Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 530 - 541
https://doi.org/10.12991/jrespharm.1661031

Abstract

References

  • [1] Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res. 2019; 7(1): 1-16. https://doi.org/10.1038/s41413-019-0057-8.
  • [2] Cornell T. Ankylosing spondylitis: an overview. Prof Nurse. 2004; 19(8): 431–442.https://doi.org/10.1136/ard.61.suppl_3.iii8.
  • [3] Keidel S, Chen L, Pointon J, Wordsworth P. ERAP1 and ankylosing spondylitis. Curr Opin Immunol. 2013; 25(1):97–102. https://doi.org/10.1016/j.coi.2012.11.002.
  • [4] Li L, Batliwala M, Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I– bound precursor peptides yield novel insights into antigen processing and presentation. J Biol Chem. 2019; 294(49): 18534–18544. https://doi.org/10.1074/jbc.RA119.010102.
  • [5] Reeves E, Elliott T, James E, Edwards CJ. ERAP1 in the pathogenesis of ankylosing spondylitis. Immunol Res. 2014;60(3): 257–269. https://doi.org/10.1007/s12026-014-8576-2
  • [6] Roberts AR, Appleton LH, Cortes A, Vecellio M, Lau J, Watts L, Brown MA, Wordsworth P. ERAP1 association with ankylosing spondylitis is attributable to common genotypes rather than rare haplotype combinations. Proc Natl Acad Sci U S A. 2017; 114(3): 558–561. https://doi.org/10.1073/pnas.1618856114.
  • [7] Haroon N, Inman RD. ERAP1 and the return of the UPR in ankylosing spondylitis. Nat Rev Rheumatol. 2023; 19(3): 134–135. https://doi.org/10.1038/s41584-023-00910-y.
  • [8] Stamogiannos A, Papakyriakou A, Mauvais FX, Van Endert P, Stratikos E. Screening identifies thimerosal as a selective inhibitor of endoplasmic reticulum aminopeptidase 1. ACS Med Chem Lett. 2016; 7(7): 681-685. https://doi.org/10.1021/acsmedchemlett.6b00084.
  • [9] Liddle J, Hutchinson JP, Kitchen S, Rowland P, Neu M, Cecconie T, Holmes S D, Jones E, Korczynska J, Koumantou D, Lea JD, Nickels L, Pemberton M, Phillipou A, Schneck JL, Sheehan H, Tinworth CP, Uings I, Wojno-Picon J, Young RJ, Stratikos E. Targeting the regulatory site of ER Aminopeptidase 1 Leads to the discovery of a natural product modulator of antigen presentation. J Med Chem. 2020; 63(6): 3348–3358. https://doi.org/10.1021/acs.jmedchem.9b02123.
  • [10] Richter MJ, Stollfuß B, Roitenberg A, Kleinjung F, Graeff V, Berghaus S, Müller C, Ghofrani HA. Switching inhaled iloprost formulations in patients with pulmonary arterial hypertension: the VENTASWITCH Trial. Pulm Circ. 2018;8(4):2045894018798921. https://doi.org/10.1177/2045894018798921.
  • [11] Netland IA, Førde HE, Sleire L, Leiss L, Rahman MA, Skeie BS, Gjerde CH, Enger PØ, Goplen D. Dactolisib (NVPBEZ235) toxicity in murine brain tumour models. BMC Cancer. 2016;16:657. https://doi.org/10.1186/s12885-016-2712-4.
  • [12] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera – A visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13): 1605–1612. https://doi.org/10.1002/jcc.20084
  • [13] Dallakyan S, Olson A. Small-Molecule Library Screening by Docking with PyRx. In: Hempel JE, Williams CH, Hong CC. (Eds). Methods in Molecular Biology. NY: Springer New York, New York, 2015, pp. 243-250.
  • [14] Trott O, Olson AJ. Software News and Update AutoDock Vina : Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2009; 31(2): 455-461. https://doi.org/10.1002/jcc.21334.
  • [15] Yan Y, Zhang D, Zhou P, Li B, Huang S. HDOCK : a web server for protein – protein and protein – DNA / RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017; 45(1): 365–373. https://doi.org/10.1093/nar/gkx407.
  • [16] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717.
  • [17] Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016; 101(2): 89–98. https://doi.org/10.1016/j.addr.2016.05.007.
  • [18] Bai Y, Zhao N, Sun H, Yin L, Chen J, Hu N. Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility in HLA- B27 positive population : A Meta-analysis and bioinformatics analysis. Nucleosides Nucleotides Nucleic Acids. 2022; 41(4): 407–418. https://doi.org/10.1080/15257770.2022.2036344
  • [19] Zervoudi E, Saridakis E, Birtley JR, Seregin SS, Reeves E, Kokkala P. Rationally designed inhibitor targeting antigen- trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc Natl Acad Sci U S A. 2013; 110(49): 19890–19895. https://doi.org/10.1073/pnas.1309781110.
  • [20] Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of selective inhibitors of endoplasmic reticulum aminopeptidase 1. J Med Chem. 2020; 63(1): 103-121. https://doi.org/10.1021/acs.jmedchem.9b00293.
  • [21] Kochan G, Krojer T, Harvey D , Fischer R, Chen L, Vollmar M , Delft von F , Kavanagh L. K, Brown A.M, Bowness P, Wordsworth P, Kessler M. B, Oppermann U.Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1 ) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci U S A. 2011; 108(19): 7745-7750. https://doi.org/10.1021/acsmedchemlett.6b00084.
  • [22] Wilding B, Pasqua AE, Chessum NEA, Pierrat OA, Hahner T, Tomlin K, Shehu E , Burke R , Richards M. G, Whitton W, Arwert N. E, Thapaliya A, Salimraj A, Montfort van R, Skawinska A, Hayes A, Raynaud E, Chopra R, Jones K, Newton G, Cheeseman DM. Investigating the phosphinic acid tripeptide mimetic DG013A as a tool compound inhibitor of the M1-aminopeptidase ERAP1. Bioorg Med Chem Lett. 2021; 42(1): 128050-128056. https://doi.org/10.1016/j.bmcl.2021.128050.
  • [23] Giastas P, Mpakali A, Papakyriakou A, Lelis A, Kokkala P, Neu M, Rowland P, Liddle J,Georgiadis D, Stratikos E. Mechanism for antigenic peptide selection by endoplasmic reticulum aminopeptidase 1. Proc Natl Acad Sci U S A. 2019; 116(52): 26709–26716. https://doi.org/10.1073/pnas.1912070116.
  • [24] Küçükoǧlu MS, Hanta I, Akdeniz B, Güllülü S, Atahan E, Sayin T, Okumuş G, Önen ZP, Yokuşoğlu M, Baygül A. Clinical efficacy, safety, tolerability, and survival outcome of long-term inhaled iloprost treatment in the management of pulmonary arterial hypertension: Data from prospective multicenter observational OPTION study. Anatol J Cardiol. 2021; 25(10): 721–732. https://doi.org/10.5152/AnatolJCardiol.2021.03009.
  • [25] Krug S, Sablotzki A, Hammerschmidt S, Wirtz H, Seyfarth HJ. Inhaled iloprost for the control of pulmonary hypertension. Vasc Health Risk Manag. 2009; 5(1): 465–474. https://doi.org/10.2147/vhrm.s3223.
  • [26] Wise-Draper TM, Moorthy G, Salkeni MA, Karim NA, Thomas HE, Mercer CA, Beg MS, O'Gara S, Olowokure O, Fathallah H, Kozma SC, Thomas G, Rixe O, Desai P, Morris JC. A Phase Ib Study of the Dual PI3K/mTOR Inhibitor Dactolisib (BEZ235) combined with everolimus in patients with advanced solid malignancies. Target Oncol. 2017; 12(3): 323–332. https://doi.org/10.1126/sciadv.aaz9798.
  • [27] Shi F, Zhang J, Liu H, Wu L, Jiang H, Wu Q, Liu T, Lou M, Wu H. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget. 2018; 9(1): 706–717. https://doi.org/10.18632/oncotarget.23091.
  • [28] Islam MJ, Kumer A, Khan MW. The theoretical study of anticancer rhodium complexes and methyl groups effect on ligands in chemical reactivity, global descriptors, ADMET by DFT study. Turkish Comput Theor Chem. 2021; 5(2): 1–13. https://doi.org/10.33435/tcandtc.843770.
  • [29] Bouachrıne M, Azaıd A, Abram T, Kacimi R, Raftanı M, Sbai A, Lakhlıfı T. DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Comp Theo Chem (TC&TC). 2021;5(2):24-34. https://doi.org/10.33435/tcandtc.926405.
  • [30] Kose A, Yuksel AKN, Fellah MF. Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Comput Theor Chem. 2022; 6(2): 38–48. https://doi.org/10.33435/tcandtc.1080492.
  • [31] Arshad M, Khan MS, Nami SAA, Ahmad SI, Kashif M, Anjum A. Synthesis, characterization, biological, and molecular docking assessment of bioactive 1,3-thiazolidin-4-ones fused with 1-(pyrimidin-2-yl)-1H-imidazol-4-yl) moieties. J Iran Chem Soc. 2021; 18(7): 1713–1727. https://doi.org/10.1007/s13738-021-02200-4.

Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS)

Year 2025, Volume: 29 Issue: 2, 530 - 541
https://doi.org/10.12991/jrespharm.1661031

Abstract

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is one of the key molecules in the antigen presentation process. To date, associations of ERAP1 with Ankylosing Spondylitis (AS) have been revealed with strong data. As such, to target the allosteric site of ERAP1 exhibits a therapeutic potential in the treatment of AS. In this paper, 9,800 ligands from “FDA-Approved Drugs'', “World-not-FDA Approved Drugs'', and “Drugs in Clinical Trials'' datasets of ZINC15 database were screened to the allosteric site of ERAP1. The best scored drugs are filtered with ADME analysis, the toxicity and bioactivity profiles of the discovered drugs and the known inhibitors were investigated. Results revealed that ZINC000100052688 (Ventavis), ZINC000004217466, and ZINC000024760115 (Dactolicib) follow the Lipinski’s rule of five and have -10.0 kcal/mole, -9.8 kcal/mole, and -9.7 kcal/mole binding affinities to allosteric site of ERAP1, respectively. Furthermore, ZINC000004217466 is the most promising since it has high protease and enzyme inhibitory activity with no toxicity. Due to that to date, only few chemical ligands recognizing ERAP1 regulatory site have been synthesized, to reveal possible repurposable drugs is quite promising, and ZINC000004217466 is the best candidate among 9,800 drugs since it has rather binding affinity, proper chemical properties, no toxicity, and high bioactivity in the inhibition of ERAP1 regulatory site.

References

  • [1] Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res. 2019; 7(1): 1-16. https://doi.org/10.1038/s41413-019-0057-8.
  • [2] Cornell T. Ankylosing spondylitis: an overview. Prof Nurse. 2004; 19(8): 431–442.https://doi.org/10.1136/ard.61.suppl_3.iii8.
  • [3] Keidel S, Chen L, Pointon J, Wordsworth P. ERAP1 and ankylosing spondylitis. Curr Opin Immunol. 2013; 25(1):97–102. https://doi.org/10.1016/j.coi.2012.11.002.
  • [4] Li L, Batliwala M, Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I– bound precursor peptides yield novel insights into antigen processing and presentation. J Biol Chem. 2019; 294(49): 18534–18544. https://doi.org/10.1074/jbc.RA119.010102.
  • [5] Reeves E, Elliott T, James E, Edwards CJ. ERAP1 in the pathogenesis of ankylosing spondylitis. Immunol Res. 2014;60(3): 257–269. https://doi.org/10.1007/s12026-014-8576-2
  • [6] Roberts AR, Appleton LH, Cortes A, Vecellio M, Lau J, Watts L, Brown MA, Wordsworth P. ERAP1 association with ankylosing spondylitis is attributable to common genotypes rather than rare haplotype combinations. Proc Natl Acad Sci U S A. 2017; 114(3): 558–561. https://doi.org/10.1073/pnas.1618856114.
  • [7] Haroon N, Inman RD. ERAP1 and the return of the UPR in ankylosing spondylitis. Nat Rev Rheumatol. 2023; 19(3): 134–135. https://doi.org/10.1038/s41584-023-00910-y.
  • [8] Stamogiannos A, Papakyriakou A, Mauvais FX, Van Endert P, Stratikos E. Screening identifies thimerosal as a selective inhibitor of endoplasmic reticulum aminopeptidase 1. ACS Med Chem Lett. 2016; 7(7): 681-685. https://doi.org/10.1021/acsmedchemlett.6b00084.
  • [9] Liddle J, Hutchinson JP, Kitchen S, Rowland P, Neu M, Cecconie T, Holmes S D, Jones E, Korczynska J, Koumantou D, Lea JD, Nickels L, Pemberton M, Phillipou A, Schneck JL, Sheehan H, Tinworth CP, Uings I, Wojno-Picon J, Young RJ, Stratikos E. Targeting the regulatory site of ER Aminopeptidase 1 Leads to the discovery of a natural product modulator of antigen presentation. J Med Chem. 2020; 63(6): 3348–3358. https://doi.org/10.1021/acs.jmedchem.9b02123.
  • [10] Richter MJ, Stollfuß B, Roitenberg A, Kleinjung F, Graeff V, Berghaus S, Müller C, Ghofrani HA. Switching inhaled iloprost formulations in patients with pulmonary arterial hypertension: the VENTASWITCH Trial. Pulm Circ. 2018;8(4):2045894018798921. https://doi.org/10.1177/2045894018798921.
  • [11] Netland IA, Førde HE, Sleire L, Leiss L, Rahman MA, Skeie BS, Gjerde CH, Enger PØ, Goplen D. Dactolisib (NVPBEZ235) toxicity in murine brain tumour models. BMC Cancer. 2016;16:657. https://doi.org/10.1186/s12885-016-2712-4.
  • [12] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera – A visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13): 1605–1612. https://doi.org/10.1002/jcc.20084
  • [13] Dallakyan S, Olson A. Small-Molecule Library Screening by Docking with PyRx. In: Hempel JE, Williams CH, Hong CC. (Eds). Methods in Molecular Biology. NY: Springer New York, New York, 2015, pp. 243-250.
  • [14] Trott O, Olson AJ. Software News and Update AutoDock Vina : Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2009; 31(2): 455-461. https://doi.org/10.1002/jcc.21334.
  • [15] Yan Y, Zhang D, Zhou P, Li B, Huang S. HDOCK : a web server for protein – protein and protein – DNA / RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017; 45(1): 365–373. https://doi.org/10.1093/nar/gkx407.
  • [16] Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717.
  • [17] Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016; 101(2): 89–98. https://doi.org/10.1016/j.addr.2016.05.007.
  • [18] Bai Y, Zhao N, Sun H, Yin L, Chen J, Hu N. Associations between ERAP1 polymorphisms and ankylosing spondylitis susceptibility in HLA- B27 positive population : A Meta-analysis and bioinformatics analysis. Nucleosides Nucleotides Nucleic Acids. 2022; 41(4): 407–418. https://doi.org/10.1080/15257770.2022.2036344
  • [19] Zervoudi E, Saridakis E, Birtley JR, Seregin SS, Reeves E, Kokkala P. Rationally designed inhibitor targeting antigen- trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc Natl Acad Sci U S A. 2013; 110(49): 19890–19895. https://doi.org/10.1073/pnas.1309781110.
  • [20] Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of selective inhibitors of endoplasmic reticulum aminopeptidase 1. J Med Chem. 2020; 63(1): 103-121. https://doi.org/10.1021/acs.jmedchem.9b00293.
  • [21] Kochan G, Krojer T, Harvey D , Fischer R, Chen L, Vollmar M , Delft von F , Kavanagh L. K, Brown A.M, Bowness P, Wordsworth P, Kessler M. B, Oppermann U.Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1 ) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci U S A. 2011; 108(19): 7745-7750. https://doi.org/10.1021/acsmedchemlett.6b00084.
  • [22] Wilding B, Pasqua AE, Chessum NEA, Pierrat OA, Hahner T, Tomlin K, Shehu E , Burke R , Richards M. G, Whitton W, Arwert N. E, Thapaliya A, Salimraj A, Montfort van R, Skawinska A, Hayes A, Raynaud E, Chopra R, Jones K, Newton G, Cheeseman DM. Investigating the phosphinic acid tripeptide mimetic DG013A as a tool compound inhibitor of the M1-aminopeptidase ERAP1. Bioorg Med Chem Lett. 2021; 42(1): 128050-128056. https://doi.org/10.1016/j.bmcl.2021.128050.
  • [23] Giastas P, Mpakali A, Papakyriakou A, Lelis A, Kokkala P, Neu M, Rowland P, Liddle J,Georgiadis D, Stratikos E. Mechanism for antigenic peptide selection by endoplasmic reticulum aminopeptidase 1. Proc Natl Acad Sci U S A. 2019; 116(52): 26709–26716. https://doi.org/10.1073/pnas.1912070116.
  • [24] Küçükoǧlu MS, Hanta I, Akdeniz B, Güllülü S, Atahan E, Sayin T, Okumuş G, Önen ZP, Yokuşoğlu M, Baygül A. Clinical efficacy, safety, tolerability, and survival outcome of long-term inhaled iloprost treatment in the management of pulmonary arterial hypertension: Data from prospective multicenter observational OPTION study. Anatol J Cardiol. 2021; 25(10): 721–732. https://doi.org/10.5152/AnatolJCardiol.2021.03009.
  • [25] Krug S, Sablotzki A, Hammerschmidt S, Wirtz H, Seyfarth HJ. Inhaled iloprost for the control of pulmonary hypertension. Vasc Health Risk Manag. 2009; 5(1): 465–474. https://doi.org/10.2147/vhrm.s3223.
  • [26] Wise-Draper TM, Moorthy G, Salkeni MA, Karim NA, Thomas HE, Mercer CA, Beg MS, O'Gara S, Olowokure O, Fathallah H, Kozma SC, Thomas G, Rixe O, Desai P, Morris JC. A Phase Ib Study of the Dual PI3K/mTOR Inhibitor Dactolisib (BEZ235) combined with everolimus in patients with advanced solid malignancies. Target Oncol. 2017; 12(3): 323–332. https://doi.org/10.1126/sciadv.aaz9798.
  • [27] Shi F, Zhang J, Liu H, Wu L, Jiang H, Wu Q, Liu T, Lou M, Wu H. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget. 2018; 9(1): 706–717. https://doi.org/10.18632/oncotarget.23091.
  • [28] Islam MJ, Kumer A, Khan MW. The theoretical study of anticancer rhodium complexes and methyl groups effect on ligands in chemical reactivity, global descriptors, ADMET by DFT study. Turkish Comput Theor Chem. 2021; 5(2): 1–13. https://doi.org/10.33435/tcandtc.843770.
  • [29] Bouachrıne M, Azaıd A, Abram T, Kacimi R, Raftanı M, Sbai A, Lakhlıfı T. DFT/TDDFT studies of the structural, electronic, NBO and non-linear optical proper-ties of triphenylamine functionalized tetrathiafulvalene. Turkish Comp Theo Chem (TC&TC). 2021;5(2):24-34. https://doi.org/10.33435/tcandtc.926405.
  • [30] Kose A, Yuksel AKN, Fellah MF. Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Comput Theor Chem. 2022; 6(2): 38–48. https://doi.org/10.33435/tcandtc.1080492.
  • [31] Arshad M, Khan MS, Nami SAA, Ahmad SI, Kashif M, Anjum A. Synthesis, characterization, biological, and molecular docking assessment of bioactive 1,3-thiazolidin-4-ones fused with 1-(pyrimidin-2-yl)-1H-imidazol-4-yl) moieties. J Iran Chem Soc. 2021; 18(7): 1713–1727. https://doi.org/10.1007/s13738-021-02200-4.
There are 31 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Hüseyin Saygın Portakal

Beste Alp This is me

Mertcan Akyol This is me

Publication Date
Submission Date March 6, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Portakal, H. S., Alp, B., & Akyol, M. (n.d.). Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS). Journal of Research in Pharmacy, 29(2), 530-541. https://doi.org/10.12991/jrespharm.1661031
AMA Portakal HS, Alp B, Akyol M. Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS). J. Res. Pharm. 29(2):530-541. doi:10.12991/jrespharm.1661031
Chicago Portakal, Hüseyin Saygın, Beste Alp, and Mertcan Akyol. “Virtual Drug Screening Study to Discover Novel ERAP1 Allosteric Site Inhibitors for the Treatment of Ankylosing Spondylitis (AS)”. Journal of Research in Pharmacy 29, no. 2 n.d.: 530-41. https://doi.org/10.12991/jrespharm.1661031.
EndNote Portakal HS, Alp B, Akyol M Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS). Journal of Research in Pharmacy 29 2 530–541.
IEEE H. S. Portakal, B. Alp, and M. Akyol, “Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS)”, J. Res. Pharm., vol. 29, no. 2, pp. 530–541, doi: 10.12991/jrespharm.1661031.
ISNAD Portakal, Hüseyin Saygın et al. “Virtual Drug Screening Study to Discover Novel ERAP1 Allosteric Site Inhibitors for the Treatment of Ankylosing Spondylitis (AS)”. Journal of Research in Pharmacy 29/2 (n.d.), 530-541. https://doi.org/10.12991/jrespharm.1661031.
JAMA Portakal HS, Alp B, Akyol M. Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS). J. Res. Pharm.;29:530–541.
MLA Portakal, Hüseyin Saygın et al. “Virtual Drug Screening Study to Discover Novel ERAP1 Allosteric Site Inhibitors for the Treatment of Ankylosing Spondylitis (AS)”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 530-41, doi:10.12991/jrespharm.1661031.
Vancouver Portakal HS, Alp B, Akyol M. Virtual drug screening study to discover novel ERAP1 allosteric site inhibitors for the treatment of ankylosing spondylitis (AS). J. Res. Pharm. 29(2):530-41.