Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 497 - 506
https://doi.org/10.12991/jrespharm.1660993

Abstract

References

  • [1] De Souza Araújo L, Santana LAR, Otenio MH, Nascimento CW, Cerqueira AFLW, Rodarte MP. Biosurfactant production by Pseudomonas: a systematic review. Appl Biochem Biotechnol. 2024. https://doi.org/10.1007/s12010-024-05036-9.
  • [2] Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung SM, Kumar M. Microbial Biosurfactant: A new frontier for sustainable agriculture and pharmaceutical industries. antioxidants (Basel). 2021;10(9):1472. https://doi.org/10.3390/antiox10091472.
  • [3] Singh SK, Singh MK, Verma H, Singh PP. Singh AV, Rashmi K, Kumar A. Biosurfactant producing microbes for clean-up of soil contaminants. In: Microbe Mediated Remediation of Environmental Contaminants. Woodhead Publishing, Sawston, UK, 2021; pp. 89–93.
  • [4] Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, Mohan A, Yogita, Malik T. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: a critical review. Biomed Res Int. 2023:2375223. https://doi.org/10.1155/2023/2375223.
  • [5] Thakur P, Saini NK, Thakur VK, Gupta VK, Saini RV, Saini AK. Rhamnolipid the glycolipid biosurfactant: emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb Cell Fact. 2021;4;20(1):1. https://doi.org/10.1186/s12934-020-01497-9.
  • [6] Daverey A, Dutta K, Joshi S, Daverey A. Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered. 2021;12(2):9550-9560. https://doi.org/10.1080/21655979.2021.1997261.
  • [7] Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii. Microb Pathog. 2024;193:106743. https://doi.org/10.1016/j.micpath.2024.106743.
  • [8] Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127(1):12-28. https://doi.org/10.1111/jam.14243.
  • [9] Borsanyiova M, Patil A, Mukherji R, Prabhune A, Bopegamage S. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol (Praha). 2016;61(1):85-89. https://doi.org/10.1007/s12223-015-0413-z.
  • [10] Sajid M, Ahmad Khan MS, Singh Cameotra S, Safar Al-Thubiani A. Biosurfactants: Potential applications as immunomodulator drugs. Immunol Lett. 2020;223:71-77. https://doi.org/10.1016/j.imlet.2020.04.003.
  • [11] Chang Q, Chen H, Li Y, Li H, Yang Z, Zeng J, Zhang P, Ge J, Gao M. The synergistic activity of rhamnolipid combined with linezolid against linezolid-resistant Enterococcus faecium. Molecules. 2023;28(22):7630. https://doi.org/10.3390/molecules28227630.
  • [12] Abo-Zeid Y, Bakkar MR, Elkhouly GE, Raya NR, Zaafar D. Rhamnolipid nano-micelles versus alcohol-based hand sanitizer: a comparative study for antibacterial activity against hospital-acquired infections and toxicity concerns. Antibiotics (Basel). 2022;11(5):605. https://doi.org/10.3390/antibiotics11050605.
  • [13] Üstün A, Örtücü S. Evaluation of nisin-loaded plga nanoparticles prepared with rhamnolipid cosurfactant against S. aureus biofilms. Pharmaceutics. 2022;14(12):2756. https://doi.org/10.3390/pharmaceutics14122756.
  • [14] Malakar C, Patowary K, Deka S, Kalita MC. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus. World J Microbiol Biotechnol. 2021;37(11):193. https://doi.org/10.1007/s11274-021-03160-w.
  • [15] Joshi-Navare K, Prabhune A. A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res Int. 2013;2013:512495. https://doi.org/10.1155/2013/512495.
  • [16] Leitão JH. Microbial Virulence Factors. Int J Mol Sci. 2020;21(15):5320. https://doi.org/10.3390/ijms21155320.
  • [17] Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493-512. https://doi.org/10.4155/fmc.15.6. Erratum in: Future Med Chem. 2015;7(10):1362. https://doi.org/10.4155/fmc.15.77.
  • [18] Laxminarayan R, Impalli I, Rangarajan R, Cohn J, Ramjeet K, Trainor BW, Strathdee S, Sumpradit N, Berman D, Wertheim H, Outterson K, Srikantiah P, Theuretzbacher U. Expanding antibiotic, vaccine, and diagnostics development and access to tackle antimicrobial resistance. Lancet. 2024:S0140-6736(24)00878-X. https://doi.org/10.1016/S0140-6736(24)00878-X. [19] Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701-1718. https://doi.org/10.1007/s42770-021-00624-x.
  • [20] WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization, Geneva 2024.
  • [21] Habibah FF, Sri Rizki WO, Ivansyah AL, Astuti DI, Hertadi R. Green synthesis of copper ions nanoparticles functionalized with rhamnolipid as potential antibacterial agent for pathogenic bacteria. Heliyon. 2024;10(1):e24242. https://doi.org/10.1016/j.heliyon.2024.e24242.
  • [22] De Freitas Ferreira J, Vieira EA, Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int. 2019;116:737-744. https://doi.org/10.1016/j.foodres.2018.09.005.
  • [23] Firdose A, Chong NHH, Ramli R, Aqma WS. Antimicrobial, antiadhesive, and antibiofilm actions of rhamnolipids on ESKAPE pathogens. Lett Appl Microbiol. 2023;76(2):ovad013. https://doi.org/10.1093/lambio/ovad013.
  • [24] Díaz De Rienzo MA, Stevenson P, Marchant R, Banat IM. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiol Lett. 2016;363(2):fnv224. https://doi.org/10.1093/femsle/fnv224.
  • [25] Totsingan F, Liu F, Gross RA. Structure-activity relationship assessment of sophorolipid ester derivatives against model bacteria strains. Molecules. 2021;26(10):3021. https://doi.org/10.3390/molecules26103021.
  • [26] Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015;32(6):720-726. https://doi.org/10.1016/j.nbt.2015.02.009.
  • [27] Saadati F, Shahryari S, Sani NM, Farajzadeh D, Zahiri HS, Vali H, Noghabi KA. Effect of MA01 rhamnolipid on cell viability and expression of quorum-sensing (QS) genes involved in biofilm formation by methicillin-resistant Staphylococcus aureus. Sci Rep. 2022;12(1):14833. https://doi.org/10.1038/s41598-022-19103-w.
  • [28] Shikha S, Chaudhuri SR, Bhattacharyya MS. Facile one pot greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against Gram negative Vibrio cholerae. Sci Rep. 2020;10(1):1463. https://doi.org/10.1038/s41598-019-57399-3.
  • [29] Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent. Bioresour Technol. 2019;285:121314. https://doi.org/10.1016/j.biortech.2019.121314.
  • [30] Hashim ZA, Maillard JY, Wilson MJ, Waddington RJ. Determining the potential use of biosurfactants in preventing endodontic infections. Eur J Oral Sci. 2022;130(6):e12900. https://doi.org/10.1111/eos.12900.
  • [31] Bettencourt AF, Tomé C, Oliveira T, Martin V, Santos C, Gonçalves L, Fernandes MH, Gomes PS, Ribeiro IAC. Exploring the potential of chitosan-based particles as delivery-carriers for promising antimicrobial glycolipid biosurfactants. Carbohydr Polym. 2021;254:117433. https://doi.org/10.1016/j.biortech.2019.121314.
  • [32] Sidrim JJ, Ocadaque CJ, Amando BR, de M Guedes GM, Costa CL, Brilhante RS, A Cordeiro R, Rocha MF, Scm Castelo-Branco D. Rhamnolipid enhances Burkholderia pseudomallei biofilm susceptibility, disassembly and production of virulence factors. Future Microbiol. 2020;15:1109-1121. https://doi.org/10.2217/fmb-2020-0010.
  • [33] Yamasaki R, Kawano A, Yoshioka Y, Ariyoshi W. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC Microbiol. 2020;20(1):358. https://doi.org/10.1186/s12866-020-02034-9.
  • [34] Ceresa C, Fracchia L, Williams M, Banat IM, Díaz De Rienzo MA. The effect of sophorolipids against microbial biofilms on medical-grade silicone. J Biotechnol. 2020;309:34-43. https://doi.org/10.1016/j.jbiotec.2019.12.019.
  • [35] Haque F, Alfatah M, Ganesan K, Bhattacharyya MS. Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep. 2016;6:23575. https://doi.org/10.1038/srep23575.
  • [36] Nguyen BVG, Nagakubo T, Toyofuku M, Nomura N, Utada AS. Synergy between sophorolipid biosurfactant and SDS increases the efficiency of P. aeruginosa biofilm disruption. Langmuir. 2020;36(23):6411-6420. https://doi.org /10.1021/acs.langmuir.0c00643.
  • [37] Diaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol. 2016;100(13):5773-5779. https://doi.org/10.1007/s00253-016-7310-5.
  • [38] Lydon HL, Baccile N, Callaghan B, Marchant R, Mitchell CA, Banat IM. Adjuvant antibiotic activity of acidic sophorolipids with potential for facilitating wound healing. Antimicrob Agents Chemother. 2017;61(5):e02547-16. https://doi.org/10.1128/AAC.02547-16.
  • [39] EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024.
  • [40] Perez C, Pauli M, Bazerque, P. An antibiotic assay by agar well diffusion method. Acta Biol Med Exp. 1990;15:113-115.
  • [41] ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for Standardization, Geneva, Switzerland. 2019.
  • [42] Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996-1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985 .
  • [43] Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32-37. https://doi.org/10.1016/j.peptides.2014.09.021.
  • [44] Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007;56(Pt 4):519-523. https://doi.org/10.1099/jmm.0.46804-0.
  • [45] Okae Y, Nishitani K, Sakamoto A, Kawai T, Tomizawa T, Saito M, Kuroda Y, Matsuda S. Estimation of minimum biofilm eradication concentration (MBEC) on in vivo biofilm on orthopedic implants in a rodent femoral infection model. Front Cell Infect Microbiol. 2022;12:896978. https://doi.org/10.3389/fcimb.2022.896978

Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria

Year 2025, Volume: 29 Issue: 2, 497 - 506
https://doi.org/10.12991/jrespharm.1660993

Abstract

Biosurfactants are varieties of surfactants, usually produced by microorganisms. These substances are used in various fields such as pharmaceutical industry, cosmetics production, food, agriculture, animal husbandry applications and waste treatment. These substances also have antibacterial, antiviral and antibiofilm activities. In our study, the antimicrobial, antibiofilm and mature biofilm eradicating effects of rhamnolipid and sophorolactone biosurfactants on standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Acinetobacter baumannii, Escherichia coli and Pseudomonas aeruginosa were investigated. The antimicrobial activity was determined by agar well diffusion method, minimum inhibitory concentration and minimum bactericidal concentration were determined by microdilution method and antibiofilm activity was determined by crystal violet staining method in microplate. As a result of the study; rhamnolipid and sophorolactone were found to have antimicrobial effect on standard and clinical isolates of S. aureus, E. faecalis, A. baumannii, and P. aeruginosa, which are important human pathogens, and also inhibited the biofilm development ability of these pathogens.

References

  • [1] De Souza Araújo L, Santana LAR, Otenio MH, Nascimento CW, Cerqueira AFLW, Rodarte MP. Biosurfactant production by Pseudomonas: a systematic review. Appl Biochem Biotechnol. 2024. https://doi.org/10.1007/s12010-024-05036-9.
  • [2] Kumar A, Singh SK, Kant C, Verma H, Kumar D, Singh PP, Modi A, Droby S, Kesawat MS, Alavilli H, Bhatia SK, Saratale GD, Saratale RG, Chung SM, Kumar M. Microbial Biosurfactant: A new frontier for sustainable agriculture and pharmaceutical industries. antioxidants (Basel). 2021;10(9):1472. https://doi.org/10.3390/antiox10091472.
  • [3] Singh SK, Singh MK, Verma H, Singh PP. Singh AV, Rashmi K, Kumar A. Biosurfactant producing microbes for clean-up of soil contaminants. In: Microbe Mediated Remediation of Environmental Contaminants. Woodhead Publishing, Sawston, UK, 2021; pp. 89–93.
  • [4] Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, Mohan A, Yogita, Malik T. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: a critical review. Biomed Res Int. 2023:2375223. https://doi.org/10.1155/2023/2375223.
  • [5] Thakur P, Saini NK, Thakur VK, Gupta VK, Saini RV, Saini AK. Rhamnolipid the glycolipid biosurfactant: emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb Cell Fact. 2021;4;20(1):1. https://doi.org/10.1186/s12934-020-01497-9.
  • [6] Daverey A, Dutta K, Joshi S, Daverey A. Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered. 2021;12(2):9550-9560. https://doi.org/10.1080/21655979.2021.1997261.
  • [7] Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii. Microb Pathog. 2024;193:106743. https://doi.org/10.1016/j.micpath.2024.106743.
  • [8] Naughton PJ, Marchant R, Naughton V, Banat IM. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127(1):12-28. https://doi.org/10.1111/jam.14243.
  • [9] Borsanyiova M, Patil A, Mukherji R, Prabhune A, Bopegamage S. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol (Praha). 2016;61(1):85-89. https://doi.org/10.1007/s12223-015-0413-z.
  • [10] Sajid M, Ahmad Khan MS, Singh Cameotra S, Safar Al-Thubiani A. Biosurfactants: Potential applications as immunomodulator drugs. Immunol Lett. 2020;223:71-77. https://doi.org/10.1016/j.imlet.2020.04.003.
  • [11] Chang Q, Chen H, Li Y, Li H, Yang Z, Zeng J, Zhang P, Ge J, Gao M. The synergistic activity of rhamnolipid combined with linezolid against linezolid-resistant Enterococcus faecium. Molecules. 2023;28(22):7630. https://doi.org/10.3390/molecules28227630.
  • [12] Abo-Zeid Y, Bakkar MR, Elkhouly GE, Raya NR, Zaafar D. Rhamnolipid nano-micelles versus alcohol-based hand sanitizer: a comparative study for antibacterial activity against hospital-acquired infections and toxicity concerns. Antibiotics (Basel). 2022;11(5):605. https://doi.org/10.3390/antibiotics11050605.
  • [13] Üstün A, Örtücü S. Evaluation of nisin-loaded plga nanoparticles prepared with rhamnolipid cosurfactant against S. aureus biofilms. Pharmaceutics. 2022;14(12):2756. https://doi.org/10.3390/pharmaceutics14122756.
  • [14] Malakar C, Patowary K, Deka S, Kalita MC. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus. World J Microbiol Biotechnol. 2021;37(11):193. https://doi.org/10.1007/s11274-021-03160-w.
  • [15] Joshi-Navare K, Prabhune A. A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. Biomed Res Int. 2013;2013:512495. https://doi.org/10.1155/2013/512495.
  • [16] Leitão JH. Microbial Virulence Factors. Int J Mol Sci. 2020;21(15):5320. https://doi.org/10.3390/ijms21155320.
  • [17] Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493-512. https://doi.org/10.4155/fmc.15.6. Erratum in: Future Med Chem. 2015;7(10):1362. https://doi.org/10.4155/fmc.15.77.
  • [18] Laxminarayan R, Impalli I, Rangarajan R, Cohn J, Ramjeet K, Trainor BW, Strathdee S, Sumpradit N, Berman D, Wertheim H, Outterson K, Srikantiah P, Theuretzbacher U. Expanding antibiotic, vaccine, and diagnostics development and access to tackle antimicrobial resistance. Lancet. 2024:S0140-6736(24)00878-X. https://doi.org/10.1016/S0140-6736(24)00878-X. [19] Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701-1718. https://doi.org/10.1007/s42770-021-00624-x.
  • [20] WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization, Geneva 2024.
  • [21] Habibah FF, Sri Rizki WO, Ivansyah AL, Astuti DI, Hertadi R. Green synthesis of copper ions nanoparticles functionalized with rhamnolipid as potential antibacterial agent for pathogenic bacteria. Heliyon. 2024;10(1):e24242. https://doi.org/10.1016/j.heliyon.2024.e24242.
  • [22] De Freitas Ferreira J, Vieira EA, Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int. 2019;116:737-744. https://doi.org/10.1016/j.foodres.2018.09.005.
  • [23] Firdose A, Chong NHH, Ramli R, Aqma WS. Antimicrobial, antiadhesive, and antibiofilm actions of rhamnolipids on ESKAPE pathogens. Lett Appl Microbiol. 2023;76(2):ovad013. https://doi.org/10.1093/lambio/ovad013.
  • [24] Díaz De Rienzo MA, Stevenson P, Marchant R, Banat IM. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria. FEMS Microbiol Lett. 2016;363(2):fnv224. https://doi.org/10.1093/femsle/fnv224.
  • [25] Totsingan F, Liu F, Gross RA. Structure-activity relationship assessment of sophorolipid ester derivatives against model bacteria strains. Molecules. 2021;26(10):3021. https://doi.org/10.3390/molecules26103021.
  • [26] Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol. 2015;32(6):720-726. https://doi.org/10.1016/j.nbt.2015.02.009.
  • [27] Saadati F, Shahryari S, Sani NM, Farajzadeh D, Zahiri HS, Vali H, Noghabi KA. Effect of MA01 rhamnolipid on cell viability and expression of quorum-sensing (QS) genes involved in biofilm formation by methicillin-resistant Staphylococcus aureus. Sci Rep. 2022;12(1):14833. https://doi.org/10.1038/s41598-022-19103-w.
  • [28] Shikha S, Chaudhuri SR, Bhattacharyya MS. Facile one pot greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against Gram negative Vibrio cholerae. Sci Rep. 2020;10(1):1463. https://doi.org/10.1038/s41598-019-57399-3.
  • [29] Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent. Bioresour Technol. 2019;285:121314. https://doi.org/10.1016/j.biortech.2019.121314.
  • [30] Hashim ZA, Maillard JY, Wilson MJ, Waddington RJ. Determining the potential use of biosurfactants in preventing endodontic infections. Eur J Oral Sci. 2022;130(6):e12900. https://doi.org/10.1111/eos.12900.
  • [31] Bettencourt AF, Tomé C, Oliveira T, Martin V, Santos C, Gonçalves L, Fernandes MH, Gomes PS, Ribeiro IAC. Exploring the potential of chitosan-based particles as delivery-carriers for promising antimicrobial glycolipid biosurfactants. Carbohydr Polym. 2021;254:117433. https://doi.org/10.1016/j.biortech.2019.121314.
  • [32] Sidrim JJ, Ocadaque CJ, Amando BR, de M Guedes GM, Costa CL, Brilhante RS, A Cordeiro R, Rocha MF, Scm Castelo-Branco D. Rhamnolipid enhances Burkholderia pseudomallei biofilm susceptibility, disassembly and production of virulence factors. Future Microbiol. 2020;15:1109-1121. https://doi.org/10.2217/fmb-2020-0010.
  • [33] Yamasaki R, Kawano A, Yoshioka Y, Ariyoshi W. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC Microbiol. 2020;20(1):358. https://doi.org/10.1186/s12866-020-02034-9.
  • [34] Ceresa C, Fracchia L, Williams M, Banat IM, Díaz De Rienzo MA. The effect of sophorolipids against microbial biofilms on medical-grade silicone. J Biotechnol. 2020;309:34-43. https://doi.org/10.1016/j.jbiotec.2019.12.019.
  • [35] Haque F, Alfatah M, Ganesan K, Bhattacharyya MS. Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep. 2016;6:23575. https://doi.org/10.1038/srep23575.
  • [36] Nguyen BVG, Nagakubo T, Toyofuku M, Nomura N, Utada AS. Synergy between sophorolipid biosurfactant and SDS increases the efficiency of P. aeruginosa biofilm disruption. Langmuir. 2020;36(23):6411-6420. https://doi.org /10.1021/acs.langmuir.0c00643.
  • [37] Diaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel. Appl Microbiol Biotechnol. 2016;100(13):5773-5779. https://doi.org/10.1007/s00253-016-7310-5.
  • [38] Lydon HL, Baccile N, Callaghan B, Marchant R, Mitchell CA, Banat IM. Adjuvant antibiotic activity of acidic sophorolipids with potential for facilitating wound healing. Antimicrob Agents Chemother. 2017;61(5):e02547-16. https://doi.org/10.1128/AAC.02547-16.
  • [39] EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024.
  • [40] Perez C, Pauli M, Bazerque, P. An antibiotic assay by agar well diffusion method. Acta Biol Med Exp. 1990;15:113-115.
  • [41] ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for Standardization, Geneva, Switzerland. 2019.
  • [42] Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996-1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985 .
  • [43] Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32-37. https://doi.org/10.1016/j.peptides.2014.09.021.
  • [44] Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007;56(Pt 4):519-523. https://doi.org/10.1099/jmm.0.46804-0.
  • [45] Okae Y, Nishitani K, Sakamoto A, Kawai T, Tomizawa T, Saito M, Kuroda Y, Matsuda S. Estimation of minimum biofilm eradication concentration (MBEC) on in vivo biofilm on orthopedic implants in a rodent femoral infection model. Front Cell Infect Microbiol. 2022;12:896978. https://doi.org/10.3389/fcimb.2022.896978
There are 44 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Articles
Authors

Büşra Nur Türkoğlu

Rıza Adaleti

Erkan Rayaman

Publication Date
Submission Date August 17, 2024
Acceptance Date October 8, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Türkoğlu, B. N., Adaleti, R., & Rayaman, E. (n.d.). Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria. Journal of Research in Pharmacy, 29(2), 497-506. https://doi.org/10.12991/jrespharm.1660993
AMA Türkoğlu BN, Adaleti R, Rayaman E. Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria. J. Res. Pharm. 29(2):497-506. doi:10.12991/jrespharm.1660993
Chicago Türkoğlu, Büşra Nur, Rıza Adaleti, and Erkan Rayaman. “Antimicrobial and Antibiofilm Activity of Rhamnolipid and Sophorolactone on Some Pathogenic Bacteria”. Journal of Research in Pharmacy 29, no. 2 n.d.: 497-506. https://doi.org/10.12991/jrespharm.1660993.
EndNote Türkoğlu BN, Adaleti R, Rayaman E Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria. Journal of Research in Pharmacy 29 2 497–506.
IEEE B. N. Türkoğlu, R. Adaleti, and E. Rayaman, “Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria”, J. Res. Pharm., vol. 29, no. 2, pp. 497–506, doi: 10.12991/jrespharm.1660993.
ISNAD Türkoğlu, Büşra Nur et al. “Antimicrobial and Antibiofilm Activity of Rhamnolipid and Sophorolactone on Some Pathogenic Bacteria”. Journal of Research in Pharmacy 29/2 (n.d.), 497-506. https://doi.org/10.12991/jrespharm.1660993.
JAMA Türkoğlu BN, Adaleti R, Rayaman E. Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria. J. Res. Pharm.;29:497–506.
MLA Türkoğlu, Büşra Nur et al. “Antimicrobial and Antibiofilm Activity of Rhamnolipid and Sophorolactone on Some Pathogenic Bacteria”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 497-06, doi:10.12991/jrespharm.1660993.
Vancouver Türkoğlu BN, Adaleti R, Rayaman E. Antimicrobial and antibiofilm activity of rhamnolipid and sophorolactone on some pathogenic bacteria. J. Res. Pharm. 29(2):497-506.