Research Article
BibTex RIS Cite

Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release

Year 2025, Volume: 29 Issue: 1, 384 - 395

Abstract

Nanotechnology is among the most developing aspects of the medical stream. Gum acacia (GA), being
biocompatible, naturally occurring, non-toxic, and inexpensive polymer, has gained tremendous attention in the field of
pharmacy. The nanoparticle production using Gum acacia as a template led to more stable drug delivery systems. Zinc
oxide (ZnO) and Titanium dioxide (TiO2) possess potential biological applications including anticancer activity,
antimicrobial activity, bioimaging, and potent drug carrier properties. The synthesis of Gum acacia stabilized Zinc oxide
and Titanium dioxide nanoparticles incorporated with Entacapone an antiparkinsonian drug, was carried out keeping in
view all these aspects. Entacapone is a combination of drug therapy with levodopa and carbidopa in the treatment of
Parkinson’s disease (a neuro-degenerative disorder). The synthesized drug – nanocomposite showed extended release or
sustained-release properties. According to the experimental results, it is reported that the Gum acacia along with ZnO
and TiO2 acts as a drug delivery carrier releasing Entacapone at the intended site in desired time and quantity.

References

  • [1] Iadnut A, Mamoon K, Thammasit P, Pawichai S, Tima S, Preechasuth K. In vitro antifungal and antivirulence activities of biologically synthesized ethanolic extract of propolis-loaded PLGA nanoparticles against candida albicans. Evid Based Complement Altern Med. 2019;3715481. https://doi.org/10.1155/2019/3715481
  • [2] King, Stephen , Jarvie, Helen and Dobson, Peter. "nanoparticle". Encyclopedia Britannica, 8 Jan. 2024, https://www.britannica.com/science/nanoparticle. Accessed 18 July 2024.
  • [3] Mahmoodzadeh H, Eshaghi A,Gholami T. Physiological analysis of CuO bulk and nanoparticles to castor (Ricinus communis L.). Plant Breed. 2016; 74(1): 45-56. https://doi.org/10.1515/plass-2016-0014 of iron
  • [4] Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB. In vitro/in vivo toxicity evaluation and quantification oxide https://doi.org/10.3390/ijms161024417 nanoparticles. Int J Mol Sci. 2015; 16(10):24417-24450.
  • [5] Hofmann C, Duerkop A, Baeumner A J. Nanocontainers for analytical applications. Angew Chem Int Ed Engl. 2019; 58(37): 12840-12860. https://doi.org/10.1002/anie.201811821
  • [6] Jayachandran A, T R A, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep. 2021; 8(26): 100995. https://doi.org/10.1016/j.bbrep.2021.100995
  • [7] Smita N, Priyanka G, Bhaskar V. Green-synthesis of silver nanoparticles by Hygrophila auriculata extract: Innovative technique and comprehensive evaluation. Indian J Pharm Educ Res. 2021; 55(2s):s510-s517. https://doi:10.5530/ijper.55.2s.122
  • [8] Padil V, Wacławek S, Černík M. Green synthesis: Nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S. 2016;23(4): 533-557. https://doi.org/10.1515/eces-2016-0038
  • [9] Rini AS, Rati Y, Fadillah R, Farma R, Umar L, Soerbakti Y. Improved photocatalytic activity of ZnO film prepared via green synthesis method using red watermelon rind extract. Evergreen. 2022; 9(4): 1046-1055. http://dx.doi.org/10.5109/6625718
  • [10] Barik P, Bhattacharjee A, Roy M. Preparation, characterization and electrical study of gum arabic/ZnO nanocomposites. Bull Mater Sci. 2015; 38: 1609-1616.https://doi.org/10.1007/s12034-015-0961-5
  • [11] Fabio F, Claudia F, Monica S, Mario S, Luisa D. J Agric Food Chem. 2018; 66 (26): 6860-6868. https://doi.org/10.1021/acs.jafc.8b00747
  • [12] Vershney R, Chelaramani K, Bhardwaj A, Siddiqui M, Verma S. K. Synthesis photocatalytic and antibacterial activities of nickle doped tio2 nanoparticles. Orient J Chem. 2018; 34(6): 3140-3144. http://dx.doi.org/10.13005/ojc/340661.
  • [13] Gul N, Idrees QTA, Fareed MA, Mian SA, Nasim HMO, Naz F, Aldahlan B, Khan AS. Biological and physicochemical characterization of self-adhesive protective coating dental restorative material after incorporation of antibacterial nanoparticles. Polym J. 2022; 14(20):4280. https://doi.org/10.3390/polym14204280.
  • [14] Hosseini, Seyed A, Shabnam B. Graphene Oxide/Zinc Oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM). J Braz Chem Soc. 2016; 28: 299-307. https://scite.ai/reports/10.5935/0103-5053.20160176.
  • [15] Ali K. Attia, Mona M. Abdel-Moety, Samar G. Abdel-Hamid. Thermal analysis study of antihypertensive drug doxazosin mesylate. Arab J Chem. 2017; 10: S334–S338. https://doi.org/10.1016/j.arabjc.2012.08.006.
  • [16] Ashwini J, Aswathy TR, Rahul AB, Thara GM, Nair AS. Synthesis and characterization of zinc oxide nanoparticles using Acacia caesia bark extract and its photocatalytic and antimicrobial activities. Catalysts. 2021; 11(12):1507. https://doi.org/10.3390/catal11121507.
  • [17] Talam S, Karumuri SR, Gunnam N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. International Scholarly Research Notices. 2012;2012(1):372505. https://doi.org/10.5402/2012/372505
  • [18] Tang S, Liu Q, Hu J, Chen W, An F, Xu H, Song H, Wang YW. A simple colorimetric assay for sensitive Cu2+ detection based on the glutathione-mediated etching of MnO2 nanosheets. Front Chem. 2021; 9. https://doi.org/10.3389/fchem.2021.812503.
  • [19] Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010; 21(4): 167-193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977967/
  • [20] Thomas R, Thomas S, Kumar R, Zachariah AK. Thermal and rheological measurement techniques for nanomaterials characterization. Elsevier Science & Technology Books.2017; 292 p.
  • [21] Vyazovkin S, Schick C, Koga N. Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications.Elsevier Science & Technology Books. 2018; 800 p.
  • [22] Mirabella MF, editor. Modern techniques in applied molecular spectroscopy. New York: Wiley; 1998. 410 p.
  • [23] Jain S, Jadav T, Sahu AK, Kalia K, Sengupta P. An exploration of advancement in analytical methodology for quantification of anticancer drugs in biomatrices. Anal Sci. 2019; 35(7):719-732. https://doi.org/10.2116/analsci.19r002.
  • [24] Nishi KK, Antony M, Jayakrishnan A. Synthesis and evaluation of ampicillin – conjugated gum arabic microspheres for sustained release. J Pharm Pharmacol. 2007; 59(4): 485-493. https://doi: 10.1211/jpp.59.4.0002.
  • [25] Banerjee S, Chen DH. Glucose – grafted gum arabic modified magnetic nanoparticles: Preparation and specific interaction with concanavalin A. Chem Mater. 2007; 19(15): 3667-3672. https://doi.org/10.1021/cm070461k.
  • [26] Mohan S, Vellakkat M, Aravind A, U R. Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express. 2020; 1(3): 030028. https://doi.org/10.1088/2632-959x/abc813.
  • [27] Drug Bank - Entacapone, Educe Design &Innovation Inc. 2005; https://go.drugbank.com/drugs/DB00494.
  • [28] Chockalingam A, Babu H, Chittor R, Tiwari J. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J Nanobiotechnol. 2010; 8(1): 30. https://doi.org/10.1186/1477-3155-8-30
  • [29] Wu CC, Chen DH. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst. Nanoscale Res Lett. 2012; 7(1): 317. https://doi.org/10.1186/1556 276x-7-317.
  • [30] Thamer AA, Yusr HA, Jubier N J. TGA, DSC, DTG properties of epoxy polymer nanocomposites by adding hexagonal boron nitride nanoparticles. J Eng Appl Sci. 2019; 14(2): 567-574. http://dx.doi.org/10.3923/jeasci.2019.567.574.7.
  • [31] Sreedhar B, Satya Vani C, Keerthi Devi D, V Basaveswara Rao M, Rambabu C. Shape controlled synthesis of barium carbonate microclusters and nanocrystallites using natural polysachharide – Gum acacia. Am J Mater Sci. 2012; 2(1):5-13. https://doi.org/10.5923/j.materials.20120201.02.
  • [32] Holder CF, Schaak RE. Tutorial on Powder X‐ray Diffraction for characterizing nanoscale materials. ACS Nano. 2019 ; 13 (7): 7359-7365. https://doi.org/10.1021/acsnano.9b05157.
  • [33] Srinivasan C, Mullen TJ, Hohman JN, Anderson ME, Dameron AA, Andrews AM, Dickey EC, Horn MW, Weiss PS. Scanning Electron Microscopy of Nanoscale Chemical Patterns. ACS Nano. 2007; 1(3): 191-201. https://doi.org/10.1021/nn7000799.
  • [34] Syed A, Yadav LSR, Bahkali AH, Elgorban AM, Abdul Hakeem D, Ganganagappa N. Effect of CeO2-ZnO nanocomposite for photocatalytic and antibacterial activities. Crystals. 2020; 10(9):817. https://doi.org/10.3390/cryst10090817.
  • [35] Perez-Nakai A, Lerma-Canto A, Domingez-Candela I, Garcia-Garcia D, Ferri JM, Fombuena V. Comparative study of the properties of plasticized polylactic acid with maleinized hemp seed oil and a novel maleinized Brazil nut seed oil. Polymers. 2021; 13(14): 2376. https://doi.org/10.3390/polym13142376.
  • [36] Wilson AC, Chou SF, Lozano R, Chen JY, Neuenschwander PF. Thermal and physico-mechanical characterizations of thromboresistant polyurethane films. Bioeng. 2019; 6(3): 69. https://doi.org/10.3390/bioengineering6030069.
  • [37] Vergara S, Santiago U, Kumara C, Alducin D, Whetten RL, Jose Yacaman M, Dass A, Ponce A. Synthesis, mass spectrometry, and atomic structural analysis of Au∼2000(SR)∼290 nanoparticles. J Phys Chem C. 2018; 122 (46): 26733-26738. https://doi.org/10.1021/acs.jpcc.8b08531.
  • [38] Syed A, Yadav LS, Bahkali AH, Elgorban AM, Abdul Hakeem D, Ganganagappa N. Effect of CeO2-ZnO nanocomposite for photocatalytic and antibacterial activities. Crystals. 2020; 10(9):817. https://doi.org/10.3390/cryst10090817.
  • [39] Devi S, Kumar S, Verma V, Kaushik D, Verma R, Bhatia M. Enhancement of ketoprofen dissolution rate by the liquisolid technique: optimization and in vitro and in vivo investigations. Drug Deliv Transl Res. 2022; 12(11): 2693 2707. https://doi.org/10.1007/s13346-022-01120-x.
  • [40] Kumar G, Patrudu TB, Rao TN, Rao MV. A new analytical method validation and quantification of entacapone and its related substance in bulk drug product by HPLC. Asian J Pharm Ana. 2017; 7(1): 1-5. https://doi.org/10.5958/2231-5675.2017.00001.1
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Seema Firdouse This is me

Publication Date
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Firdouse, S. (n.d.). Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release. Journal of Research in Pharmacy, 29(1), 384-395.
AMA Firdouse S. Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release. J. Res. Pharm. 29(1):384-395.
Chicago Firdouse, Seema. “Synthesis and Characterization of Gum Acacia Stabilized Zinc Oxide / Titanium Dioxide Nanoparticles Embedded With Entacapone for in Vitro Drug Release”. Journal of Research in Pharmacy 29, no. 1 n.d.: 384-95.
EndNote Firdouse S Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release. Journal of Research in Pharmacy 29 1 384–395.
IEEE S. Firdouse, “Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release”, J. Res. Pharm., vol. 29, no. 1, pp. 384–395.
ISNAD Firdouse, Seema. “Synthesis and Characterization of Gum Acacia Stabilized Zinc Oxide / Titanium Dioxide Nanoparticles Embedded With Entacapone for in Vitro Drug Release”. Journal of Research in Pharmacy 29/1 (n.d.), 384-395.
JAMA Firdouse S. Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release. J. Res. Pharm.;29:384–395.
MLA Firdouse, Seema. “Synthesis and Characterization of Gum Acacia Stabilized Zinc Oxide / Titanium Dioxide Nanoparticles Embedded With Entacapone for in Vitro Drug Release”. Journal of Research in Pharmacy, vol. 29, no. 1, pp. 384-95.
Vancouver Firdouse S. Synthesis and characterization of gum acacia stabilized zinc oxide / titanium dioxide nanoparticles embedded with Entacapone for in vitro drug release. J. Res. Pharm. 29(1):384-95.