Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 542 - 551
https://doi.org/10.12991/jrespharm.1661005

Abstract

References

  • [1] Guguloth SK, Malothu N, Kulandaivelu U, Rao KG, Areti AR, Noothi S. Phytochemical investigation and In-vitro Thrombolytic activity of Terminalia pallida Brandis leaves. Res J Pharm Technol. 2021;14(2):879-882. https://doi.org/10.5958/0974-360X.2021.00156.6.
  • [2] Guguloth SK, Malothu N, Parasanth DSNBK. GC-MS analysis and thrombolytic property of methanolic leaf extracts of Terminalia pallida brandis against carrageenan instigated tail thrombosis model in mice. Pharmacogn Res.2022;14(1):53-60. https://doi.org/10.5530/pres.14.1.9.
  • [3] Tsugawa H. Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol. 2018; 54:10-17. https://doi.org/10.1016/j.copbio.2018.01.008.
  • [4] Tabudravu JN, Pellissier L, Smith AJ, Subko K, Autréau C, Feussner K, Hardy D, Butler D, Kidd R, Milton EJ, Deng H, Ebel R, Salonna M, Gissi C, Montesanto F, Kelly SM, Milne BF, Cimpan G, Jaspars M. LC-HRMS-Database Screening Metrics for Rapid Prioritization of Samples to Accelerate the Discovery of Structurally New Natural Products. J Nat Prod. 2019;82(2):211-220. https://doi.org/10.1021/acs.jnatprod.8b00575.
  • [5] Noumi E, Snoussi M, Anouar EH, Alreshidi M, Veettil VN, Elkahoui S, Adnan M, Patel M, Kadri A, Aouadi K, De Feo V, Badraoui R. HR-LCMS-Based Metabolite Profiling, Antioxidant, and Anticancer Properties of Teucrium polium L. Methanolic Extract: Computational and In Vitro Study. Antioxidants (Basel). 2020;9(11):1089. https://doi.org/10.3390/antiox9111089.
  • [6] Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J Pharm Sci. 2021; 7:59. https://doi.org/10.1186/s43094-021-00208-4.
  • [7] Marulasiddaswamy KM, Nuthan BR, Channarayapatna RS, Bajpe SN, Sekhar S, Kini KR. In-silico evaluation of Fragransol B from Myristica dactyloides for anti-inflammatory potential. J Appl Pharm Sci. 2021;11(11):112-120. https://dx.doi.org/10.7324/JAPS.2021.1101115.
  • [8] Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201-217. https://doi.org/10.11646/phytotaxa.261.3.1
  • [9] Guguloth SK, Malothu N, Ganta NM, Ramakrishna K, Guntupalli C. Antiplatelet and antithrombotic properties of methanolic leaf extract of Plumbago zeylanica L.GC-MS and HR-LCMS metabolite profiling. S Afr J Bot. 2023; 159:627-634. https://doi.org/10.1016/j.sajb.2023.06.027.
  • [10] Guguloth SK, Malothu N, Prasanth DS, Areti AR. Evaluation of thrombolytic and antioxidant activity of leaf extracts of Plumbago zeylanica L. Indian J Pharm Educ Res. 2022;56(4):1181-1189. https://doi.org/10.5530/ijper.56.4.200.
  • [11] Hsu CY. Antioxidant activity of extracts from Polygonum aviculare L. Biol Res. 2006; 39: (2): 281-288. https://doi.org/10.4067/s0716-97602006000200010.
  • [12] Guguloth SK, Malothu N, Ganta NM, Ramakrishna K, Guntupalli C. Antiplatelet and antithrombotic properties of methanolic leaf extract of Plumbago zeylanica L. GC-MS and HR-LCMS metabolite profiling. S Afr J Bot. 2023; 159:627-634. https://doi.org/10.1016/j.sajb.2023.06.027.
  • [13] Sampaio BL, Edrada-Ebel R, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci Rep. 2016;6(1):29765. https://doi.org/10.1038/srep29265.
  • [14] Rakib A, Ahmed S, Islam MA, Haye A, Uddin SN, Uddin MM, Hossain MK, Paul A, Emran TB. Antipyretic an hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in-silico approaches. Food Sci Nutr. 2020 ;8(1):547-556. https://doi.org/10.1002/fsn3.1339.
  • [15] Adnan M, Chy MNU, Kama ATMM, Azad MOK, Chowdhury KAA, Kabir MSH, Gupta SD, Chowdhury MAR, Lim YS, Cho DH. Comparative study of Piper sylvaticum Roxb. leaves and stems for anxiolytic and antioxidant properties through in vivo, in vitro, and in silico approaches. Biomedicines. 2020;8(4):68. https://doi.org/10.3390/biomedicines8040068.
  • [16] Al Mahmud Z, Emran TB, Qais N, Bachar SC, Sarker M, Uddin MM. Evaluation of analgesic, anti-inflammatory, thrombolytic and hepatoprotective activities of roots of Premna esculenta (Roxb). J Basic Clin Physiol Pharmacol. 2016;27(1):63-70. https://doi.org/10.1515/jbcpp-2015-0056.
  • [17] Slevin MN, Ahmed Q, Wang G, Dowell Mc, Badimon L. Unique vascular protective properties of natural products: supplements or future main-line drugs with significant anti-atherosclerotic potential. Vasc Cell. 2012 Apr 30;4(1):9. https://doi.org/10.1186/2045-824x-4-9.
  • [18] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress a review. Ann Bot. 2003; 91(2):179-194. https://doi.org/10.1093/aob/mcf118.
  • [19] Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med CellLongev. 2009; 2(5):270-278. https://doi.org/10.4161/oxim.2.5.9498.
  • [20] Kim YJ. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007; 30 (6):1052–1055. https://doi.org/10.1248/bpb.30.1052.
  • [21] Iacopini P, Baldi P, Storchi P, Sebastiani L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in-vitro antioxidant activity and interactions. J Food Compos Anal.2008;21(8):589-598. https://doi.org/10.1016/j.jfca.2008.03.011.
  • [22] Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A, Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev. 2024;40(4):3408-3437. https://doi.org/10.1080/02648725.2022.2122303.
  • [23] Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA) a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018; 108:547-557. https://doi.org/10.1016/j.biopha.2018.09.069.
  • [24] Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019 ;22(3):225. https://doi.org/10.22038/ijbms.2019.32806.7897.
  • [25] Zhu H, Yan Y, Jiang Y, Meng X. Ellagic acid and its anti-aging effects on central nervous system. Int J Mol Sci. 2022;23(18):10937. https://doi.org/10.3390/ijms231810937.
  • [26] Cechinel FV, Lima EO, Morais VM, Gomes ST, Miguel OG, Yunes RA. Fungicide and fungiostatic effects of xanthoxyline. J Ethnopharmacol. 1996; 53(3): 171-173. https://doi.org/10.1016/0378-8741(96)01436-5.
  • [27] Savairam VD, Patil NA, Borate SR, Ghaisas MM, Shete RV. Allicin: A review of its important pharmacological activities. Pharmacol Res Mod Chin Med. 2023;13:100283. https://doi.org/10.1016/j.prmcm.2023.10028.
  • [28] Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed Pharmacother. 2015;76:30-38. https://doi.org/10.1016/j.biopha.2015.10.026.
  • [29] Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J. 2017 ;25(2):149-164. https://doi.org/10.1016/j.jsps.2016.04.025.
  • [30] Ingole A, Kadam MP, Dalu AP, Kute SM, Mange PR, Theng VD, Lahane OR, Nikas AP, Kawal YV, Nagrik SU, Patil PA. A review of the pharmacological characteristics of vanillic acid. J Drug Deliv Ther. 2021;11(2):200-204. https://doi.org/10.22270/jddt.v11i2-S.4823.
  • [31] Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on asiatic acid and ıts derivatives: A potential compound. SLAS Technol. 2018;23(2):111-127. https://doi.org/10.1177/2472630317751840.
  • [32] Herath HB, Priyadarshani AA. Two lignans and an aryl alkenone from Myristica dactyloides. Phytochem. 1996;42(5):1439-1442.
  • [33] Marulasiddaswamy KM, Nuthan BR, Sunilkumar CR, Bajpe SN, Kumara KK, Sekhar S, Kini KR. HR-LC-MS based profiling of phytochemicals from methanol extracts of leaves and bark of Myristica dactyloides Gaertn. from Western Ghats of Karnataka, India. J Appl Biol. 2021; 9(5):124-135. https://doi.org/10.7324/JABB.2021.9517.
  • [34] Chang SS, Lee VS, Tseng YL, Chang KC, Chen KB, Chen YL, Li CY. Gallic acid attenuates platelet activation and platelet-leukocyte aggregation: involving pathways of Akt and GSK3β. Evid Based Comple Altern Med. 2012; 1:2012. https://doi.org/10.1155/2012/687832.

HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential

Year 2025, Volume: 29 Issue: 2, 542 - 551
https://doi.org/10.12991/jrespharm.1661005

Abstract

Terminalia species are being reported as medicinally useful. Terminalia pallida Brandis is one of the plants of the family Combretaceae. The aim of the present study is to catalog the phytochemical distribution and to validate the antioxidant potential of methanolic leaf extract (METP). Antioxidant potential of methanolic leaf extract was estimated by DPPH assay and phytochemical distribution was assessed by HR-LCMS analysis. The antioxidant test result of leaf extract displayed a potential free radical scavenging effect at test concentrations (p<0.001). In HR-LC-MS study a total of 29 bioactive compounds of a variety of chemical classes like flavanoids, alkaloids, fatty acids, diterpenoids, glycosides, amino acids and polyphenols etc were identified in both positive & negative ion mode, and among these few compounds possessed various biological activities. Based on these obtained results, it is concluded that METP constitute 29 bioactive compounds and possess potential antioxidant property in concentration dependent manner.

References

  • [1] Guguloth SK, Malothu N, Kulandaivelu U, Rao KG, Areti AR, Noothi S. Phytochemical investigation and In-vitro Thrombolytic activity of Terminalia pallida Brandis leaves. Res J Pharm Technol. 2021;14(2):879-882. https://doi.org/10.5958/0974-360X.2021.00156.6.
  • [2] Guguloth SK, Malothu N, Parasanth DSNBK. GC-MS analysis and thrombolytic property of methanolic leaf extracts of Terminalia pallida brandis against carrageenan instigated tail thrombosis model in mice. Pharmacogn Res.2022;14(1):53-60. https://doi.org/10.5530/pres.14.1.9.
  • [3] Tsugawa H. Advances in computational metabolomics and databases deepen the understanding of metabolisms. Curr Opin Biotechnol. 2018; 54:10-17. https://doi.org/10.1016/j.copbio.2018.01.008.
  • [4] Tabudravu JN, Pellissier L, Smith AJ, Subko K, Autréau C, Feussner K, Hardy D, Butler D, Kidd R, Milton EJ, Deng H, Ebel R, Salonna M, Gissi C, Montesanto F, Kelly SM, Milne BF, Cimpan G, Jaspars M. LC-HRMS-Database Screening Metrics for Rapid Prioritization of Samples to Accelerate the Discovery of Structurally New Natural Products. J Nat Prod. 2019;82(2):211-220. https://doi.org/10.1021/acs.jnatprod.8b00575.
  • [5] Noumi E, Snoussi M, Anouar EH, Alreshidi M, Veettil VN, Elkahoui S, Adnan M, Patel M, Kadri A, Aouadi K, De Feo V, Badraoui R. HR-LCMS-Based Metabolite Profiling, Antioxidant, and Anticancer Properties of Teucrium polium L. Methanolic Extract: Computational and In Vitro Study. Antioxidants (Basel). 2020;9(11):1089. https://doi.org/10.3390/antiox9111089.
  • [6] Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J Pharm Sci. 2021; 7:59. https://doi.org/10.1186/s43094-021-00208-4.
  • [7] Marulasiddaswamy KM, Nuthan BR, Channarayapatna RS, Bajpe SN, Sekhar S, Kini KR. In-silico evaluation of Fragransol B from Myristica dactyloides for anti-inflammatory potential. J Appl Pharm Sci. 2021;11(11):112-120. https://dx.doi.org/10.7324/JAPS.2021.1101115.
  • [8] Christenhusz MJ, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201-217. https://doi.org/10.11646/phytotaxa.261.3.1
  • [9] Guguloth SK, Malothu N, Ganta NM, Ramakrishna K, Guntupalli C. Antiplatelet and antithrombotic properties of methanolic leaf extract of Plumbago zeylanica L.GC-MS and HR-LCMS metabolite profiling. S Afr J Bot. 2023; 159:627-634. https://doi.org/10.1016/j.sajb.2023.06.027.
  • [10] Guguloth SK, Malothu N, Prasanth DS, Areti AR. Evaluation of thrombolytic and antioxidant activity of leaf extracts of Plumbago zeylanica L. Indian J Pharm Educ Res. 2022;56(4):1181-1189. https://doi.org/10.5530/ijper.56.4.200.
  • [11] Hsu CY. Antioxidant activity of extracts from Polygonum aviculare L. Biol Res. 2006; 39: (2): 281-288. https://doi.org/10.4067/s0716-97602006000200010.
  • [12] Guguloth SK, Malothu N, Ganta NM, Ramakrishna K, Guntupalli C. Antiplatelet and antithrombotic properties of methanolic leaf extract of Plumbago zeylanica L. GC-MS and HR-LCMS metabolite profiling. S Afr J Bot. 2023; 159:627-634. https://doi.org/10.1016/j.sajb.2023.06.027.
  • [13] Sampaio BL, Edrada-Ebel R, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci Rep. 2016;6(1):29765. https://doi.org/10.1038/srep29265.
  • [14] Rakib A, Ahmed S, Islam MA, Haye A, Uddin SN, Uddin MM, Hossain MK, Paul A, Emran TB. Antipyretic an hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in-silico approaches. Food Sci Nutr. 2020 ;8(1):547-556. https://doi.org/10.1002/fsn3.1339.
  • [15] Adnan M, Chy MNU, Kama ATMM, Azad MOK, Chowdhury KAA, Kabir MSH, Gupta SD, Chowdhury MAR, Lim YS, Cho DH. Comparative study of Piper sylvaticum Roxb. leaves and stems for anxiolytic and antioxidant properties through in vivo, in vitro, and in silico approaches. Biomedicines. 2020;8(4):68. https://doi.org/10.3390/biomedicines8040068.
  • [16] Al Mahmud Z, Emran TB, Qais N, Bachar SC, Sarker M, Uddin MM. Evaluation of analgesic, anti-inflammatory, thrombolytic and hepatoprotective activities of roots of Premna esculenta (Roxb). J Basic Clin Physiol Pharmacol. 2016;27(1):63-70. https://doi.org/10.1515/jbcpp-2015-0056.
  • [17] Slevin MN, Ahmed Q, Wang G, Dowell Mc, Badimon L. Unique vascular protective properties of natural products: supplements or future main-line drugs with significant anti-atherosclerotic potential. Vasc Cell. 2012 Apr 30;4(1):9. https://doi.org/10.1186/2045-824x-4-9.
  • [18] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress a review. Ann Bot. 2003; 91(2):179-194. https://doi.org/10.1093/aob/mcf118.
  • [19] Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med CellLongev. 2009; 2(5):270-278. https://doi.org/10.4161/oxim.2.5.9498.
  • [20] Kim YJ. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007; 30 (6):1052–1055. https://doi.org/10.1248/bpb.30.1052.
  • [21] Iacopini P, Baldi P, Storchi P, Sebastiani L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in-vitro antioxidant activity and interactions. J Food Compos Anal.2008;21(8):589-598. https://doi.org/10.1016/j.jfca.2008.03.011.
  • [22] Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A, Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev. 2024;40(4):3408-3437. https://doi.org/10.1080/02648725.2022.2122303.
  • [23] Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA) a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018; 108:547-557. https://doi.org/10.1016/j.biopha.2018.09.069.
  • [24] Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019 ;22(3):225. https://doi.org/10.22038/ijbms.2019.32806.7897.
  • [25] Zhu H, Yan Y, Jiang Y, Meng X. Ellagic acid and its anti-aging effects on central nervous system. Int J Mol Sci. 2022;23(18):10937. https://doi.org/10.3390/ijms231810937.
  • [26] Cechinel FV, Lima EO, Morais VM, Gomes ST, Miguel OG, Yunes RA. Fungicide and fungiostatic effects of xanthoxyline. J Ethnopharmacol. 1996; 53(3): 171-173. https://doi.org/10.1016/0378-8741(96)01436-5.
  • [27] Savairam VD, Patil NA, Borate SR, Ghaisas MM, Shete RV. Allicin: A review of its important pharmacological activities. Pharmacol Res Mod Chin Med. 2023;13:100283. https://doi.org/10.1016/j.prmcm.2023.10028.
  • [28] Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed Pharmacother. 2015;76:30-38. https://doi.org/10.1016/j.biopha.2015.10.026.
  • [29] Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J. 2017 ;25(2):149-164. https://doi.org/10.1016/j.jsps.2016.04.025.
  • [30] Ingole A, Kadam MP, Dalu AP, Kute SM, Mange PR, Theng VD, Lahane OR, Nikas AP, Kawal YV, Nagrik SU, Patil PA. A review of the pharmacological characteristics of vanillic acid. J Drug Deliv Ther. 2021;11(2):200-204. https://doi.org/10.22270/jddt.v11i2-S.4823.
  • [31] Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on asiatic acid and ıts derivatives: A potential compound. SLAS Technol. 2018;23(2):111-127. https://doi.org/10.1177/2472630317751840.
  • [32] Herath HB, Priyadarshani AA. Two lignans and an aryl alkenone from Myristica dactyloides. Phytochem. 1996;42(5):1439-1442.
  • [33] Marulasiddaswamy KM, Nuthan BR, Sunilkumar CR, Bajpe SN, Kumara KK, Sekhar S, Kini KR. HR-LC-MS based profiling of phytochemicals from methanol extracts of leaves and bark of Myristica dactyloides Gaertn. from Western Ghats of Karnataka, India. J Appl Biol. 2021; 9(5):124-135. https://doi.org/10.7324/JABB.2021.9517.
  • [34] Chang SS, Lee VS, Tseng YL, Chang KC, Chen KB, Chen YL, Li CY. Gallic acid attenuates platelet activation and platelet-leukocyte aggregation: involving pathways of Akt and GSK3β. Evid Based Comple Altern Med. 2012; 1:2012. https://doi.org/10.1155/2012/687832.
There are 34 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Articles
Authors

Sarvan Kumar Guguloth This is me

Publication Date
Submission Date April 1, 2024
Acceptance Date June 13, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Guguloth, S. K. (n.d.). HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential. Journal of Research in Pharmacy, 29(2), 542-551. https://doi.org/10.12991/jrespharm.1661005
AMA Guguloth SK. HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential. J. Res. Pharm. 29(2):542-551. doi:10.12991/jrespharm.1661005
Chicago Guguloth, Sarvan Kumar. “HR-LCMS Based Metabolite Profiling of Methanolic Leaf Extract of Terminalia Pallida Brandis and Its Antioxidant Potential”. Journal of Research in Pharmacy 29, no. 2 n.d.: 542-51. https://doi.org/10.12991/jrespharm.1661005.
EndNote Guguloth SK HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential. Journal of Research in Pharmacy 29 2 542–551.
IEEE S. K. Guguloth, “HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential”, J. Res. Pharm., vol. 29, no. 2, pp. 542–551, doi: 10.12991/jrespharm.1661005.
ISNAD Guguloth, Sarvan Kumar. “HR-LCMS Based Metabolite Profiling of Methanolic Leaf Extract of Terminalia Pallida Brandis and Its Antioxidant Potential”. Journal of Research in Pharmacy 29/2 (n.d.), 542-551. https://doi.org/10.12991/jrespharm.1661005.
JAMA Guguloth SK. HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential. J. Res. Pharm.;29:542–551.
MLA Guguloth, Sarvan Kumar. “HR-LCMS Based Metabolite Profiling of Methanolic Leaf Extract of Terminalia Pallida Brandis and Its Antioxidant Potential”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 542-51, doi:10.12991/jrespharm.1661005.
Vancouver Guguloth SK. HR-LCMS based metabolite profiling of methanolic leaf extract of Terminalia Pallida Brandis and its antioxidant potential. J. Res. Pharm. 29(2):542-51.