Research Article
BibTex RIS Cite

Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies

Year 2025, Volume: 29 Issue: 1, 436 - 444

Abstract

The field of nutrigenomics has gained considerable limelight and interdisciplinary researchers have started
to realize its significance as a goldmine for the discovery of pathways that are important as dietary targets. Emerging
evidence has provided wealth of exciting proof-of-concept studies highlighting an important role in the elucidation of
oncogenic signaling cascades that can be pharmacologically targeted by dietary agents, whole extracts and isolated
compounds for the inhibition/prevention of carcinogenesis and metastasis. In this review, we have critically analyzed
some of the mechanistic animal models studies which have rationally propelled the field in a frontward direction. We
also provide an overview of the fruits-mediated anti-metastatic effects in metastasis models that highlight how
nutrigenomics may be combined with pharmacological therapies for synergistic effects, potentially ushering a path
towards precision nutrition for cancer.

References

  • [1] Gdowski AS, Ranjan A, Vishwanatha JK. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exp Clin Cancer Res. 2017;36(1):108. https://doi.org/10.1186/s13046-017-0578-1.
  • [2] Smith SC, Theodorescu D. Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer. 2009;9(4):253-264. https://doi.org/10.1038/nrc2594.
  • [3] Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003;3(6):453-458. https://doi.org/10.1038/nrc1098.
  • [4] Ribelles N, Santonja A, Pajares B, Llácer C, Alba E. The seed and soil hypothesis revisited: current state of knowledge of inherited genes on prognosis in breast cancer. Cancer Treat Rev. 2014;40(2):293-299. https://doi.org/10.1016/j.ctrv.2013.09.010.
  • [5] Hebert JD, Neal JW, Winslow MM. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer. 2023;23(6):391-407. https://doi.org/10.1038/s41568-023-00568-4.
  • [6] Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer. 2024;24(10):655-675. https://doi.org/10.1038/s41568-024-00736-0.
  • [7] Green JE, Hudson T. The promise of genetically engineered mice for cancer prevention studies. Nat Rev Cancer. 2005;5(3):184-198. https://doi.org/10.1038/nrc1565.
  • [8] Lee KW, Bode AM, Dong Z. Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer. 2011;11(3):211-218. https://doi.org/10.1038/nrc3017.
  • [9] Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768-780. https://doi.org/10.1038/nrc1189.
  • [10] Bingham S, Riboli E. Diet and cancer--the European Prospective Investigation into Cancer and Nutrition. Nat Rev Cancer. 2004;4(3):206-215. https://doi.org/10.1038/nrc1298.
  • [11] Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer. 2022;22(8):452-466. https://doi.org/10.1038/s41568-022-00485-y.
  • [12] Lien EC, Vander Heiden MG. A framework for examining how diet impacts tumour metabolism. Nat Rev Cancer. 2019;19(11):651-661. https://doi.org/10.1038/s41568-019-0198-5.
  • [13] Altea-Manzano P, Doglioni G, Liu Y, Cuadros AM, Nolan E, Fernández-García J, Wu Q, Planque M, Laue KJ, Cidre Aranaz F, Liu XZ, Marin-Bejar O, Van Elsen J, Vermeire I, Broekaert D, Demeyer S, Spotbeen X, Idkowiak J, Montagne A, Demicco M, Alkan HF, Rabas N, Riera-Domingo C, Richard F, Geukens T, De Schepper M, Leduc S, Hatse S, Lambrechts Y, Kay EJ, Lilla S, Alekseenko A, Geldhof V, Boeckx B, de la Calle Arregui C, Floris G, Swinnen JV, Marine JC, Lambrechts D, Pelechano V, Mazzone M, Zanivan S, Cools J, Wildiers H, Baud V, Grünewald TGP, Ben-David U, Desmedt C, Malanchi I, Fendt SM. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. Nat Cancer. 2023;4(3):344-364. https://doi.org/10.1038/s43018-023-00513-2.
  • [14] Winkelkotte AM, Schulze A. Palmitate paves the way to lung metastasis. Trends Cancer. 2023;9(5):376-378. https://doi.org/10.1016/j.trecan.2023.03.001.
  • [15] Li D, Zhou X, Xu W, Cai Y, Mu C, Zhao X, Tang T, Liang C, Yang T, Zheng J, Wei L, Ma B. High-fat diet promotes prostate cancer metastasis via RPS27. Cancer Metab. 2024;12(1):6. https://doi.org/10.1186/s40170-024-00333-7.
  • [16] Wu X, Long X, Yang C, Chen H, Sharkey C, Rashid K, Hu M, Liu Y, Huang Q, Chen Q, Hu J, Jiang H. Icaritin reduces prostate cancer progression via inhibiting high-fat diet-induced serum adipokine in TRAMP mice model. J Cancer. 2020;11(22):6556-6564. https://doi.org/10.7150/jca.48413.
  • [17] Hsu WL, Hsieh YT, Chen WM, Chien MH, Luo WJ, Chang JH, Devlin K, Su KY. High-fat diet induces C-reactive protein secretion, promoting lung adenocarcinoma via immune microenvironment modulation. Dis Model Mech. 2023;16(11):dmm050360. https://doi.org/10.1242/dmm.050360.
  • [18] Liu LZ, Wang B, Zhang R, Wu Z, Huang Y, Zhang X, Zhou J, Yi J, Shen J, Li MY, Dong M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis. 2023;14(8):548. https://doi.org/10.1038/s41419-023-06078-3.
  • [19] Xu K, Fu A, Li Z, Miao L, Lou Z, Jiang K, Lau C, Su T, Tong T, Bao J, Lyu A, Kwan HY. Elevated extracellular matrix protein 1 in circulating extracellular vesicles supports breast cancer progression under obesity conditions. Nat Commun. 2024;15(1):1685. https://doi.org/10.1038/s41467-024-45995-5.
  • [20] Kulkoyluoglu Cotul E, Safdar MH, Paez SJ, Kulkarni A, Ayers MG, Lin H, Xianyu Z, Teegarden D, Hursting SD, Wendt MK. FGFR1 signaling facilitates obesity-driven pulmonary outgrowth in metastatic breast cancer. Mol Cancer Res. 2024;22(3):254-267. https://doi.org/10.1158/1541-7786.MCR-23-0955.
  • [21] Conner SJ, Borges HB, Guarin JR, Gerton TJ, Yui A, Salhany KJ Jr, Mensah DN, Hamilton GA, Le GH, Lew KC, Zhang C, Oudin MJ. Obesity ınduces temporally regulated alterations in the extracellular matrix that drive breast tumor ınvasion and metastasis. Cancer Res. 2024;84(17):2761-2775. https://doi.org/10.1158/0008-5472.CAN-23 2526.
  • [22] Guo H, Zhuang K, Ding N, Hua R, Tang H, Wu Y, Yuan Z, Li T, He S. High-fat diet induced cyclophilin B enhances STAT3/lncRNA-PVT1 feedforward loop and promotes growth and metastasis in colorectal cancer. Cell Death Dis. 2022;13(10):883. https://doi.org/10.1038/s41419-022-05328-0.
  • [23] Cirmi S, Maugeri A, Ferlazzo N, Gangemi S, Calapai G, Schumacher U, Navarra M. Anticancer potential of citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Front Pharmacol. 2017;8:420. https://doi.org/10.3389/fphar.2017.00420
  • [24] Farooqi AA, Tahir F, Fakhar M, Butt G, Colombo Pimentel T, Wu N, Yulaevna IM, Attar R. Antimetastatic effects of Citrus-derived bioactive ingredients: Mechanistic insights. Cell Mol Biol (Noisy-le-grand). 2021;67(2):178-186. https://doi.org/10.14715/cmb/2021.67.2.28.
  • [25] McLean CM, Karemaker ID, van Leeuwen F. The emerging roles of DOT1L in leukemia and normal development. Leukemia. 2014;28(11):2131-2138. https://doi.org/10.1038/leu.2014.169.
  • [26] Liu C, Yang Q, Zhu Q, Lu X, Li M, Hou T, Li Z, Tang M, Li Y, Wang H, Yang Y, Wang H, Zhao Y, Wen H, Liu X, Mao Z, Zhu WG. CBP mediated DOT1L acetylation confers DOT1L stability and promotes cancer metastasis. Theranostics. 2020;10(4):1758-1776. https://doi.org/10.7150/thno.39013.4
  • [27] Wang SW, Sheng H, Zheng F, Zhang F. Hesperetin promotes DOT1L degradation and reduces histone H3K79 methylation to inhibit gastric https://doi.org/10.1016/j.phymed.2021.153499. cancer metastasis. Phytomedicine. 2021;84:153499.
  • [28] Wu Y, Li Q, Lv LL, Chen JX, Ying HF, Ruan M, Zhu WH, Xu JY, Zhang CY, Zhang KY, Guo YB, Zhu WR, Zheng L. Nobiletin inhibits breast cancer cell migration and invasion by suppressing the IL-6-induced ERK-STAT and JNK-c JUN pathways. Phytomedicine. 2023;110:154610. https://doi.org/10.1016/j.phymed.2022.154610.
  • [29] Choi EO, Lee H, HwangBo H, Kwon DH, Kim MY, Ji SY, Hong SH, Kim GY, Park C, Hwang HJ, Moon SK, Yun SJ, Kim WJ, Choi YH. Citrus unshiu peel suppress the metastatic potential of murine melanoma B16F10 cells in vitro and in vivo. Phytother Res. 2019;33(12):3228-3241. https://doi.org/10.1002/ptr.6497.
  • [30] Mantena SK, Baliga MS, Katiyar SK. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis. 2006;27(8):1682-1691. https://doi.org/10.1093/carcin/bgl030.
  • [31] Castillo-Pichardo L, Martínez-Montemayor MM, Martínez JE, Wall KM, Cubano LA, Dharmawardhane S. Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin Exp Metastasis. 2009;26(6):505-516. https://doi.org/10.1007/s10585-009-9250-2.
  • [32] Wang Y, Lin J, Tian J, Si X, Jiao X, Zhang W, Gong E, Li B. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways ın vivo and ın vitro. J Agric Food Chem. 2019;67(2):625-636. https://doi.org/10.1021/acs.jafc.8b06209.
  • [33] Ci Y, Zhang Y, Liu Y, Lu S, Cao J, Li H, Zhang J, Huang Z, Zhu X, Gao J, Han M. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother Res. 2018;32(7):1373-1381. https://doi.org/10.1002/ptr.6071.
  • [34] Pajari AM, Päivärinta E, Paavolainen L, Vaara E, Koivumäki T, Garg R, Heiman-Lindh A, Mutanen M, Marjomäki V, Ridley AJ. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice. Oncotarget. 2016;7(28):43907-43923. https://doi.org/10.18632/oncotarget.9724.
  • [35] Han YH, Mun JG, Jeon HD, Park J, Kee JY, Hong SH. Gomisin A ameliorates metastatic melanoma by inhibiting AMPK and ERK/JNK-mediated cell survival and metastatic phenotypes. Phytomedicine. 2020;68:153147. https://doi.org/10.1016/j.phymed.2019.153147.
  • [36] Kim SP, Nam SH, Friedman M. The Tomato Glycoalkaloid α-Tomatine Induces Caspase-Independent Cell Death in Mouse Colon Cancer CT-26 Cells and Transplanted Tumors in Mice. J Agric Food Chem. 2015;63(4):1142-1150. https://doi.org/10.1021/jf5040288.
  • [37] Lee ST, Wong PF, Hooper JD, Mustafa MR. Alpha-tomatine synergises with paclitaxel to enhance apoptosis of androgen-independent human prostate cancer PC-3 cells in vitro and in vivo. Phytomedicine. 2013;20(14):1297 1305. https://doi.org/10.1016/j.phymed.2013.07.002.
  • [38] Bhatia N, Gupta P, Singh B, Koul A. Lycopene enriched tomato extract ınhibits hypoxia, angiogenesis, and metastatic markers in early stage N-nitrosodiethylamine ınduced hepatocellular carcinoma. Nutr Cancer. 2015;67(8):1268-1275. https://doi.org/10.1080/01635581.2015.1087040.
  • [39] He W, You Y, Du S, Lei T, Wang H, Li X, He X, Tong R, Wang Y. Anti-neoplastic effect of mangiferin on human ovarian adenocarcinoma OVCAR8 cells via the regulation of YAP. Oncol Lett. 2019;17(1):1008-1018. https://doi.org/10.3892/ol.2018.9708.
  • [40] Rodriguez-Gonzalez JC, Hernández-Balmaseda I, Declerck K, Pérez-Novo C, Logie E, Theys C, Jakubek P, Quiñones-Maza OL, Dantas-Cassali G, Carlos Dos Reis D, Van Camp G, Lopes Paz MT, Rodeiro-Guerra I, Delgado Hernández R, Vanden Berghe W. Antiproliferative, antiangiogenic, and antimetastatic therapy response by mangiferin in a syngeneic ımmunocompetent colorectal cancer mouse model ınvolves changes in mitochondrial energy metabolism. Front Pharmacol. 2021;12:670167. https://doi.org/10.3389/fphar.2021.670167.
  • [41] Takeda T, Tsubaki M, Sakamoto K, Ichimura E, Enomoto A, Suzuki Y, Itoh T, Imano M, Tanabe G, Muraoka O, Matsuda H, Satou T, Nishida S. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol. 2016;306:105-112. https://doi.org/10.1016/j.taap.2016.07.005.
  • [42] Varghese S, Joseph MM, Aravind SR, Unnikrishnan BS, Pillai KR, Sreelekha TT. Immunostimulatory plant polysaccharides impede cancer progression and metastasis by avoiding off-target effects. Int Immunopharmacol. 2019;73:280-292. https://doi.org/10.1016/j.intimp.2019.05.025.
  • [43] Mohamad NE, Yeap SK, Abu N, Lim KL, Zamberi NR, Nordin N, Sharifuddin SA, Long K, Alitheen NB. In vitro and in vivo antitumour effects of coconut water vinegar on 4T1 breast cancer cells. Food Nutr Res. 2019;63. https://doi.org/10.29219/fnr.v63.1616.
  • [44] Mohamad NE, Abu N, Yeap SK, Alitheen NB. Bromelain enhances the anti-tumor effects of cisplatin on 4T1 breast tumor model ın vivo. Integr Cancer Ther. 2019;18:1534735419880258. https://doi.org/10.1177/1534735419880258.
  • [45] Grabowska E, Eckert K, Fichtner I, Schulzeforster K, Maurer H. Bromelain proteases suppress growth, invasion and lung metastasis of B16F10 mouse melanoma cells. Int J Oncol. 1997;11(2):243-248. https://doi.org/10.3892/ijo.11.2.243.
  • [46] Mohamad NE, Abu N, Yeap SK, Lim KL, Romli MF, Sharifuddin SA, Long K, Alitheen NB. Apoptosis and metastasis inhibitory potential of pineapple vinegar against mouse mammary gland cells in vitro and in vivo. Nutr Metab (Lond). 2019;16:49. https://doi.org/10.1186/s12986-019-0380-5.
  • [47] Delphi L, Sepehri H. Apple pectin: A natural source for cancer suppression in 4T1 breast cancer cells in vitro and express p53 in mouse bearing 4T1 cancer tumors, in vivo. Biomed Pharmacother. 2016;84:637-644. https://doi.org/10.1016/j.biopha.2016.09.080.
  • [48] Fini L, Piazzi G, Daoud Y, Selgrad M, Maegawa S, Garcia M, Fogliano V, Romano M, Graziani G, Vitaglione P, Carmack SW, Gasbarrini A, Genta RM, Issa JP, Boland CR, Ricciardiello L. Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev Res (Phila). 2011;4(6):907-15. https://doi.org/10.1158/1940-6207.CAPR-10-0359.
  • [49] Li Y, Niu Y, Sun Y, Mei L, Zhang B, Li Q, Liu L, Zhang R, Chen J, Mei Q. An apple oligogalactan potentiates the growth inhibitory effect of celecoxib of on colorectal cancer. Nutr Cancer. 2014;66(1):29-37. https://doi.org/10.1080/01635581.2014.847965.
  • [50] Li Y, Fan L, Niu Y, Mian W, Zhang F, Xie M, Sun Y, Mei Q. An apple oligogalactan enhances the growth inhibitory effect 5-fluorouracil on colorectal cancer. Eur J Pharmacol. 2017;804:13-20. https://doi.org/10.1016/j.ejphar.2017.04.001.
  • [51] Farooqi AA. Regulation of deregulated cell signaling pathways by pomegranate in different cancers: Re interpretation of knowledge gaps. Semin Cancer Biol. 2021;73:294-301. https://doi.org/10.1016/j.semcancer.2021.01.008.
  • [52] Peng SY, Hsiao CC, Lan TH, Yen CY, Farooqi AA, Cheng CM, Tang JY, Yu TJ, Yeh YC, Chuang YT, Chiu CC, Chang HW. Pomegranate extract inhibits migration and invasion of oral cancer cells by downregulating matrix metalloproteinase-2/9 and epithelial-mesenchymal transition. Environ Toxicol. 2020;35(6):673-682. https://doi.org/10.1002/tox.22903.
  • [53] Wang Y, Zhang S, Iqbal S, Chen Z, Wang X, Wang YA, Liu D, Bai K, Ritenour C, Kucuk O, Wu D. Pomegranate extract inhibits the bone metastatic growth of human prostate cancer cells and enhances the in vivo efficacy of docetaxel chemotherapy. Prostate. 2013. https://doi.org/10.1002/pros.22769.
  • [54] Deng Y, Li Y, Yang F, Zeng A, Yang S, Luo Y, Zhang Y, Xie Y, Ye T, Xia Y, Yin W. The extract from Punica granatum (pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed Pharmacother. 2017;93:976-984. https://doi.org/10.1016/j.biopha.2017.07.008.
  • [55] Khan N, Afaq F, Kweon MH, Kim K, Mukhtar H. Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Res. 2007;67(7):3475-3482. https://doi.org/10.1158/0008 5472.CAN-06-3941.
  • [56] Yao Y, Feng S, Li X, Liu T, Ye S, Ma L, Man S. Litchi procyanidins inhibit colon cancer proliferation and metastasis by triggering gut-lung axis immunotherapy. Cell Death Dis. 2023;14(2):109. https://doi.org/10.1038/s41419-022 05482-5.
  • [57] Bae MG, Hwang-Bo J, Lee DY, Lee YH, Chung IS. Effects of 6,8-diprenylgenistein on VEGF-A-ınduced lymphangiogenesis and lymph node metastasis in an oral cancer sentinel lymph node animal model. Int J Mol Sci. 2021;22(2):770. https://doi.org/10.3390/ijms22020770.
  • [58] Chen Q, Jiang C, Li H. Indole-3-carbinol promotes apoptosis and ınhibits the metastasis of esophageal squamous cell carcinoma by downregulating the Wnt/β-Catenin signaling pathway. Nutr Cancer. 2024;76(6):543-551. https://doi.org/10.1080/01635581.2024.2337159.
  • [59] Huang L, Wang J, Wang X, Zheng S, Liang K, Kang YE, Chang JW, Koo BS, Liu L, Gal A, Shan Y. Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation. Cancer Lett. 2024;601:217145. https://doi.org/10.1016/j.canlet.2024.217145.
There are 59 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Mirna Azalea Romero This is me

Uteuliyev Yerzhan Sabitaliyevich This is me

Moldagassimova Aizat This is me

Ospanova Zhanar This is me

Publication Date
Submission Date September 10, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Romero, M. . A., Sabitaliyevich, U. Y., Aizat, M., Zhanar, O. (n.d.). Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies. Journal of Research in Pharmacy, 29(1), 436-444.
AMA Romero MA, Sabitaliyevich UY, Aizat M, Zhanar O. Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies. J. Res. Pharm. 29(1):436-444.
Chicago Romero, Mirna Azalea, Uteuliyev Yerzhan Sabitaliyevich, Moldagassimova Aizat, and Ospanova Zhanar. “Proof-of-Concept about the Role of Dietary Agents in the Inhibition and Prevention of Carcinogenesis and Metastasis: Focus on Animal Model Studies”. Journal of Research in Pharmacy 29, no. 1 n.d.: 436-44.
EndNote Romero MA, Sabitaliyevich UY, Aizat M, Zhanar O Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies. Journal of Research in Pharmacy 29 1 436–444.
IEEE M. . A. Romero, U. Y. Sabitaliyevich, M. Aizat, and O. Zhanar, “Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies”, J. Res. Pharm., vol. 29, no. 1, pp. 436–444.
ISNAD Romero, Mirna Azalea et al. “Proof-of-Concept about the Role of Dietary Agents in the Inhibition and Prevention of Carcinogenesis and Metastasis: Focus on Animal Model Studies”. Journal of Research in Pharmacy 29/1 (n.d.), 436-444.
JAMA Romero MA, Sabitaliyevich UY, Aizat M, Zhanar O. Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies. J. Res. Pharm.;29:436–444.
MLA Romero, Mirna Azalea et al. “Proof-of-Concept about the Role of Dietary Agents in the Inhibition and Prevention of Carcinogenesis and Metastasis: Focus on Animal Model Studies”. Journal of Research in Pharmacy, vol. 29, no. 1, pp. 436-44.
Vancouver Romero MA, Sabitaliyevich UY, Aizat M, Zhanar O. Proof-of-concept about the role of dietary agents in the inhibition and prevention of carcinogenesis and metastasis: Focus on animal model studies. J. Res. Pharm. 29(1):436-44.