Research Article
BibTex RIS Cite

Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system

Year 2025, Volume: 29 Issue: 1, 396 - 406

Abstract

This study examined the anti-aging effect of Chinese perfume (Aglaia odorata) and Indian camphorweed
(Pluchea indica) leaf extracts on Saccharomyces cerevisiae as a model system. Investigation of the antioxidant activity and
bioactive compounds using GC–MS and qualitative anti-aging spot tests were performed to determine the anti-aging
effects. In addition, a quantitative anti-aging test was conducted using high-throughput chronological lifespan analysis.
The results showed that the antioxidant enzyme activities of SOD, APX, and CAT in Chinese perfume leaves were 393.96
units/min/g FW, 215 µmoles H2O2/min/g FW, and 5.6 µmoles H2O2 decomposed/min/g FW, respectively; the values
in Indian camphorweed leaves were 717.57 units/min/g FW, 48 µmoles H2O2/min/g FW, and 12.33 µmole H2O2
decomposed/min/g FW, respectively. The antioxidant activity of Chinese perfume and Indian camphorweed was 577.2
µg/mL and 348.86 µg/mL. The antioxidant bioactive compounds of Chinese perfume extract included n-hexadecanoic
acid, β turmerone, and 2-propenoic acid, 3-phenyl-, methyl ester (methyl cinnamate) and those from Indian
camphorweed included n-hexadecanoic acid and neophytadiene. Treatment with both extracts prolonged the life of
yeast after 15 days of incubation. In addition, H2O2 stress conditions, the yeasts showed better growth with the addition
of both leaf extracts. This study revealed that the extracts of Chinese perfume and Indian camphorweed leaves
demonstrate promising potential as ingredients for anti-aging cosmetics.

References

  • [1] Batubara I, Astuti RI, Prastya ME, Ilmiawati A, Maeda M, Suzuki M, Hamamoto A, Takemori H. The antiaging effect of active fractions and ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid isolated from Adenostemma lavenia (L.) O. Kuntze at the cellular level. Antioxidants. 2020; 9(8): 719. http://dx.doi.org/10.3390/antiox9080719.
  • [2] Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of hydroxytyrosol and oleuropein in the prevention of aging and related disorders: Focus on neurodegeneration, skeletal muscle dysfunction and gut microbiota. Nutrients. 2023; 15(7): 1767. http://dx.doi.org/10.3390/nu15071767.
  • [3] Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem Int. 2023; 164: 105490. http://dx.doi.org/10.1016/j.neuint.2023.105490.
  • [4] Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the contribution of oxidative stress in skin aging. Antioxidants. 2022; 11(6): 1121. http://dx.doi.org/10.3390/antiox11061121.
  • [5] Falholt Elvebakken H, Bruntse AB, Vedel C, Kjærulff S. Topical Lactiplantibacillus plantarum LB244R® ointment alleviates skin aging: An exploratory trial. J Cosmet Dermatol. 2023; 22(6): 1911-1918. http://dx.doi.org/10.1111/jocd.15657.
  • [6] Masaki H. Role of antioxidants in the skin: Anti-aging effects. J Dermatol Sci. 2010; 58(2): 85-90. http://dx.doi.org/10.1016/j.jdermsci.2010.03.003.
  • [7] Bharadvaja N, Gautam S, Singh H. Natural polyphenols: A promising bioactive compounds for skin care and cosmetics. Mol Biol Rep. 2023; 50(2): 1817-1828. http://dx.doi.org/10.1007/s11033-022-08156-9.
  • [8] Cruz AM, Gonçalves MC, Marques MS, Veiga F, Paiva-Santos AC, Pires PC. In vitro models for anti-aging efficacy assessment: A critical update in dermocosmetic research. Cosmetics. 2023; 10(2): 66. http://dx.doi.org/10.3390/cosmetics10020066.
  • [9] Poomanee W, Yaowiwat N, Pattarachaidaecharuch T, Leelapornpisid P. Optimized multiherbal combination and in vivo anti-skin aging potential: A randomized double blind placebo controlled study. Sci Rep. 2023; 13(1): 5633. http://dx.doi.org/10.1038/s41598-023-32738-7.
  • [10] Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid MedCell Longev. 2016; 2016: 3565127. http://dx.doi.org/10.1155/2016/3565127.
  • [11] Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 2013; 19(16): 4309-4314. http://dx.doi.org/10.1155/2016/3565127.
  • [12] Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods. 2020; 68: 103917. http://dx.doi.org/10.1016/j.jff.2020.103917.
  • [13] Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 2021; 10(4): 267. http://dx.doi.org/10.3390/biology10040267.
  • [14] Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012; 4(3): 308-319. http://dx.doi.org/10.4161/derm.22804.
  • [15] Noridayu AR, Hii YF, Faridah A, Khozirah S, Lajis N. Antioxidant and antiacetylcholinesterase activities of Pluchea indica Less. Int Food Res J. 2011; 18(3): 925-929.
  • [16] Vongsak B, Kongkiatpaiboon S, Jaisamut S, Konsap K. Comparison of active constituents, antioxidant capacity, and α-glucosidase inhibition in Pluchea indica leaf extracts at different maturity stages. Food Biosci. 2018; 25: 68-73. http://dx.doi.org/10.1016/j.fbio.2018.08.006.
  • [17] Efdi M, Pardede A, Hara H, Syafrizayanti S, Ariesanty D, Ninomiya M, Koketsu M. Chemical constituents of Aglaia odorata leaves and their anti-inflammatory effects. Nat Prod Commun. 2017; 12(11): 1717-1720.
  • [18] Wang DX, Yang SM. Chemical constituents from the leaves of Aglaia odorata. Z Naturforsch C J Biosci. 2013; 68(3-4): 82-86. http://dx.doi.org/10.1515/znc-2013-3-402.
  • [19] Wang JK, Guo Q, Zhang XW, Wang LC, Liu Q, Tu PF, Jiang Y, Zeng KW. Aglaia odorata Lour. extract inhibit ischemic neuronal injury potentially via suppressing p53/Puma-mediated mitochondrial apoptosis pathway. J Ethnopharmacol. 2020; 248: 112336. http://dx.doi.org/10.1016/j.jep.2019.112336.
  • [20] Sudiyani Y, Eka Prastya M, Maryana R, Triwahyuni E, Muryanto. The Budding Yeast Saccharomyces cerevisiae as a Valuable Model Organism for Investigating Anti-Aging Compounds [Internet]. Saccharomyces. IntechOpen; 2021. Available from: http://dx.doi.org/10.5772/intechopen.96662.
  • [21] Sarima AR, Meryandini A. Modulation of aging in yeast Saccharomyces cerevisiae by roselle petal extract (Hibiscus sabdariffa L.). Am J Biochem Biotechnol. 2019; 15(1): 23-32. http://dx.doi.org/10.3844/ajbbsp.2019.23.32.
  • [22] Lin Y, Sun Y, Weng Y, Matsuura A, Xiang L, Qi J. Parishin from Gastrodia elata extends the lifespan of yeast via regulation of Sir2/Uth1/TOR signaling pathway. Oxid Med Cell Longev. 2016;2016:4074690. http://dx.doi.org/10.1155/2016/4074690.
  • [23] Mercado-Sáenz S, López-Díaz B, Burgos-Molina AM, Sendra-Portero F, González-Vidal A, Ruiz-Gómez MJ. Exposure of S. cerevisiae to pulsed magnetic field during chronological aging could induce genomic DNA damage. Int J Environ Health Res. 2022; 32(8): 1756-1767. http://dx.doi.org/10.1080/09603123.2021.1910212.
  • [24] Mukherjee M, Jana CK, Das N. Oxidation of biological molecules with age and induced oxidative stress in different growth phases of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek. 2023; 116(4): 353-365. http://dx.doi.org/10.1007/s10482-022-01807-8.
  • [25] Das S, Talukdar D, Sangha MK, Chaudhary DP, Borah N, Das A, Das S, Saikia SP. Antioxidant enzymes potential in leaves of oats and barley and phytochemistry of stress tolerance. J Pharmacogn Phytochem. 2017; 6(6): 694-703.
  • [26] Zhang QA, Wang X, Song Y, Fan XH, gArcíA MArtín JF. Optimization of pyrogallol autoxidation conditions and its application in evaluation of superoxide anion radical scavenging capacity for four antioxidants. J AOAC Int. 2016; 99(2): 504-511. http://dx.doi.org/10.5740/jaoacint.15-0223.
  • [27] Adnan M, Nazim Uddin Chy M, Mostafa Kamal AT, Azad MO, Paul A, Uddin SB, Barlow JW, Faruque MO, Park CH, Cho DH. Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. prostrata (D.Don) & mondal leaves through in vivo, in vitro, and in silico approaches. Molecules. 2019; 24(7): 1367. http://dx.doi.org/10.3390/molecules24071367.
  • [28] Tayade AB, Dhar P, Kumar J, Sharma M, Chauhan RS, Chaurasia OP, Srivastava RB. Chemometric profile of root extracts of Rhodiola imbricata Edgew. with hyphenated gas chromatography mass spectrometric technique. PLoS One. 2013;8(1):e52797. http://dx.doi.org/10.1371/journal.pone.0052797.
  • [29] Hameed IH, Altameme HJ, Idan SA. Artemisia annua: Biochemical products analysis of methanolic aerial parts extract and anti-microbial capacity. Res J Pharm Biol Chem Sci. 2016; 7(2): 1843-1868.
  • [30] Saga Y, Hatakenaka Y, Matsumoto M, Yoshioka Y, Matsumura S, Zaima N, Konishi Y. Neuroprotective effects of aromatic turmerone on activity deprivation-induced apoptosis in cerebellar granule neurons. Neuroreport. 2020; 31(18): 1302-1307. http://dx.doi.org/10.1097/WNR.0000000000001551.
  • [31] Ismail GA, Gheda SF, Abo-shady AM, Abdel-karim OH. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Sci Technol. 2020; 40(3): 681-691. http://dx.doi.org/10.1590/fst.15619.
  • [32] Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, Yang HL. Trans -cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J Dermatol Sci. 2018; 90(2): 123–134. http://dx.doi.org/10.1016/j.jdermsci.2018.01.004.
  • [33] Raman BV, Samuel LA, Saradhi MP, Rao BN, Krishna NV, Sudhakar M, Radhakrishnan TM. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J Pharm Clin Res. 2012; 5(2): 99-106.
  • [34] Ogbeide OK, Eze OF, Akaeze DA, Akhigbe IU, Omoruyi U, Iyekowa O, Owolabi BJ. Physico-chemical properties, chemical composition, biodiesel production and antibacterial potential of Terminalia catapa seed oil. ChemSearch J. 2021; 12(2): 70-80.
  • [35] Holland CL, Weis MF, England CJ, Berry AM, Hall PD, Lewis LK. Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae. Exp Cell Res. 2023; 430(1): 113701. http://dx.doi.org/10.1016/j.yexcr.2023.113701.
  • [36] Revel B, Catty P, Ravanel S, Bourguignon J, Alban C. High-affinity iron and calcium transport pathways are involved in U (VI) uptake in the budding yeast Saccharomyces cerevisiae. J Hazard Mater. 2022; 422: 126894. http://dx.doi.org/10.1016/j.jhazmat.2021.126894.
  • [37] Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a model system for eukaryotic cell biology, from cell cycle control to DNA damage response. Int J Mol Sci. 2022; 23(19): 11665. http://dx.doi.org/10.3390/ijms231911665.
  • [38] Duina AA, Miller ME, Keeney JB. Budding yeast for budding geneticists: A primer on the Saccharomyces cerevisiae model system. Genetics. 2014; 197(1): 33-48. http://dx.doi.org/10.1534/genetics.114.163188.
  • [39] Mohammadi S, Saberidokht B, Subramaniam S, Grama A. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst Biol. 2015; 9: 96. http://dx.doi.org/10.1186/s12918-015-0253-0
  • [40] Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res. 2018; 18(6): foy020. http://dx.doi.org/10.1093/femsyr/foy020.
  • [41] Kiruthika B, Padma PR. Zea mays leaf extracts protect Saccharomyces cerevisiae cell against oxidative stress-induced cell death. J Acute Med. 2013; 3(3): 83-92. http://dx.doi.org/10.1016/j.jacme.2013.06.005.
  • [42] Sun K, Xiang L, Ishihara S, Matsuura A, Sakagami Y, Qi J. Anti-aging effects of hesperidin on Saccharomyces cerevisiae via inhibition of reactive oxygen species and UTH1 gene expression. Biosci Biotechnol Biochem. 2012; 76(4): 640-645. http://dx.doi.org/10.1271/bbb.110535.
  • [43] Stirpe M, Palermo V, Bianchi MM, Silvestri R, Falcone C, Tenore G, Novellino E, Mazzoni C. Annurca apple (M. pumila Miller cv Annurca) extracts act against stress and ageing in S. cerevisiae yeast cells. BMC Complement Altern Med. 2017;17(1):200. http://dx.doi.org/10.1186/s12906-017-1666-7.
  • [44] Lesmana D, Andrianto D, Astuti RI. Antiaging properties of the ethanol fractions of clove (Syzygium aromaticum L.) bud and leaf at the cellular levels: Study in yeast Schizo saccharomyces pombe. Sci Pharm. 2021; 89(4): 45. http://dx.doi.org/10.3390/scipharm89040045.
  • [45] Belak ZR, Harkness T, Eskiw CH. A rapid, high-throughput method for determining chronological lifespan in budding yeast. J Biol Methods. 2018; 5(4):e106. http://dx.doi.org/10.14440%2Fjbm.2018.272.
  • [46] López‐Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol. 2016; 594(8): 2043-2060. http://dx.doi.org/10.1113/JP270543.
  • [47] Lee SH, Min KJ. Caloric restriction and its mimetics. BMB Rep. 2013; 46(4): 181. http://dx.doi.org/10.5483%2FBMBRep.2013.46.4.033.
  • [48] Kim CS, Park S, Kim J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. http://dx.doi.org/10.20463%2Fjenb.2017.0027. J Exerc Nutrition Biochem. 2017; 21(3): 55.
  • [49] Rahnasto-Rilla M, Tyni J, Huovinen M, Jarho E, Kulikowicz T, Ravichandran S, A. Bohr V, Ferrucci L, Lahtela Kakkonen M, Moaddel R. Natural polyphenols as sirtuin 6 modulators. Sci Rep. 2018; 8(1): 4163. http://dx.doi.org/10.1038/s41598-018-22388-5.
  • [50] Fabrizio P, Longo VD. Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta. 2008; 1783(7): 1280 1285. http://dx.doi.org/10.1016/j.bbamcr.2008.03.017.
  • [51] Ocampo A, Liu J, Schroeder EA, Shadel GS, Barrientos A. Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab. 2012; 16(1) 55-67. http://dx.doi.org/10.1016/j.cmet.2012.05.013.
  • [52] Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24(10): R453-R462. http://dx.doi.org/10.1016/j.cub.2014.03.034.
  • [53] Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018; 54(4): 287-293. http://dx.doi.org/10.1016/j.ajme.2017.09.001.
  • [54] Kavitake D, Veerabhadrappa B, Sudharshan SJ, Kandasamy S, Devi PB, Dyavaiah M, Shetty PH. Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci Rep. 2022; 12(1): 1089. http://dx.doi.org/10.1038/s41598-022-05190-2.
  • [55] Mazumder K, Nabila A, Aktar A, Farahnaky A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: a comprehensive substantiation. Antioxidants. 2020; 9(4): 282. http://dx.doi.org/10.3390/antiox9040282.
  • [56] Weimann E, Silva MB, Murata GM, Bortolon JR, Dermargos A, Curi R, Hatanaka E. Topical anti-inflammatory activity of palmitoleic acid improves wound healing. PLoS One. 2018; 13(10): e0205338. http://dx.doi.org/10.1371/journal.pone.0205338.
There are 56 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Woro Anindito Sri Tunjung This is me

Publication Date
Submission Date December 30, 2023
Acceptance Date March 16, 2024
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Tunjung, W. A. S. (n.d.). Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system. Journal of Research in Pharmacy, 29(1), 396-406.
AMA Tunjung WAS. Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system. J. Res. Pharm. 29(1):396-406.
Chicago Tunjung, Woro Anindito Sri. “Analysis of Anti-Aging Activity of Chinese Perfume (Aglaia Odorata) and Indian Camphorweed (Pluchea Indica) Leaves Using Saccharomyces Cerevisiae Model System”. Journal of Research in Pharmacy 29, no. 1 n.d.: 396-406.
EndNote Tunjung WAS Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system. Journal of Research in Pharmacy 29 1 396–406.
IEEE W. A. S. Tunjung, “Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system”, J. Res. Pharm., vol. 29, no. 1, pp. 396–406.
ISNAD Tunjung, Woro Anindito Sri. “Analysis of Anti-Aging Activity of Chinese Perfume (Aglaia Odorata) and Indian Camphorweed (Pluchea Indica) Leaves Using Saccharomyces Cerevisiae Model System”. Journal of Research in Pharmacy 29/1 (n.d.), 396-406.
JAMA Tunjung WAS. Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system. J. Res. Pharm.;29:396–406.
MLA Tunjung, Woro Anindito Sri. “Analysis of Anti-Aging Activity of Chinese Perfume (Aglaia Odorata) and Indian Camphorweed (Pluchea Indica) Leaves Using Saccharomyces Cerevisiae Model System”. Journal of Research in Pharmacy, vol. 29, no. 1, pp. 396-0.
Vancouver Tunjung WAS. Analysis of anti-aging activity of Chinese perfume (Aglaia odorata) and Indian camphorweed (Pluchea indica) leaves using Saccharomyces cerevisiae model system. J. Res. Pharm. 29(1):396-40.