Research Article
BibTex RIS Cite

Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties

Year 2025, Volume: 29 Issue: 2, 852 - 870
https://doi.org/10.12991/jrespharm.1617992

Abstract

This research focuses on the assessment of cytotoxic and antimicrobial properties of Thymus capitatus essential oil (TEO) and Origanum vulgare essential oil (OEO), before and after encapsulation in nanoemulsions, prepared utilizing high-pressure homogenization. These plants, indigenous to northern Albania and Mediterranean regions, produce EO with notable biological and cytotoxic activities. However, volatility, poor solubility, and chemical instability limit their practical application. Incorporating these oils into NE aims to enhance their stability and biological activity.
The antimicrobial efficacy of the EO exhibited variability against different strains, showing particular effectiveness against E. coli ATCC 25922, S. aureus ATCC 29213, and C. albicans ATCC 10231, with no effect was observed against P. aeruginosa ATCC 27853. The EO-loaded NE exhibited enhanced cytotoxicity against MCF7, DU 145, and HT-29 cancer cell lines compared to the free oil. Encapsulation was found to augment the bioactivity of these volatile oils, with TEO-NE demonstrating superior cytotoxic effects than OEO-NE. Following encapsulation, OEO exhibited superior antimicrobial efficacy relative to TEO against S. aureus, E. coli, and C. albicans.
Our results suggest that NE may enhance the cytotoxic and antimicrobial potential of the EOs, in different manner among EO used. The encapsulation of TEO and OEO in NE shows promising therapeutic potential, although further studies are required. However, these conclusions are drawn from in vitro analyses, underscoring the need for subsequent in vivo studies to ascertain this innovative clinical safety and efficacy.

References

  • [1] Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016; 68(3): 701-787. https://doi.org/10.1124/pr.115.012070.
  • [2] Gurpreet K, Singh S. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018; 80(5): 781-789. https://doi.org/10.4172/pharmaceutical-sciences.1000422.
  • [3] Wilson RJ, Li Y, Yang G, Zhao CX. Nanoemulsions for drug delivery. Particuology. 2022; 64: 85-97. https://doi.org/10.1016/j.partic.2021.05.009.
  • [4] Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy—An Overview on Recent Advances. Pharmaceutics. 2022; 14(3): 533. https://doi.org/10.3390/pharmaceutics14030533.
  • [5] Haro-González JN, Schlienger de Alba BN, Martínez-Velázquez M, Castillo-Herrera GA, Espinosa-Andrews H. Optimization of Clove Oil Nanoemulsions: Evaluation of Antioxidant, Antimicrobial, and Anticancer Properties. Colloids Interfaces. 2023; 7(4): 64. https://doi.org/10.3390/colloids7040064.
  • [6] Barradas TN, de Holanda e Silva KG. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ Chem Lett. 2021; 19(2): 1153-1171. https://doi.org/10.1007/s10311-020-01142-2..
  • [7] Haro-González JN, Martínez-Velázquez M, Castillo-Herrera GA, Espinosa-Andrews H. Clove essential oil nanoemulsions: development, physical characterization, and anticancer activity evaluation. J Dispers Sci Technol. Published online 2024: 1-9. https://doi.org/10.1080/01932691.2024.2302067.
  • [8] Siyadatpanah A, Norouzi R, Mirzaei F, Haghirosadat BF, Nissapatorn V, Mitsuwan W, Nawaz M, Pereira ML, Hosseini SA, Montazeri M, Majdizadeh M, Almeida RS, Hemati M, Wilairatana P, Coutinho HDM.Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis. J Microbiol Immunol Infect. 2023; 56(1): 150-162. https://doi.org/10.1016/j.jmii.2022.06.006.
  • [9] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol. 2008; 46(2): 446-475. https://doi.org/10.1016/j.fct.2007.09.106.
  • [10] Moraes-Lovison M, Marostegan LF, Peres MS, Menezes IF, Ghiraldi M, Rodrigues RAF, Fernandes AM, Pinho SC. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. Lwt. 2017; 77: 233-240. https://doi.org/10.1016/j.lwt.2016.11.061.
  • [11] Pérez-González C, Pérez-Ramos J, Méndez-Cuesta CA, Serrano-Vega R, Martell-Mendoza M, Pérez-Gutiérrez S. Cytotoxic activity of essential oils of some species from Lamiaceae family. Cytotox Defin Identif Cytotoxic Compd Istifli ES Ila HB Eds. Published online 2019: 29-43. https://doi.org/10.5772/intechopen.86392.
  • [12] Hussain AI, Anwar F, Chatha SA, Latif S, Sherazi STH, Ahmad A, Worthington J, Sarker SD. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Sci Technol. 2013; 50(1): 185-192. https://doi.org/10.1016/j.lwt.2012.06.003.
  • [13] Sarrou E, Tsivelika N, Chatzopoulou P, Tsakalidis G, Menexes G, Mavromatis A. Conventional breeding of Greek oregano (Origanum vulgare ssp. hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica. 2017; 213: 1-16. https://doi.org/10.1007/s10681-017-1889-1.
  • [14] Tammar S, Salem N, Bettaieb Rebey I, Sriti J, Hammami M, Khammassi S, Marzouk B, Ksouri R, Msaada K. Regional effect on essential oil composition and antimicrobial activity of Thymus capitatus L. J Essent Oil Res. 2019; 31(2): 129-137. https://doi.org/10.1080/10412905.2018.1539415.
  • [15] Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep. 2021; 11(1): 13178. https://doi.org/10.1038/s41598-021-92679-x.
  • [16] Ramos da Silva LR, Ferreira OO, Cruz JN, de Jesus Pereira Franco C, Oliveira Dos Anjos T, Cascaes MM, Almeida da Costa W, Helena de Aguiar Andrade E, Santana de Oliveira M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid Based Complement Alternat Med. 2021;2021:6748052. https://doi.org/10.1155/2021/6748052.
  • [17] Barani M, Bilal M, Rahdar A, Arshad R, Kumar A, Hamishekar H,Kyzas GZ . Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J Nanoparticle Res. 2021; 23(1): 1-25. https://doi.org/10.1007/s11051-020-05129-6.
  • [18] Benjemaa M, Neves MA, Falleh H, Isoda H, Ksouri R, Nakajima M. Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring. Ind Crops Prod. 2018; 113: 414-421. https://doi.org/10.1016/J.INDCROP.2018.01.062.
  • [19] AbouAitah K, Lojkowski W. Nanomedicine as an emerging technology to foster application of essential oils to fight cancer. Pharmaceuticals. 2022; 15(7): 793. https://doi.org/10.3390/ph15070793.
  • [20] Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules. 2017; 22(6): 989. https://doi.org/10.3390/molecules22060989.
  • [21] Pinna R, Filigheddu E, Juliano C, Palmieri A, Manconi M, D'hallewin G, Petretto G, Maioli M, Caddeo C, Manca ML, Solinas G, Bortone A, Campanella V, Milia E. Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics. 2019; 11(5): 234. https://doi.org/10.3390/pharmaceutics11050234.
  • [22] European Medicines Agency. Antimicrobial resistance | European Medicines Agency. https://www.ema.europa.eu/en/human-regulatory-overview/public-health-threats/antimicrobial-resistance (accessed March 20, 2024).
  • [23] Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem. 2015; 178: 52-62. https://doi.org/10.1016/j.foodchem.2015.01.067.
  • [24] Kryeziu TL, Haloci E, Loshaj-Shala A, Bagci U, Oral A, Stefkov GJ, Zimmer A, Basholli-Salihu M. Nanoencapsulation of Origanum vulgare essential oil into liposomes with anticancer potential. Pharmazie. 2022 ;77(6):172-178. https://doi.org/10.1691/ph.2022.1230.
  • [25] Kryeziu T, Bağci U, Loshaj-Shala A, Oral A, Stefkov GJ, Zimmer A, Basholli-Salihu M. Cytotoxic activity of liposomal Thymus capitatus essential oil on HT-29 human colorectal cancer cell line. Pharmazie. 2024;79(3):49-56. https://doi.org/10.1691/ph.2024.3037.
  • [26] Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces. 2011; 84(1): 163-171. https://doi.org/10.1016/j.colsurfb.2010.12.031.
  • [27] Feyzioglu GC, Tornuk F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT. 2016; 70: 104-110. https://doi.org/10.1016/j.lwt.2016.02.037.
  • [28] Shetta AAA. Encapsulation of Essential Oils in Chitosan Nanoparticle Formulations and Investigation on Their Antioxidant and Antibacterial Properties. Master’s Thesis, School of Sciences and Engineering, American University in Cairo, Cairo, Egypt, 2017.
  • [29] Manconi M, Petretto G, D'hallewin G, Escribano E, Milia E, Pinna R, Palmieri A, Firoznezhad M, Peris JE, Usach I, Fadda AM, Caddeo C, Manca ML. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf B Biointerfaces. 2018; 171: 115-122. https://doi.org/10.1016/j.colsurfb.2018.07.021.
  • [30] Risaliti L, Kehagia A, Daoultzi E, Lazari D, Bergonzi MC, Vergkizi-Nikolakaki S, Hadjipavlou-Litina D, Bilia AR. Liposomes loaded with Salvia triloba and Rosmarinus officinalis essential oils: In vitro assessment of antioxidant, antiinflammatory and antibacterial activities. J Drug Deliv Sci Technol. 2019; 51: 493-498. https://doi.org/10.1016/j.jddst.2019.03.034.
  • [31] Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int J Nanomed. 2019: 6439-6450. https://doi.org/10.2147/IJN.S211047.
  • [32] Putri DCA, Dwiastuti R, Marchaban AKN. Optimization of mixing temperature and sonication duration in liposome preparation. J Farm Sains Dan Komunitas. 2017; 14(2): 79-85. https://doi.org/10.24071/jpsc.142728.
  • [33] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10(2):57.https://doi.org/10.3390/pharmaceutics10020057.
  • [34] Hammoud Z, Kayouka M, Trifan A, Sieniawska E, Jemâa JMB, Elaissari A, Greige-Gerges H. Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins. Molecules. 2021; 26(22): 6840. https://doi.org/10.3390/molecules26226840.
  • [35] Dávila-Rodríguez M, López-Malo A, Palou E, Ramírez-Corona N, Jiménez-Munguía MT. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT. 2019; 112: 108247. https://doi.org/10.1016/j.lwt.2019.06.014.
  • [36] Jamil B. PhD Thesis. Nano-antibiotics: Nano Encapsulation of Natural and Synthetic Antimicrobials to Combat Multi Drug Resistant Pathogens. Institute of Information Technology Islamabad, Pakistan. 2016.
  • [37] Niu F, Pan W, Su Y, Yang Y. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food Chem. 2016; 212: 138-145. https://doi.org/10.1016/j.foodchem.2016.05.172.
  • [38] Cui H, Zhao C, Lin L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control. 2015; 56: 128-134. https://doi.org/10.1016/j.foodcont.2015.03.026.
  • [39] Cui H, Yuan L, Ma C, Li C, Lin L. Effect of nianoliposome‐encapsulated thyme oil on growth of Salmonella enteritidis in chicken. J Food Process Preserv. 2017; 41(6): e13299. https://doi.org/10.1111/jfpp.13299.
  • [40] Aguilar-Pérez KM, Medina DI, Narayanan J, Parra-Saldívar R, Iqbal HM. Synthesis and nano-sized characterization of bioactive oregano essential oil molecule-loaded small unilamellar nanoliposomes with antifungal potentialities. Molecules. 2021; 26(10): 2880. https://doi.org/10.3390/molecules26102880.
  • [41] Hassan H, Mina S, Bishr M, Khalik S. Influence of foliar spray of ethephon and water stress on the essential oil composition and impact on the cytotoxic activity of Thymus vulgaris aerial parts. Nat Prod Res. 2019; 33(18): 2714-2717. https://doi.org/10.1080/14786419.2018.1460843.
  • [42] Blažíčková M, Blaško J, Kubinec R, Kozics K. Newly Synthesized Thymol Derivative and Its Effect on Colorectal Cancer Cells. Molecules. 2022; 27(9): 2622. https://doi.org/10.3390/molecules27092622.
  • [43] Sabater-Jara AB, Funes MP, Pedreño MA, Belchí-Navarro S. Essential Oils of Thymbra capitata and Thymus hyemalis and Their Uses Based on Their Bioactivity. In: Thymus. Rezaei N (Edt). https://doi.org/10.5772/intechopen.89309.
  • [44] Rojo-Ruvalcaba BE, García-Cobián TA, Pascoe-González S, Campos-Bayardo TI, Guzmán-García LM, Gil-Gálvez MC, Escobar-Millán Z, Huerta-García E, García-Iglesias T. Dose-Dependent cytotoxicity of the Origanum Vulgare and carvacrol on triple negative breast cancer cell line. Multidiscip Digit Publ Inst Proc. 2020; 61(1): 6. https://doi.org/10.3390/IECN2020-07000.
  • [45] Sampaio LA, Pina LTS, Serafini MR, Tavares D dos S, Guimaraes AG. Antitumor effects of carvacrol and thymol: A systematic review. Front Pharmacol. 2021; 12: 702487. https://doi.org/10.3389/fphar.2021.702487.
  • [46] Gavaric N, Mozina SS, Kladar N, Bozin B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J Essent Oil Bear Plants. 2015; 18(4): 1013-1021. https://doi.org/10.1080/0972060X.2014.971069.
  • [47] Celia C, Trapasso E, Locatelli M, Navarra M, Ventura CA, Wolfram J, Carafa M, Morittu VM, Britti D, Di Marzio L, Paolino D. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf B Biointerfaces. 2013;112:548-53. https://doi.org/10.1016/j.colsurfb.2013.09.017.
  • [48] Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol. 2021;9:705886. https://doi.org/10.3389/fbioe.2021.705886.
  • [49] Marslin G, Khandelwal V, Franklin G. Cordycepin nanoencapsulated in poly (lactic-co-glycolic acid) exhibits better cytotoxicity and lower hemotoxicity than free drug. Nanotechnol Sci Appl. Published online 2020: 37-45. https://doi.org/10.2147/NSA.S254770.
  • [50] Jampilek J, Kralova K. Anticancer applications of essential oils formulated into lipid-based delivery nanosystems. Pharmaceutics. 2022; 14(12): 2681. https://doi.org/10.3390/pharmaceutics14122681.
  • [51] Abd-Rabou AA, Edris AE. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnol. 2021; 12(1): 28. https://doi.org/10.1186/s12645-021-00101-y.
  • [52] Gautam N, Mantha AK, Mittal S. Essential oils and their constituents as anticancer agents: a mechanistic view. BioMed Res Int. 2014;2014:154106. https://doi.org/10.1155/2014/154106.
  • [53] da Silva Gündel S, Velho MC, Diefenthaler MK, Favarin FR, Copetti PM, de Oliveira Fagoça A, Klein B, Wagner R, Gündel A, Sagrillo MR, Ourique AF. Basil oil-nanoemulsions: Development, cytotoxicity and evaluation of antioxidant and antimicrobial potential. J Drug Deliv Sci Technol. 2018; 46: 378-383. https://doi.org/10.1016/j.jddst.2018.05.038.
  • [54] Nasr G, Greige-Gerges H, Elaissari A, Khreich N. Liposome Permeability to Essential Oil Components: A Focus on Cholesterol Content. J Membr Biol. 2021; 254(4): 381-395. https://doi.org/10.1007/s00232-021-00180-3.
  • [55] Kosakowska O, Węglarz Z, Pióro-Jabrucka E, Przybył JL, Kraśniewska K, Gniewosz M, Bączek K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules. 2021; 26(4): 988. https://doi.org/10.3390/molecules26040988.
  • [56] Radünz M, Camargo TM, dos Santos Hackbart HC, Correa Alves PI, Radünz AL, Gandra EA, da Rosa Zavareze E. Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT. 2021; 138: 110632. https://doi.org/10.1016/j.lwt.2020.110632.
  • [57] Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of thyme essential oils: Formulation, characterization, storage stability, and biological activity. Foods. 2022; 11(13): 1858. https://doi.org/10.3390/foods11131858.
  • [58] Manaa AO, Baghdadi HH, El‐Nikhely NA, Heikal LA, El-Hosseiny LS. Oregano oil-nanoemulsions: Formulation and evaluation of antibacterial and anticancer potentials. J Drug Deliv Sci Technol. 2022; 78: 103978. https://doi.org/10.1016/j.jddst.2022.103978.
  • [59] da Silva BD, do Rosário DKA, Neto LT, Lelis CA, Conte-Junior CA. Antioxidant, antibacterial and antibiofilm activity of nanoemulsion-based natural compound delivery systems compared with non-nanoemulsified versions. Foods. 2023; 12(9): 1901. https://doi.org/10.3390/foods12091901.
  • [60] Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia A, Horhat F. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014; 7(3): 56.
  • [61] Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016; 194: 410-415. https://doi.org/10.1016/j.foodchem.2015.07.139.
  • [62] Moradi S, Barati A. Essential Oils Nanoemulsions:‎ Preparation, Characterization and Study of‎ Antibacterial Activity against Escherichia‎ Coli. Int J Nanosci Nanotechnol. 2019; 15(3): 199-210.
  • [63] Agnish S, Sharma AD, Kaur I. Nanoemulsions (O/W) containing Cymbopogon pendulus essential oil: development, characterization, stability study, and evaluation of in vitro anti-bacterial, anti-inflammatory, anti-diabetic activities. Bionanoscience. 2022; 12(2): 540-554. https://doi.org/10.1007/s12668-022-00964-4.
  • [64] do Carmo Silva L, Miranda MACM, de Freitas JV, Ferreira SFA, de Oliveira Lima EC, de Oliveira CMA, Kato L, Terezan AP, Rodriguez AFR, Faria FSEDV, de Almeida Soares CM, Pereira M.Antifungal activity of Copaíba resin oil in solution and nanoemulsion against Paracoccidioides spp. Braz J Microbiol. 2020; 51(1): 125-134. https://doi.org/10.1007/s42770-019-00201-3.
  • [65] Pontes-Quero GM, Esteban-Rubio S, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Oregano essential oil micro-and nanoencapsulation with bioactive properties for biotechnological and biomedical applications. Front Bioeng Biotechnol. 2021; 9: 703684. https://doi.org/10.3389/fbioe.2021.703684.
  • [66] Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018; 16(1): 1-33. https://doi.org/10.1186/s12951-018-0392-8.
  • [67] Cornier J, Owen A, Kwade A, Van de Voorde M (Eds). Pharmaceutical Nanotechnology, 2 Volumes: Innovation and Production. John Wiley & Sons; Germany, 2017.
  • [68] Cossetin LF, Garlet QI, Velho MC, Gündel S, Ouriqe AF, Heinzmann BM, Gonzalez Monteiro S. Development of nanoemulsions containing Lavandula dentata or Myristica fragrans essential oils: Influence of temperature and storage period on physical-chemical properties and chemical stability. Ind Crops Prod. 2021; 160: 113115. https://doi.org/10.1016/j.indcrop.2020.113115.
  • [69] Wan J, Jin Z, Zhong S, Schwarz P, Chen B, Rao J. Clove oil-in-water nanoemulsion: Mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chem. 2020; 312: 126120. https://doi.org/10.1016/j.foodchem.2019.126120.
  • [70] Ibrahim SS, Sahu U, Karthik P, Vendan SE. Eugenol nanoemulsion as bio-fumigant: enhanced insecticidal activity against the rice weevil, Sitophilus oryzae adults. J Food Sci Technol. 2023; 60(4): 1435-1445. https://doi.org/10.1007/s13197-023-05690-7.
  • [71] Papajani V, Haloci E, Goci E, Shkreli R, Manfredini S. Evaluation of antifungal activity of Origanum vulgare and Rosmarinus officinalis essential oil before and after inclusion in β-cyclodextrine. Int J Pharm Pharm Sci. 2015; 7(5): 270-273.
  • [72] Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy, fourth ed., Allured Publishing Corp; Carol Stream, Illinois, USA 2007.
  • [73] Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal. 2015; 23(3): 560-568. https://doi.org/10.1016/j.jfda.2015.01.001.
  • [74] Borges RS, Keita H, Ortiz BLS, Dos Santos Sampaio TI, Ferreira IM, Lima ES, de Jesus Amazonas da Silva M, Fernandes CP, de Faria Mota Oliveira AEM, da Conceição EC, Rodrigues ABL, Filho ACMP, Castro AN, Carvalho JCT. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology. 2018; 26(4): 1057-1080. https://doi.org/10.1007/s10787-017-0438-9.
  • [75] Cleff MB, Meinerz AR, Xavier M, Schuch LF, Schuch LF, Araújo Meireles MC, Alves Rodrigues MR, de Mello JR. In vitro activity of Origanum vulgare essential oil against Candida species. Braz J Microbiol. 2010; 41: 116-123. https://doi.org/10.1590/S1517-838220100001000018.
Year 2025, Volume: 29 Issue: 2, 852 - 870
https://doi.org/10.12991/jrespharm.1617992

Abstract

References

  • [1] Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016; 68(3): 701-787. https://doi.org/10.1124/pr.115.012070.
  • [2] Gurpreet K, Singh S. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018; 80(5): 781-789. https://doi.org/10.4172/pharmaceutical-sciences.1000422.
  • [3] Wilson RJ, Li Y, Yang G, Zhao CX. Nanoemulsions for drug delivery. Particuology. 2022; 64: 85-97. https://doi.org/10.1016/j.partic.2021.05.009.
  • [4] Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy—An Overview on Recent Advances. Pharmaceutics. 2022; 14(3): 533. https://doi.org/10.3390/pharmaceutics14030533.
  • [5] Haro-González JN, Schlienger de Alba BN, Martínez-Velázquez M, Castillo-Herrera GA, Espinosa-Andrews H. Optimization of Clove Oil Nanoemulsions: Evaluation of Antioxidant, Antimicrobial, and Anticancer Properties. Colloids Interfaces. 2023; 7(4): 64. https://doi.org/10.3390/colloids7040064.
  • [6] Barradas TN, de Holanda e Silva KG. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ Chem Lett. 2021; 19(2): 1153-1171. https://doi.org/10.1007/s10311-020-01142-2..
  • [7] Haro-González JN, Martínez-Velázquez M, Castillo-Herrera GA, Espinosa-Andrews H. Clove essential oil nanoemulsions: development, physical characterization, and anticancer activity evaluation. J Dispers Sci Technol. Published online 2024: 1-9. https://doi.org/10.1080/01932691.2024.2302067.
  • [8] Siyadatpanah A, Norouzi R, Mirzaei F, Haghirosadat BF, Nissapatorn V, Mitsuwan W, Nawaz M, Pereira ML, Hosseini SA, Montazeri M, Majdizadeh M, Almeida RS, Hemati M, Wilairatana P, Coutinho HDM.Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis. J Microbiol Immunol Infect. 2023; 56(1): 150-162. https://doi.org/10.1016/j.jmii.2022.06.006.
  • [9] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol. 2008; 46(2): 446-475. https://doi.org/10.1016/j.fct.2007.09.106.
  • [10] Moraes-Lovison M, Marostegan LF, Peres MS, Menezes IF, Ghiraldi M, Rodrigues RAF, Fernandes AM, Pinho SC. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. Lwt. 2017; 77: 233-240. https://doi.org/10.1016/j.lwt.2016.11.061.
  • [11] Pérez-González C, Pérez-Ramos J, Méndez-Cuesta CA, Serrano-Vega R, Martell-Mendoza M, Pérez-Gutiérrez S. Cytotoxic activity of essential oils of some species from Lamiaceae family. Cytotox Defin Identif Cytotoxic Compd Istifli ES Ila HB Eds. Published online 2019: 29-43. https://doi.org/10.5772/intechopen.86392.
  • [12] Hussain AI, Anwar F, Chatha SA, Latif S, Sherazi STH, Ahmad A, Worthington J, Sarker SD. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Sci Technol. 2013; 50(1): 185-192. https://doi.org/10.1016/j.lwt.2012.06.003.
  • [13] Sarrou E, Tsivelika N, Chatzopoulou P, Tsakalidis G, Menexes G, Mavromatis A. Conventional breeding of Greek oregano (Origanum vulgare ssp. hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica. 2017; 213: 1-16. https://doi.org/10.1007/s10681-017-1889-1.
  • [14] Tammar S, Salem N, Bettaieb Rebey I, Sriti J, Hammami M, Khammassi S, Marzouk B, Ksouri R, Msaada K. Regional effect on essential oil composition and antimicrobial activity of Thymus capitatus L. J Essent Oil Res. 2019; 31(2): 129-137. https://doi.org/10.1080/10412905.2018.1539415.
  • [15] Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep. 2021; 11(1): 13178. https://doi.org/10.1038/s41598-021-92679-x.
  • [16] Ramos da Silva LR, Ferreira OO, Cruz JN, de Jesus Pereira Franco C, Oliveira Dos Anjos T, Cascaes MM, Almeida da Costa W, Helena de Aguiar Andrade E, Santana de Oliveira M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid Based Complement Alternat Med. 2021;2021:6748052. https://doi.org/10.1155/2021/6748052.
  • [17] Barani M, Bilal M, Rahdar A, Arshad R, Kumar A, Hamishekar H,Kyzas GZ . Nanodiagnosis and nanotreatment of colorectal cancer: An overview. J Nanoparticle Res. 2021; 23(1): 1-25. https://doi.org/10.1007/s11051-020-05129-6.
  • [18] Benjemaa M, Neves MA, Falleh H, Isoda H, Ksouri R, Nakajima M. Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring. Ind Crops Prod. 2018; 113: 414-421. https://doi.org/10.1016/J.INDCROP.2018.01.062.
  • [19] AbouAitah K, Lojkowski W. Nanomedicine as an emerging technology to foster application of essential oils to fight cancer. Pharmaceuticals. 2022; 15(7): 793. https://doi.org/10.3390/ph15070793.
  • [20] Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules. 2017; 22(6): 989. https://doi.org/10.3390/molecules22060989.
  • [21] Pinna R, Filigheddu E, Juliano C, Palmieri A, Manconi M, D'hallewin G, Petretto G, Maioli M, Caddeo C, Manca ML, Solinas G, Bortone A, Campanella V, Milia E. Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics. 2019; 11(5): 234. https://doi.org/10.3390/pharmaceutics11050234.
  • [22] European Medicines Agency. Antimicrobial resistance | European Medicines Agency. https://www.ema.europa.eu/en/human-regulatory-overview/public-health-threats/antimicrobial-resistance (accessed March 20, 2024).
  • [23] Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem. 2015; 178: 52-62. https://doi.org/10.1016/j.foodchem.2015.01.067.
  • [24] Kryeziu TL, Haloci E, Loshaj-Shala A, Bagci U, Oral A, Stefkov GJ, Zimmer A, Basholli-Salihu M. Nanoencapsulation of Origanum vulgare essential oil into liposomes with anticancer potential. Pharmazie. 2022 ;77(6):172-178. https://doi.org/10.1691/ph.2022.1230.
  • [25] Kryeziu T, Bağci U, Loshaj-Shala A, Oral A, Stefkov GJ, Zimmer A, Basholli-Salihu M. Cytotoxic activity of liposomal Thymus capitatus essential oil on HT-29 human colorectal cancer cell line. Pharmazie. 2024;79(3):49-56. https://doi.org/10.1691/ph.2024.3037.
  • [26] Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces. 2011; 84(1): 163-171. https://doi.org/10.1016/j.colsurfb.2010.12.031.
  • [27] Feyzioglu GC, Tornuk F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT. 2016; 70: 104-110. https://doi.org/10.1016/j.lwt.2016.02.037.
  • [28] Shetta AAA. Encapsulation of Essential Oils in Chitosan Nanoparticle Formulations and Investigation on Their Antioxidant and Antibacterial Properties. Master’s Thesis, School of Sciences and Engineering, American University in Cairo, Cairo, Egypt, 2017.
  • [29] Manconi M, Petretto G, D'hallewin G, Escribano E, Milia E, Pinna R, Palmieri A, Firoznezhad M, Peris JE, Usach I, Fadda AM, Caddeo C, Manca ML. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf B Biointerfaces. 2018; 171: 115-122. https://doi.org/10.1016/j.colsurfb.2018.07.021.
  • [30] Risaliti L, Kehagia A, Daoultzi E, Lazari D, Bergonzi MC, Vergkizi-Nikolakaki S, Hadjipavlou-Litina D, Bilia AR. Liposomes loaded with Salvia triloba and Rosmarinus officinalis essential oils: In vitro assessment of antioxidant, antiinflammatory and antibacterial activities. J Drug Deliv Sci Technol. 2019; 51: 493-498. https://doi.org/10.1016/j.jddst.2019.03.034.
  • [31] Nirmala MJ, Durai L, Gopakumar V, Nagarajan R. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. Int J Nanomed. 2019: 6439-6450. https://doi.org/10.2147/IJN.S211047.
  • [32] Putri DCA, Dwiastuti R, Marchaban AKN. Optimization of mixing temperature and sonication duration in liposome preparation. J Farm Sains Dan Komunitas. 2017; 14(2): 79-85. https://doi.org/10.24071/jpsc.142728.
  • [33] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10(2):57.https://doi.org/10.3390/pharmaceutics10020057.
  • [34] Hammoud Z, Kayouka M, Trifan A, Sieniawska E, Jemâa JMB, Elaissari A, Greige-Gerges H. Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins. Molecules. 2021; 26(22): 6840. https://doi.org/10.3390/molecules26226840.
  • [35] Dávila-Rodríguez M, López-Malo A, Palou E, Ramírez-Corona N, Jiménez-Munguía MT. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT. 2019; 112: 108247. https://doi.org/10.1016/j.lwt.2019.06.014.
  • [36] Jamil B. PhD Thesis. Nano-antibiotics: Nano Encapsulation of Natural and Synthetic Antimicrobials to Combat Multi Drug Resistant Pathogens. Institute of Information Technology Islamabad, Pakistan. 2016.
  • [37] Niu F, Pan W, Su Y, Yang Y. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food Chem. 2016; 212: 138-145. https://doi.org/10.1016/j.foodchem.2016.05.172.
  • [38] Cui H, Zhao C, Lin L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control. 2015; 56: 128-134. https://doi.org/10.1016/j.foodcont.2015.03.026.
  • [39] Cui H, Yuan L, Ma C, Li C, Lin L. Effect of nianoliposome‐encapsulated thyme oil on growth of Salmonella enteritidis in chicken. J Food Process Preserv. 2017; 41(6): e13299. https://doi.org/10.1111/jfpp.13299.
  • [40] Aguilar-Pérez KM, Medina DI, Narayanan J, Parra-Saldívar R, Iqbal HM. Synthesis and nano-sized characterization of bioactive oregano essential oil molecule-loaded small unilamellar nanoliposomes with antifungal potentialities. Molecules. 2021; 26(10): 2880. https://doi.org/10.3390/molecules26102880.
  • [41] Hassan H, Mina S, Bishr M, Khalik S. Influence of foliar spray of ethephon and water stress on the essential oil composition and impact on the cytotoxic activity of Thymus vulgaris aerial parts. Nat Prod Res. 2019; 33(18): 2714-2717. https://doi.org/10.1080/14786419.2018.1460843.
  • [42] Blažíčková M, Blaško J, Kubinec R, Kozics K. Newly Synthesized Thymol Derivative and Its Effect on Colorectal Cancer Cells. Molecules. 2022; 27(9): 2622. https://doi.org/10.3390/molecules27092622.
  • [43] Sabater-Jara AB, Funes MP, Pedreño MA, Belchí-Navarro S. Essential Oils of Thymbra capitata and Thymus hyemalis and Their Uses Based on Their Bioactivity. In: Thymus. Rezaei N (Edt). https://doi.org/10.5772/intechopen.89309.
  • [44] Rojo-Ruvalcaba BE, García-Cobián TA, Pascoe-González S, Campos-Bayardo TI, Guzmán-García LM, Gil-Gálvez MC, Escobar-Millán Z, Huerta-García E, García-Iglesias T. Dose-Dependent cytotoxicity of the Origanum Vulgare and carvacrol on triple negative breast cancer cell line. Multidiscip Digit Publ Inst Proc. 2020; 61(1): 6. https://doi.org/10.3390/IECN2020-07000.
  • [45] Sampaio LA, Pina LTS, Serafini MR, Tavares D dos S, Guimaraes AG. Antitumor effects of carvacrol and thymol: A systematic review. Front Pharmacol. 2021; 12: 702487. https://doi.org/10.3389/fphar.2021.702487.
  • [46] Gavaric N, Mozina SS, Kladar N, Bozin B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J Essent Oil Bear Plants. 2015; 18(4): 1013-1021. https://doi.org/10.1080/0972060X.2014.971069.
  • [47] Celia C, Trapasso E, Locatelli M, Navarra M, Ventura CA, Wolfram J, Carafa M, Morittu VM, Britti D, Di Marzio L, Paolino D. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids Surf B Biointerfaces. 2013;112:548-53. https://doi.org/10.1016/j.colsurfb.2013.09.017.
  • [48] Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol. 2021;9:705886. https://doi.org/10.3389/fbioe.2021.705886.
  • [49] Marslin G, Khandelwal V, Franklin G. Cordycepin nanoencapsulated in poly (lactic-co-glycolic acid) exhibits better cytotoxicity and lower hemotoxicity than free drug. Nanotechnol Sci Appl. Published online 2020: 37-45. https://doi.org/10.2147/NSA.S254770.
  • [50] Jampilek J, Kralova K. Anticancer applications of essential oils formulated into lipid-based delivery nanosystems. Pharmaceutics. 2022; 14(12): 2681. https://doi.org/10.3390/pharmaceutics14122681.
  • [51] Abd-Rabou AA, Edris AE. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnol. 2021; 12(1): 28. https://doi.org/10.1186/s12645-021-00101-y.
  • [52] Gautam N, Mantha AK, Mittal S. Essential oils and their constituents as anticancer agents: a mechanistic view. BioMed Res Int. 2014;2014:154106. https://doi.org/10.1155/2014/154106.
  • [53] da Silva Gündel S, Velho MC, Diefenthaler MK, Favarin FR, Copetti PM, de Oliveira Fagoça A, Klein B, Wagner R, Gündel A, Sagrillo MR, Ourique AF. Basil oil-nanoemulsions: Development, cytotoxicity and evaluation of antioxidant and antimicrobial potential. J Drug Deliv Sci Technol. 2018; 46: 378-383. https://doi.org/10.1016/j.jddst.2018.05.038.
  • [54] Nasr G, Greige-Gerges H, Elaissari A, Khreich N. Liposome Permeability to Essential Oil Components: A Focus on Cholesterol Content. J Membr Biol. 2021; 254(4): 381-395. https://doi.org/10.1007/s00232-021-00180-3.
  • [55] Kosakowska O, Węglarz Z, Pióro-Jabrucka E, Przybył JL, Kraśniewska K, Gniewosz M, Bączek K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules. 2021; 26(4): 988. https://doi.org/10.3390/molecules26040988.
  • [56] Radünz M, Camargo TM, dos Santos Hackbart HC, Correa Alves PI, Radünz AL, Gandra EA, da Rosa Zavareze E. Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT. 2021; 138: 110632. https://doi.org/10.1016/j.lwt.2020.110632.
  • [57] Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of thyme essential oils: Formulation, characterization, storage stability, and biological activity. Foods. 2022; 11(13): 1858. https://doi.org/10.3390/foods11131858.
  • [58] Manaa AO, Baghdadi HH, El‐Nikhely NA, Heikal LA, El-Hosseiny LS. Oregano oil-nanoemulsions: Formulation and evaluation of antibacterial and anticancer potentials. J Drug Deliv Sci Technol. 2022; 78: 103978. https://doi.org/10.1016/j.jddst.2022.103978.
  • [59] da Silva BD, do Rosário DKA, Neto LT, Lelis CA, Conte-Junior CA. Antioxidant, antibacterial and antibiofilm activity of nanoemulsion-based natural compound delivery systems compared with non-nanoemulsified versions. Foods. 2023; 12(9): 1901. https://doi.org/10.3390/foods12091901.
  • [60] Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia A, Horhat F. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014; 7(3): 56.
  • [61] Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016; 194: 410-415. https://doi.org/10.1016/j.foodchem.2015.07.139.
  • [62] Moradi S, Barati A. Essential Oils Nanoemulsions:‎ Preparation, Characterization and Study of‎ Antibacterial Activity against Escherichia‎ Coli. Int J Nanosci Nanotechnol. 2019; 15(3): 199-210.
  • [63] Agnish S, Sharma AD, Kaur I. Nanoemulsions (O/W) containing Cymbopogon pendulus essential oil: development, characterization, stability study, and evaluation of in vitro anti-bacterial, anti-inflammatory, anti-diabetic activities. Bionanoscience. 2022; 12(2): 540-554. https://doi.org/10.1007/s12668-022-00964-4.
  • [64] do Carmo Silva L, Miranda MACM, de Freitas JV, Ferreira SFA, de Oliveira Lima EC, de Oliveira CMA, Kato L, Terezan AP, Rodriguez AFR, Faria FSEDV, de Almeida Soares CM, Pereira M.Antifungal activity of Copaíba resin oil in solution and nanoemulsion against Paracoccidioides spp. Braz J Microbiol. 2020; 51(1): 125-134. https://doi.org/10.1007/s42770-019-00201-3.
  • [65] Pontes-Quero GM, Esteban-Rubio S, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Oregano essential oil micro-and nanoencapsulation with bioactive properties for biotechnological and biomedical applications. Front Bioeng Biotechnol. 2021; 9: 703684. https://doi.org/10.3389/fbioe.2021.703684.
  • [66] Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018; 16(1): 1-33. https://doi.org/10.1186/s12951-018-0392-8.
  • [67] Cornier J, Owen A, Kwade A, Van de Voorde M (Eds). Pharmaceutical Nanotechnology, 2 Volumes: Innovation and Production. John Wiley & Sons; Germany, 2017.
  • [68] Cossetin LF, Garlet QI, Velho MC, Gündel S, Ouriqe AF, Heinzmann BM, Gonzalez Monteiro S. Development of nanoemulsions containing Lavandula dentata or Myristica fragrans essential oils: Influence of temperature and storage period on physical-chemical properties and chemical stability. Ind Crops Prod. 2021; 160: 113115. https://doi.org/10.1016/j.indcrop.2020.113115.
  • [69] Wan J, Jin Z, Zhong S, Schwarz P, Chen B, Rao J. Clove oil-in-water nanoemulsion: Mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chem. 2020; 312: 126120. https://doi.org/10.1016/j.foodchem.2019.126120.
  • [70] Ibrahim SS, Sahu U, Karthik P, Vendan SE. Eugenol nanoemulsion as bio-fumigant: enhanced insecticidal activity against the rice weevil, Sitophilus oryzae adults. J Food Sci Technol. 2023; 60(4): 1435-1445. https://doi.org/10.1007/s13197-023-05690-7.
  • [71] Papajani V, Haloci E, Goci E, Shkreli R, Manfredini S. Evaluation of antifungal activity of Origanum vulgare and Rosmarinus officinalis essential oil before and after inclusion in β-cyclodextrine. Int J Pharm Pharm Sci. 2015; 7(5): 270-273.
  • [72] Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy, fourth ed., Allured Publishing Corp; Carol Stream, Illinois, USA 2007.
  • [73] Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal. 2015; 23(3): 560-568. https://doi.org/10.1016/j.jfda.2015.01.001.
  • [74] Borges RS, Keita H, Ortiz BLS, Dos Santos Sampaio TI, Ferreira IM, Lima ES, de Jesus Amazonas da Silva M, Fernandes CP, de Faria Mota Oliveira AEM, da Conceição EC, Rodrigues ABL, Filho ACMP, Castro AN, Carvalho JCT. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology. 2018; 26(4): 1057-1080. https://doi.org/10.1007/s10787-017-0438-9.
  • [75] Cleff MB, Meinerz AR, Xavier M, Schuch LF, Schuch LF, Araújo Meireles MC, Alves Rodrigues MR, de Mello JR. In vitro activity of Origanum vulgare essential oil against Candida species. Braz J Microbiol. 2010; 41: 116-123. https://doi.org/10.1590/S1517-838220100001000018.
There are 75 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Articles
Authors

Mimoza Basholli Salihu

Entela Haloci 0000-0003-2992-8307

Toskë Kryeziu 0000-0002-5591-2520

Jehona Ahmeti 0009-0005-2008-8745

Blerta Zogjani 0009-0006-6766-8808

Ufuk Bağcı

Venesa Lupci 0009-0005-9618-846X

Xhevat Jakupi 0000-0001-9453-596X

Andreas Zimmer

Aida Shala 0000-0003-2640-4356

Publication Date
Submission Date January 23, 2025
Acceptance Date March 2, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Basholli Salihu, M., Haloci, E., Kryeziu, T., Ahmeti, J., et al. (n.d.). Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties. Journal of Research in Pharmacy, 29(2), 852-870. https://doi.org/10.12991/jrespharm.1617992
AMA Basholli Salihu M, Haloci E, Kryeziu T, Ahmeti J, Zogjani B, Bağcı U, Lupci V, Jakupi X, Zimmer A, Shala A. Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties. J. Res. Pharm. 29(2):852-870. doi:10.12991/jrespharm.1617992
Chicago Basholli Salihu, Mimoza, Entela Haloci, Toskë Kryeziu, Jehona Ahmeti, Blerta Zogjani, Ufuk Bağcı, Venesa Lupci, Xhevat Jakupi, Andreas Zimmer, and Aida Shala. “Nanoemulsion of Thymus Capitatus and Origanum Vulgare Essential Oil: Stability, Antimicrobial and Cytotoxic Properties”. Journal of Research in Pharmacy 29, no. 2 n.d.: 852-70. https://doi.org/10.12991/jrespharm.1617992.
EndNote Basholli Salihu M, Haloci E, Kryeziu T, Ahmeti J, Zogjani B, Bağcı U, Lupci V, Jakupi X, Zimmer A, Shala A Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties. Journal of Research in Pharmacy 29 2 852–870.
IEEE M. Basholli Salihu, “Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties”, J. Res. Pharm., vol. 29, no. 2, pp. 852–870, doi: 10.12991/jrespharm.1617992.
ISNAD Basholli Salihu, Mimoza et al. “Nanoemulsion of Thymus Capitatus and Origanum Vulgare Essential Oil: Stability, Antimicrobial and Cytotoxic Properties”. Journal of Research in Pharmacy 29/2 (n.d.), 852-870. https://doi.org/10.12991/jrespharm.1617992.
JAMA Basholli Salihu M, Haloci E, Kryeziu T, Ahmeti J, Zogjani B, Bağcı U, Lupci V, Jakupi X, Zimmer A, Shala A. Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties. J. Res. Pharm.;29:852–870.
MLA Basholli Salihu, Mimoza et al. “Nanoemulsion of Thymus Capitatus and Origanum Vulgare Essential Oil: Stability, Antimicrobial and Cytotoxic Properties”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 852-70, doi:10.12991/jrespharm.1617992.
Vancouver Basholli Salihu M, Haloci E, Kryeziu T, Ahmeti J, Zogjani B, Bağcı U, Lupci V, Jakupi X, Zimmer A, Shala A. Nanoemulsion of Thymus capitatus and Origanum vulgare essential oil: stability, antimicrobial and cytotoxic properties. J. Res. Pharm. 29(2):852-70.