. http://dx.doi.org/10.1093/nutrit/nuz040.
  • [16] Guan ZW, Yu EZ, Feng Q. Soluble dietary fiber, one of the most ımportant nutrients for the gut microbiota. Molecules. 2021;26(22):6802. http://dx.doi.org/10.3390/molecules26226802.
  • [17] Lu K, Yu T, Cao X, Xia H, Wang S, Sun G, Chen L, Liao W. Effect of viscous soluble dietary fiber on glucose and lipid metabolism in patients with type 2 diabetes mellitus: a systematic review and meta-analysis on randomized clinical trials. Front Nutr. 2023;10:1253312. http://dx.doi.org/10.3389/fnut.2023.1253312.
  • [18] Santoso P, Maliza R, Rahayu R, Astrina Y, Syukri F, Maharani S. Extracted yam bean (Pachyrhizus erosus (L.) Urb.) fiber counteracts adiposity, insulin resistance, and inflammation while modulating gut microbiota composition in mice fed with a high-fat diet. Res Pharm Sci. 2022;17(5):558-571. http://dx.doi.org/10.4103/1735-5362.355213.
  • [19] Zubair MW, Imran A, Islam F, Afzaal M, Saeed F, Zahra SM, Akhtar MN, Noman M, Ateeq H, Aslam MA, Mehta S, Shah MA, Awuchi CG. Functional profile and encapsulating properties of Colocasia esculenta (Taro). Food Sci Nutr. 2023;11(6): 2440-2449. http://dx.doi.org/10.1002/fsn3.3357.
  • [20] Tosif MM, Najda A, Klepacka J, Bains A, Chawla P, Kumar A, Sharma M, Sridhar K, Gautam SP, Kaushik R. A Concise review on taro mucilage: Extraction techniques, chemical composition, characterization, applications, and health attributes. Polymers (Basel). 2022;14(6):1163. http://dx.doi.org/10.3390/polym14061163.
  • [21] Pereira PR, Bertozzi MÉ, Nitzsche TFCAC, Afonso VM, Margaret FPV. Anticancer and ımmunomodulatory benefits of taro (Colocasia esculenta) corms, an underexploited tuber crop. Int J Mol Sci. 2020;22(1):265. http://dx.doi.org/10.3390/ijms22010265.
  • [23] Singla D, Singh A, Dhull SB, Kumar P, Malik T, Kumar P. Taro starch: ısolation, morphology, modification and novel applications concern - a review. Int J Biol Macromol. 2020;163: 1283-1290. http://dx.doi.org/10.1016/j.ijbiomac.2020.07.093.
  • [24] Chandrasekara A, Kumar JT. Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. Inter J Food Sci. 2016; 3631647. http://dx.doi.org/10.1155/2016/3631647.
  • [25] Zhang W, Huang G. Preparation, structural characteristics, and application of taro polysaccharides in food. J Sci Food Agric. 2022;102(14): 6193-6201. http://dx.doi.org/10.1002/jsfa.12058.
  • [26] Syarif Z, Akhir N, Satria B. Identification of plant morphology of taro as a potential source of carbohydrates. Inter J Adv Scie Eng Inform Tech. 2017; 7(2): 573-579. http://dx.doi.org/10.18517/IJASEIT.7.2.1323.
  • [27] Dayib M, Larson J, Slavin J. Dietary fibers reduce obesity-related disorders: mechanisms of action. Curr Opin Clin Nutr Metab Care. 2020;23(6): 445-450. http://dx.doi.org/10.1097/MCO.0000000000000696.
  • [28] Vercalsteren E, Vranckx C, Corbeels K, Van der Schueren B, Velde GV, Lijnen R, Scroyen I. Carbohydrates to prevent and treat obesity in a murine model of diet-ınduced obesity. Obes Facts. 2021;14(4): 370-381. http://dx.doi.org/10.1159/000516630.
  • [29] Lejk A, Myśliwiec M, Myśliwiec A. Effect of eating resistant starch on the development of overweight, obesity,and disorders of carbohydrate metabolism in children. Pediatr Endocrinol Diabetes Metab. 2019;25(2): 81-84. http://dx.doi.org/10.5114/pedm.2019.85818.
  • [30] Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front Endocrinol (Lausanne). 2020;11:222. http://dx.doi.org/10.3389/fendo.2020.00222.
  • [31] Régnier M, Van Hul M, Roumain M, Paquot A, de Wouters d'Oplinter A, Suriano F, Everard A, Delzenne NM, Muccioli GG, Cani PD. Inulin increases the beneficial effects of rhubarb supplementation on high-fat high-sugar diet-induced metabolic disorders in mice: Impact on energy expenditure, brown adipose tissue activity, and microbiota. Gut Microbes. 2023;15(1):2178796. http://dx.doi.org/10.1080/19490976.2023.2178796.
  • [32] Ziqubu K, Dludla PV, Moetlediwa MT, Nyawo TA, Pheiffer C, Jack BU, Nkambule B, Mazibuko-Mbeje SE. Disease progression promotes changes in adipose tissue signatures in type 2 diabetic (db/db) mice: The potential pathophysiological role of batokines. Life Sci. 2023;313:121273. http://dx.doi.org/10.1016/j.lfs.2022.121273.
  • [33] Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose Tissue remodeling: ıts role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016;7:30. http://dx.doi.org/ 10.3389/fendo.2016.00030.
  • [34] Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The health benefits of dietary fibre. Nutrients. 2020;12(10):3209. http://dx.doi.org/10.3390/nu12103209.
  • [35] Udomkasemsab A, Prangthip P. High fat diet for induced dyslipidemia and cardiac pathological alterations in Wistar rats compared to Sprague Dawley rats. Clin Investig Arterioscler. 2019;31(2): 56-62. http://dx.doi.org/10.1016/j.arteri.2018.09.004.
  • [36] Houghton D, Wilcox MD, Chater PI, Brownlee IA, Seal CJ, Pearson JP. Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food Hydrocoll. 2015;49: 18-24. http://dx.doi.org/10.1016/j.foodhyd.2015.02.019.
  • [37] Vourakis M, Mayer G, Rousseau G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int J Mol Sci. 2021;22(15):8074. http://dx.doi.org/10.3390/ijms22158074.
  • [38] Yang J, Wei H, Zhou Y, Szeto CH, Li C, Lin Y. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology. 2021; 162(1):135-149.e2. https://doi.org/10.1053/j.gastro.2021.08.041.
  • [39] Zhai X, Lin D, Zhao Y, Li W, Yang X. Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet. J Agric Food Chem. 2018; 66(48): 12706 12718. https://doi.org/10.1021/acs.jafc.8b05036.
  • [40] Lin YC, Lin HF, Wu CC, Chen CL, Ni YH. Pathogenic effects of Desulfovibrio in the gut on fatty liver in diet induced obese mice and children with obesity. J Gastroenterol. 2018; 57(11):913-925. https://doi.org/10.1007/s00535-022-01909-0.
  • [41] Surono IS, Venema K. Modulation of gut microbiota profile and short-chain fatty acids of rats fed with taro flour or taro starch. Inter J Microbiol. 2020; 8893283. http://dx.doi.org/10.1155/2020/8893283.
  • [42] Surono IS, Wardana AA, Waspodo P, Saksono B, Venema K. Effect of taro starch, beet juice, probiotic, and/or psicose on gut microbiota in a type 2 diabetic rat model: A pilot study. J Nutr Metab. 2021; 1825209. http://dx.doi.org/10.1155/2021/1825209
  • [43] Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 2021;11:634780. http://dx.doi.org/10.3389/fcimb.2021.634780.
  • [44] Liu HY, Roos S, Jonsson H, Ahl D, Dicksved J, Lindberg JE. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol Rep. 2015; 3(4):e12355. https://doi.org/10.14814/phy2.12355.
  • [45] Shahi SK, Ghimire S, Lehman P, Mangalam AK. Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis. Front Immunol. 2022; 3:966417. https://doi.org/10.3389/fimmu.2022.966417.
  • [46] Frappier M, Auclair J, Bouasker S, Gunaratnam S, Diarra C, Millette M. Screening and characterization of some lactobacillaceae for detection of cholesterol-lowering activities. Probiotics Antimicrob Proteins. 2022; 14(5): 873-883. https://doi.org/10.1007/s12602-022-09959-9.
  • [47] Hu J, Deng F, Zhao B, Lin Z, Sun Q, Yang X. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome. 2022;10(1):38. https://doi.org/10.1186/s40168-022-01227-w.
  • [48] Xu J, Liang R, Zhang W, Tian K, Li J, Chen X. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes. 2020; 12(3): 224-236. https://doi.org/10.1111/1753-0407.12986.
  • [49] Herp S, Durai RAC, Salvado SM, Woelfel S, Stecher B. The human symbiont Mucispirillum schaedleri: Causality in health and disease. Med Microbiol Immunol. 2021; 210(4): 173-179. https://doi.org/10.1007/s00430-021-00702-9.
  • [50] Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 2014;1180: 31-43. http://dx.doi.org/10.1007/978-1-4939-1050-2_3.
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Putra Santoso

Resti Rahayu

Wardatul Aini This is me

Salsabila Dhiah Hirwanto This is me

Syafruddin Ilyas This is me

Publication Date
Submission Date January 13, 2024
Acceptance Date March 19, 2024
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Santoso, P., Rahayu, R., Aini, W., Dhiah Hirwanto, S., et al. (n.d.). Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet. Journal of Research in Pharmacy, 29(1), 310-321.
AMA Santoso P, Rahayu R, Aini W, Dhiah Hirwanto S, Ilyas S. Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet. J. Res. Pharm. 29(1):310-321.
Chicago Santoso, Putra, Resti Rahayu, Wardatul Aini, Salsabila Dhiah Hirwanto, and Syafruddin Ilyas. “Fiber and Starch of Colocasia Esculenta Var. Mentawai Ameliorate Adiposity, Dyslipidemia and Gut Dysbiosis in Mice Fed High Fat Diet”. Journal of Research in Pharmacy 29, no. 1 n.d.: 310-21.
EndNote Santoso P, Rahayu R, Aini W, Dhiah Hirwanto S, Ilyas S Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet. Journal of Research in Pharmacy 29 1 310–321.
IEEE P. Santoso, R. Rahayu, W. Aini, S. Dhiah Hirwanto, and S. Ilyas, “Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet”, J. Res. Pharm., vol. 29, no. 1, pp. 310–321.
ISNAD Santoso, Putra et al. “Fiber and Starch of Colocasia Esculenta Var. Mentawai Ameliorate Adiposity, Dyslipidemia and Gut Dysbiosis in Mice Fed High Fat Diet”. Journal of Research in Pharmacy 29/1 (n.d.), 310-321.
JAMA Santoso P, Rahayu R, Aini W, Dhiah Hirwanto S, Ilyas S. Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet. J. Res. Pharm.;29:310–321.
MLA Santoso, Putra et al. “Fiber and Starch of Colocasia Esculenta Var. Mentawai Ameliorate Adiposity, Dyslipidemia and Gut Dysbiosis in Mice Fed High Fat Diet”. Journal of Research in Pharmacy, vol. 29, no. 1, pp. 310-21.
Vancouver Santoso P, Rahayu R, Aini W, Dhiah Hirwanto S, Ilyas S. Fiber and starch of Colocasia esculenta var. Mentawai ameliorate adiposity, dyslipidemia and gut dysbiosis in mice fed high fat diet. J. Res. Pharm. 29(1):310-21.