Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 590 - 598
https://doi.org/10.12991/jrespharm.1662084

Abstract

References

  • [1] Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51(6): 1069-1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x.
  • [2] Trinka E, Hofler J, Leitinger M, Brigo F. Pharmacotherapy for status epilepticus. Drugs. 2015; 75(13): 1499-1521. https://doi.org/10.1007/s40265-015-0454-2
  • [3] Leitinger M, Trinka E, Giovannini G, Zimmermann G, Florea C, Rohracher A, Kalss G, Neuray C, Kreidenhuber R, Höfler J, Kuchukhidze G, Granbichler C, Dobesberger J, Novak HF, Pilz G, Meletti S, Siebert U. Epidemiology of status epilepticus in adults: A population-based study on incidence, causes, and outcomes. Epilepsia. 2019; 60(1): 53-62. https://doi.org/10.1111/epi.14607
  • [4] Leitinger M, Beniczky S, Rohracher A, Gardella E, Kalss G, Qerama E, Hofler J, Hess Lindberg-Larsen A, Kuchukhidze G, Dobesberger J, Langthaler PB, Trinka E. Salzburg Consensus criteria for non-convulsive status epilepticus--approach to clinical application. Epilepsy Behav. 2015; 49:158-163. https://doi.org/10.1016/j.yebeh.2015.05.007
  • [5] Leitinger M, Trinka E, Gardella E, Rohracher A, Kalss G, Qerama E, Hofler J, Hess A, Zimmermann G, Kuchukhidze G, Dobesberger J, Langthaler PB, Beniczky S. Diagnostic accuracy of the Salzburg EEG criteria for non-convulsive status epilepticus: A retrospective study. Lancet Neurol. 2016; 15(10): 1054-1062. https://doi.org/10.1016/S1474-4422(16)30137-5
  • [6] Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, Shorvon S, Lowenstein DH. A definition and classification of status epilepticus--Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015; 56(10): 1515-1523. https://doi.org/10.1111/epi.13121
  • [7] Yavuz M, Akkol S, Onat F. Alpha-2a adrenergic receptor (α2AR) activation in genetic absence epilepsy: An absence status model? Epilepsia Open.2024;9(2):534-547. https://doi.org/10.1002/epi4.12879.
  • [8] Yavuz M, Aydin B, Carcak N, Akman O, Raci Yananli H, Onat F. Atipamezole, a specific alpha2A antagonist, suppresses spike-and-wave discharges and alters Ca(2(+)) /calmodulin-dependent protein kinase II in the thalamus of genetic absence epilepsy rats. Epilepsia. 2020; 61(12):2825-2835. https://doi.org/10.1111/epi.16728
  • [9] Yavuz M, Iyikosker P, Mutlu N, Kilicparlar S, Salci OH, Dolu G, Kaymakcilar EN, Akkol S, Onat F. Dexmedetomidine, an alpha 2A receptor agonist, triggers seizures unilaterally in GAERS during the pre-epileptic phase: does the onset of spike-and-wave discharges occur in a focal manner? Front Neurol. 2023; 14:1231736. https://doi.org/10.3389/fneur.2023.1231736
  • [10] Liu SJ, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, Corcoran NM, Johnston LA, Hovens CM, Mayo JN, Hudson M, Shultz SR, Jones NC, O'Brien TJ. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain. 2016; 139(Pt 7): 1919-1938. https://doi.org/10.1093/brain/aww116
  • [11] Walton NY, Treiman DM. Experimental secondarily generalized convulsive status epilepticus induced by D,L-homocysteine thiolactone. Epilepsy Res. 1988; 2(2): 79-86. https://doi.org/10.1016/0920-1211(88)90023-x
  • [12] Singh T, Joshi S, Williamson JM, Kapur J. Neocortical injury-induced status epilepticus. Epilepsia. 2020; 61(12): 2811-2824. https://doi.org/10.1111/epi.16715
  • [13] Pestana Knight EM, Gilman S, Selwa L. Status epilepticus in Wilson's disease. Epileptic Disord. 2009; 11(2): 138-143. https://doi.org/10.1684/epd.2009.0254
  • [14] Ekstein D, Benninger F, Daninos M, Pitsch J, van Loo KM, Becker AJ, Yaari Y. Zinc induces long-term upregulation of T-type calcium current in hippocampal neurons in vivo. J Physiol. 2012; 590(22): 5895-5905. https://doi.org/10.1113/jphysiol.2012.242537
  • [15] Takeda A, Hanajima T, Ijiro H, Ishige A, Iizuka S, Okada S, Oku N. Release of zinc from the brain of El (epilepsy) mice during seizure induction. Brain Res. 1999; 828(1): 174-178. https://doi.org/10.1016/S0006-8993(99)01358-X
  • [16] Mori A, Yokoi I, Noda Y, Willmore LJ. Natural antioxidants may prevent posttraumatic epilepsy: a proposal based on experimental animal studies. Acta Medica Okayama. 2004; 58(3): 111-118. https://doi.org/ 10.18926/AMO/32111.
  • [17] Liu W, Xu J, Zhang L, Li F, Zhang L, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. Research progress on correlations between trace element levels and epilepsy. Front Cell Dev Biol. 2023; 11:1167626. https://doi.org/10.3389/fcell.2023.1167626
  • [18] Doboszewska U, Sawicki J, Sajnóg A, Szopa A, Serefko A, Socała K, Pieróg M, Nieoczym D, Mlyniec K, Nowak G, Barałkiewicz D, Sowa I, Wlaź P. Alterations of serum magnesium concentration in animal models of seizures and epilepsy-the effects of treatment with a GPR39 Agonist and knockout of the Gpr39 Gene. cells. 2022; 11(13): 1987. https://doi.org/10.3390/cells11131987
  • [19] Vitale S, Hague DW, Foss K, de Godoy MC, Selmic LE. Comparison of serum trace nutrient concentrations in epileptics compared to healthy dogs. Front Vet Sci. 2019; 6:467. https://doi.org/10.3389/fvets.2019.00467
  • [20] Prasad DKV, Shaheen U, Satyanarayana U, Surya Prabha T, Jyothy A, Munshi A. Association of serum trace elements and minerals with genetic generalized epilepsy and idiopathic intractable epilepsy. Neurochem Res. 2014; 39(12): 2370-2376. https://doi.org/10.1007/s11064-014-1439-3
  • [21] Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC. Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci. 2005; 25(43): 9871-9882. https://doi.org/10.1523/JNEUROSCI.2590-05.2005
  • [22] Cain SM, Snutch TP, Voltage-Gated Calcium Channels in Epilepsy, in: J.L. Noebels, M. Avoli, M.A. Rogawski, R.W. Olsen, A.V. Delgado-Escueta (Eds.), Jasper's Basic Mechanisms of the Epilepsies, National Center for Biotechnology Information (US) Copyright © 2012, Michael A Rogawski, Antonio V Delgado-Escueta, Jeffrey L Noebels, Massimo Avoli and Richard W Olsen., Bethesda (MD), 2012.
  • [23] Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002; 3(5): 371-382. https://doi.org/10.1038/nrn811
  • [24] Yavuz M, Aydın B, Çarçak N, Onat F. Decreased hyperpolarization-activated cyclic nucleotide-gated channel 2 activity in a rat model of absence epilepsy and the effect of ZD7288, an Ih inhibitor, on the Spike-and-Wave Discharges. Pharmacology. 2022; 107(3-4): 227-234. https://doi.org/10.1159/000520059
  • [25] Yavuz M, Onat F. The role of hyperpolarization-activated cyclic nucleotide-gated channels in the pathophysiology of absence epilepsy. Epilepsi 2018; 24(2): 41-50. https://doi.org/10.14744/epilepsi.2018.03371
  • [26] Talley EM, Solorzano G, Depaulis A, Perez-Reyes E, Bayliss DA. Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Brain Res Mol Brain Res. 2000; 75(1): 159-165. https://doi.org/10.1016/s0169-328x(99)00307-1
  • [27] Koerner C, Danober L, Boehrer A, Marescaux C, Vergnes M. Thalamic NMDA transmission in a genetic model of absence epilepsy in rats. Epilepsy Res. 1996; 25(1): 11-19. https://doi.org/10.1016/0920-1211(96)00015-0
  • [28] Liu Z, Vergnes M, Depaulis A, Marescaux C. Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res. 1991; 545(1-2): 1-7. https://doi.org/10.1016/0006-8993(91)91262-y
  • [29] Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011; 63(3): 641-683.
  • [30] Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD. Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 2000; 39(2): 153-169. https://doi.org/10.1016/s0920-1211(99)00121-7.
  • [31] Pei Y, Zhao D, Huang J, Cao L. Zinc‐induced seizures: a new experimental model of epilepsy. Epilepsia. 1983; 24(2): 169-176. https://doi.org/10.1111/j.1528-1157.1983.tb04876.x.
  • [32] Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP, Choi DW. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proceed Nat Acad Sci. 2001; 98(20): 11055-11061. https://doi.org/10.1073/pnas.191353598.
  • [33] Sato M, Ohtomo K, Daimon T, Sugiyama T, Iijima K. Localization of copper to afferent terminals in rat locus ceruleus, in contrast to mitochondrial copper in cerebellum. J Histochem Cytochem. 1994; 42(12): 1585-1591. https://doi.org/10.1177/42.12.7983358.
  • [34] Ono S-I, Cherian MG. Regional distribution of metallothionein, zinc, and copper in the brain of different strains of rats. Biol Trace Elem Res. 1999; 69:151-159. https://doi.org/10.1007/BF02783866.
  • [35] Hou H, Wang L, Fu T, Papasergi M, Yule DI, Xia H. Magnesium acts as a second messenger in the regulation of NMDA Receptor-Mediated CREB signaling in neurons. Mol Neurobiol. 2020; 57(6): 2539-2550. https://doi.org/10.1007/s12035-020-01871-z
  • [36] Zimmer TS, David B, Broekaart DWM, Schidlowski M, Ruffolo G, Korotkov A, van der Wel NN, van Rijen PC, Mühlebner A, van Hecke W, Baayen JC, Idema S, François L, van Eyll J, Dedeurwaerdere S, Kessels HW, Surges R, Rüber T, Gorter JA, Mills JD, van Vliet EA, Aronica E. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol. 2021; 142(4): 729-759. https://doi.org/10.1007/s00401-021-02348-6
  • [37] Zhang Y, Cui Y, Cheng Y, Zhu W, Zhang M, Li S, Liu W, Xin W, Huang W, Sun H. Succinate accumulation contributes to oxidative stress and iron accumulation in pentylenetetrazol-induced epileptogenesis and kainic acid-induced seizure. Neurochem Int. 2021; 149(105123. https://doi.org/10.1016/j.neuint.2021.105123
  • [38] Aggarwal M, Li X, Gröhn O, Sierra A. Nuclei-specific deposits of iron and calcium in the rat thalamus after status epilepticus revealed with quantitative susceptibility mapping (QSM). J Magn Reson Imaging. 2018; 47(2): 554-564. https://doi.org/10.1002/jmri.25777
  • [39] Guo F, Kang J, Tan J, Wang Y, Jia L, Xu H. Dexmedetomidine pretreatment improves lipopolysaccharide-induced iron homeostasis disorder in aged mice. Curr Neurovasc Res. 2020; 17(2): 164-170. https://doi.org/10.2174/1567202617666200217105109
  • [40] Liu MJ, Zhao XC, Gong HS, You YQ, Li JY. Dexmedetomidine prevents hemorrhagic brain injury by reducing damage induced by ferroptosis in mice. Neurosci Lett. 2022; 788:136842. https://doi.org/10.1016/j.neulet.2022.136842
  • [41] Qiu L, Ge L, Hu Q. Dexmedetomidine protects SK-N-SH nerve cells from oxidative injury by maintaining iron homeostasis. Biol Pharm Bull. 2020; 43(3): 424-431. https://doi.org/10.1248/bpb.b19-00711
  • [42] DeVos SL, Miller TM. Direct intraventricular delivery of drugs to the rodent central nervous system. J Vis Exp. 2013; 75: e50326. https://doi.org/10.3791/50326
  • [43] Karande P, Trasatti JP, Chandra D, Chapter 4 - Novel Approaches for the Delivery of Biologics to the Central Nervous System, in: M. Singh, M. Salnikova (Eds.), Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies, Academic Press, San Diego, 2015, pp. 59-88. https://doi.org/10.1016/B978-0-12-416603-5.00004-3
  • [44] Penny J, Overgaard S. Serum chromium levels sampled with steel needle versus plastic IV cannula. Does method matter? J Biomed Mater Res B Appl Biomater. 2010; 92(1): 1-4. https://doi.org/10.1002/jbm.b.31479
  • [45] Paxinos G, Watson C, The Rat Brain in Stereotaxic Coordinates–The New Coronal Set, 5th Edn, 2004.
  • [46] Azevedo R, Oliveira AR, Almeida A, Gomes LR. Determination by ICP-MS of essential and toxic trace elements in gums and carrageenans used as food additives commercially available in the Portuguese Market. Foods. 2023; 12(7): https://doi.org/10.3390/foods12071408

Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats

Year 2025, Volume: 29 Issue: 2, 590 - 598
https://doi.org/10.12991/jrespharm.1662084

Abstract

This study builds upon our prior investigation proposing a potential animal model for absence status epilepticus induced by specific alpha-2a adrenergic receptor (α2AAR) activation through intracerebroventricular injection of dexmedetomidine (DEX). Our objective was to explore trace element levels within the cortex of genetic absence epilepsy rats from Strasbourg (GAERS) during absence status induction through α2AAR activation. Stereotaxic surgery was performed on adult GAERS to implant recording electrodes in the frontoparietal cortices under anesthesia. Following intracerebroventricular injection of the α2AAR agonist, DEX, the electroencephalography (EEG) was recorded. After inducing the second period of absence statuses, the rats were euthanized. Trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP/MS) among the groups: GAERS-NAÏVE, GAERS injected with saline (GAERS-SAL), and GAERS injected with DEX (GAERS-DEX). No significant differences of the levels of trace elements were observed in the GAERS-DEX group compared to GAERS-SAL following absence status induction. Conversely, significant differences in trace element levels were identified between the GAERS-NAÏVE and GAERS-SAL or GAERS-DEX groups. Cortical levels of 25Mg, 55Mn, 57Fe, 88Sr, 65Cu, 42Mo, 80Hg, 15P, 52Cr, 59Co, 66Zn, 82Se, 85Rb, 133Cs, and 205Tl were higher in the GAERS-NAÏVE group compared to GAERS-SAL (p < 0.05). Similarly, hippocampal levels of 25Mg, 43Ca, 55Mn, 57Fe, 88Sr, 65Cu, 42Mo, 80Hg, 15P, 52Cr, 59Co, 66Zn, 82Se, 85Rb, 133Cs, and 205Tl were higher in the GAERS-NAÏVE group compared to the GAERS-SAL group (p < 0.05). Our findings suggest that DEXinduced absence status does not alter trace element levels in the cortex and hippocampus, unlike convulsive forms of epilepsies. However, the influence of trace element modulations on the development of absence status remains open to discussion. Intriguingly, cannula placement appeared to affect trace element levels, prompting inquiries into the current methodology of intracerebroventricular cannula implementation.

References

  • [1] Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshe SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51(6): 1069-1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x.
  • [2] Trinka E, Hofler J, Leitinger M, Brigo F. Pharmacotherapy for status epilepticus. Drugs. 2015; 75(13): 1499-1521. https://doi.org/10.1007/s40265-015-0454-2
  • [3] Leitinger M, Trinka E, Giovannini G, Zimmermann G, Florea C, Rohracher A, Kalss G, Neuray C, Kreidenhuber R, Höfler J, Kuchukhidze G, Granbichler C, Dobesberger J, Novak HF, Pilz G, Meletti S, Siebert U. Epidemiology of status epilepticus in adults: A population-based study on incidence, causes, and outcomes. Epilepsia. 2019; 60(1): 53-62. https://doi.org/10.1111/epi.14607
  • [4] Leitinger M, Beniczky S, Rohracher A, Gardella E, Kalss G, Qerama E, Hofler J, Hess Lindberg-Larsen A, Kuchukhidze G, Dobesberger J, Langthaler PB, Trinka E. Salzburg Consensus criteria for non-convulsive status epilepticus--approach to clinical application. Epilepsy Behav. 2015; 49:158-163. https://doi.org/10.1016/j.yebeh.2015.05.007
  • [5] Leitinger M, Trinka E, Gardella E, Rohracher A, Kalss G, Qerama E, Hofler J, Hess A, Zimmermann G, Kuchukhidze G, Dobesberger J, Langthaler PB, Beniczky S. Diagnostic accuracy of the Salzburg EEG criteria for non-convulsive status epilepticus: A retrospective study. Lancet Neurol. 2016; 15(10): 1054-1062. https://doi.org/10.1016/S1474-4422(16)30137-5
  • [6] Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, Shorvon S, Lowenstein DH. A definition and classification of status epilepticus--Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015; 56(10): 1515-1523. https://doi.org/10.1111/epi.13121
  • [7] Yavuz M, Akkol S, Onat F. Alpha-2a adrenergic receptor (α2AR) activation in genetic absence epilepsy: An absence status model? Epilepsia Open.2024;9(2):534-547. https://doi.org/10.1002/epi4.12879.
  • [8] Yavuz M, Aydin B, Carcak N, Akman O, Raci Yananli H, Onat F. Atipamezole, a specific alpha2A antagonist, suppresses spike-and-wave discharges and alters Ca(2(+)) /calmodulin-dependent protein kinase II in the thalamus of genetic absence epilepsy rats. Epilepsia. 2020; 61(12):2825-2835. https://doi.org/10.1111/epi.16728
  • [9] Yavuz M, Iyikosker P, Mutlu N, Kilicparlar S, Salci OH, Dolu G, Kaymakcilar EN, Akkol S, Onat F. Dexmedetomidine, an alpha 2A receptor agonist, triggers seizures unilaterally in GAERS during the pre-epileptic phase: does the onset of spike-and-wave discharges occur in a focal manner? Front Neurol. 2023; 14:1231736. https://doi.org/10.3389/fneur.2023.1231736
  • [10] Liu SJ, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, Corcoran NM, Johnston LA, Hovens CM, Mayo JN, Hudson M, Shultz SR, Jones NC, O'Brien TJ. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain. 2016; 139(Pt 7): 1919-1938. https://doi.org/10.1093/brain/aww116
  • [11] Walton NY, Treiman DM. Experimental secondarily generalized convulsive status epilepticus induced by D,L-homocysteine thiolactone. Epilepsy Res. 1988; 2(2): 79-86. https://doi.org/10.1016/0920-1211(88)90023-x
  • [12] Singh T, Joshi S, Williamson JM, Kapur J. Neocortical injury-induced status epilepticus. Epilepsia. 2020; 61(12): 2811-2824. https://doi.org/10.1111/epi.16715
  • [13] Pestana Knight EM, Gilman S, Selwa L. Status epilepticus in Wilson's disease. Epileptic Disord. 2009; 11(2): 138-143. https://doi.org/10.1684/epd.2009.0254
  • [14] Ekstein D, Benninger F, Daninos M, Pitsch J, van Loo KM, Becker AJ, Yaari Y. Zinc induces long-term upregulation of T-type calcium current in hippocampal neurons in vivo. J Physiol. 2012; 590(22): 5895-5905. https://doi.org/10.1113/jphysiol.2012.242537
  • [15] Takeda A, Hanajima T, Ijiro H, Ishige A, Iizuka S, Okada S, Oku N. Release of zinc from the brain of El (epilepsy) mice during seizure induction. Brain Res. 1999; 828(1): 174-178. https://doi.org/10.1016/S0006-8993(99)01358-X
  • [16] Mori A, Yokoi I, Noda Y, Willmore LJ. Natural antioxidants may prevent posttraumatic epilepsy: a proposal based on experimental animal studies. Acta Medica Okayama. 2004; 58(3): 111-118. https://doi.org/ 10.18926/AMO/32111.
  • [17] Liu W, Xu J, Zhang L, Li F, Zhang L, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. Research progress on correlations between trace element levels and epilepsy. Front Cell Dev Biol. 2023; 11:1167626. https://doi.org/10.3389/fcell.2023.1167626
  • [18] Doboszewska U, Sawicki J, Sajnóg A, Szopa A, Serefko A, Socała K, Pieróg M, Nieoczym D, Mlyniec K, Nowak G, Barałkiewicz D, Sowa I, Wlaź P. Alterations of serum magnesium concentration in animal models of seizures and epilepsy-the effects of treatment with a GPR39 Agonist and knockout of the Gpr39 Gene. cells. 2022; 11(13): 1987. https://doi.org/10.3390/cells11131987
  • [19] Vitale S, Hague DW, Foss K, de Godoy MC, Selmic LE. Comparison of serum trace nutrient concentrations in epileptics compared to healthy dogs. Front Vet Sci. 2019; 6:467. https://doi.org/10.3389/fvets.2019.00467
  • [20] Prasad DKV, Shaheen U, Satyanarayana U, Surya Prabha T, Jyothy A, Munshi A. Association of serum trace elements and minerals with genetic generalized epilepsy and idiopathic intractable epilepsy. Neurochem Res. 2014; 39(12): 2370-2376. https://doi.org/10.1007/s11064-014-1439-3
  • [21] Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC. Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci. 2005; 25(43): 9871-9882. https://doi.org/10.1523/JNEUROSCI.2590-05.2005
  • [22] Cain SM, Snutch TP, Voltage-Gated Calcium Channels in Epilepsy, in: J.L. Noebels, M. Avoli, M.A. Rogawski, R.W. Olsen, A.V. Delgado-Escueta (Eds.), Jasper's Basic Mechanisms of the Epilepsies, National Center for Biotechnology Information (US) Copyright © 2012, Michael A Rogawski, Antonio V Delgado-Escueta, Jeffrey L Noebels, Massimo Avoli and Richard W Olsen., Bethesda (MD), 2012.
  • [23] Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci. 2002; 3(5): 371-382. https://doi.org/10.1038/nrn811
  • [24] Yavuz M, Aydın B, Çarçak N, Onat F. Decreased hyperpolarization-activated cyclic nucleotide-gated channel 2 activity in a rat model of absence epilepsy and the effect of ZD7288, an Ih inhibitor, on the Spike-and-Wave Discharges. Pharmacology. 2022; 107(3-4): 227-234. https://doi.org/10.1159/000520059
  • [25] Yavuz M, Onat F. The role of hyperpolarization-activated cyclic nucleotide-gated channels in the pathophysiology of absence epilepsy. Epilepsi 2018; 24(2): 41-50. https://doi.org/10.14744/epilepsi.2018.03371
  • [26] Talley EM, Solorzano G, Depaulis A, Perez-Reyes E, Bayliss DA. Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Brain Res Mol Brain Res. 2000; 75(1): 159-165. https://doi.org/10.1016/s0169-328x(99)00307-1
  • [27] Koerner C, Danober L, Boehrer A, Marescaux C, Vergnes M. Thalamic NMDA transmission in a genetic model of absence epilepsy in rats. Epilepsy Res. 1996; 25(1): 11-19. https://doi.org/10.1016/0920-1211(96)00015-0
  • [28] Liu Z, Vergnes M, Depaulis A, Marescaux C. Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res. 1991; 545(1-2): 1-7. https://doi.org/10.1016/0006-8993(91)91262-y
  • [29] Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011; 63(3): 641-683.
  • [30] Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD. Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 2000; 39(2): 153-169. https://doi.org/10.1016/s0920-1211(99)00121-7.
  • [31] Pei Y, Zhao D, Huang J, Cao L. Zinc‐induced seizures: a new experimental model of epilepsy. Epilepsia. 1983; 24(2): 169-176. https://doi.org/10.1111/j.1528-1157.1983.tb04876.x.
  • [32] Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP, Choi DW. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proceed Nat Acad Sci. 2001; 98(20): 11055-11061. https://doi.org/10.1073/pnas.191353598.
  • [33] Sato M, Ohtomo K, Daimon T, Sugiyama T, Iijima K. Localization of copper to afferent terminals in rat locus ceruleus, in contrast to mitochondrial copper in cerebellum. J Histochem Cytochem. 1994; 42(12): 1585-1591. https://doi.org/10.1177/42.12.7983358.
  • [34] Ono S-I, Cherian MG. Regional distribution of metallothionein, zinc, and copper in the brain of different strains of rats. Biol Trace Elem Res. 1999; 69:151-159. https://doi.org/10.1007/BF02783866.
  • [35] Hou H, Wang L, Fu T, Papasergi M, Yule DI, Xia H. Magnesium acts as a second messenger in the regulation of NMDA Receptor-Mediated CREB signaling in neurons. Mol Neurobiol. 2020; 57(6): 2539-2550. https://doi.org/10.1007/s12035-020-01871-z
  • [36] Zimmer TS, David B, Broekaart DWM, Schidlowski M, Ruffolo G, Korotkov A, van der Wel NN, van Rijen PC, Mühlebner A, van Hecke W, Baayen JC, Idema S, François L, van Eyll J, Dedeurwaerdere S, Kessels HW, Surges R, Rüber T, Gorter JA, Mills JD, van Vliet EA, Aronica E. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol. 2021; 142(4): 729-759. https://doi.org/10.1007/s00401-021-02348-6
  • [37] Zhang Y, Cui Y, Cheng Y, Zhu W, Zhang M, Li S, Liu W, Xin W, Huang W, Sun H. Succinate accumulation contributes to oxidative stress and iron accumulation in pentylenetetrazol-induced epileptogenesis and kainic acid-induced seizure. Neurochem Int. 2021; 149(105123. https://doi.org/10.1016/j.neuint.2021.105123
  • [38] Aggarwal M, Li X, Gröhn O, Sierra A. Nuclei-specific deposits of iron and calcium in the rat thalamus after status epilepticus revealed with quantitative susceptibility mapping (QSM). J Magn Reson Imaging. 2018; 47(2): 554-564. https://doi.org/10.1002/jmri.25777
  • [39] Guo F, Kang J, Tan J, Wang Y, Jia L, Xu H. Dexmedetomidine pretreatment improves lipopolysaccharide-induced iron homeostasis disorder in aged mice. Curr Neurovasc Res. 2020; 17(2): 164-170. https://doi.org/10.2174/1567202617666200217105109
  • [40] Liu MJ, Zhao XC, Gong HS, You YQ, Li JY. Dexmedetomidine prevents hemorrhagic brain injury by reducing damage induced by ferroptosis in mice. Neurosci Lett. 2022; 788:136842. https://doi.org/10.1016/j.neulet.2022.136842
  • [41] Qiu L, Ge L, Hu Q. Dexmedetomidine protects SK-N-SH nerve cells from oxidative injury by maintaining iron homeostasis. Biol Pharm Bull. 2020; 43(3): 424-431. https://doi.org/10.1248/bpb.b19-00711
  • [42] DeVos SL, Miller TM. Direct intraventricular delivery of drugs to the rodent central nervous system. J Vis Exp. 2013; 75: e50326. https://doi.org/10.3791/50326
  • [43] Karande P, Trasatti JP, Chandra D, Chapter 4 - Novel Approaches for the Delivery of Biologics to the Central Nervous System, in: M. Singh, M. Salnikova (Eds.), Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies, Academic Press, San Diego, 2015, pp. 59-88. https://doi.org/10.1016/B978-0-12-416603-5.00004-3
  • [44] Penny J, Overgaard S. Serum chromium levels sampled with steel needle versus plastic IV cannula. Does method matter? J Biomed Mater Res B Appl Biomater. 2010; 92(1): 1-4. https://doi.org/10.1002/jbm.b.31479
  • [45] Paxinos G, Watson C, The Rat Brain in Stereotaxic Coordinates–The New Coronal Set, 5th Edn, 2004.
  • [46] Azevedo R, Oliveira AR, Almeida A, Gomes LR. Determination by ICP-MS of essential and toxic trace elements in gums and carrageenans used as food additives commercially available in the Portuguese Market. Foods. 2023; 12(7): https://doi.org/10.3390/foods12071408
There are 46 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Melis Yavuz

Gokcen Dolu This is me

Rui Azevedo This is me

Agostinho Almeida This is me

Filiz Onat This is me

Publication Date
Submission Date February 2, 2024
Acceptance Date June 6, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Yavuz, M., Dolu, G., Azevedo, R., Almeida, A., et al. (n.d.). Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats. Journal of Research in Pharmacy, 29(2), 590-598. https://doi.org/10.12991/jrespharm.1662084
AMA Yavuz M, Dolu G, Azevedo R, Almeida A, Onat F. Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats. J. Res. Pharm. 29(2):590-598. doi:10.12991/jrespharm.1662084
Chicago Yavuz, Melis, Gokcen Dolu, Rui Azevedo, Agostinho Almeida, and Filiz Onat. “Unaltered Trace Element Levels Following the Absence Status Induction by an Alpha 2A Receptor Agonist in the Cortex and Hippocampus of Genetic Absence Epilepsy Rats”. Journal of Research in Pharmacy 29, no. 2 n.d.: 590-98. https://doi.org/10.12991/jrespharm.1662084.
EndNote Yavuz M, Dolu G, Azevedo R, Almeida A, Onat F Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats. Journal of Research in Pharmacy 29 2 590–598.
IEEE M. Yavuz, G. Dolu, R. Azevedo, A. Almeida, and F. Onat, “Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats”, J. Res. Pharm., vol. 29, no. 2, pp. 590–598, doi: 10.12991/jrespharm.1662084.
ISNAD Yavuz, Melis et al. “Unaltered Trace Element Levels Following the Absence Status Induction by an Alpha 2A Receptor Agonist in the Cortex and Hippocampus of Genetic Absence Epilepsy Rats”. Journal of Research in Pharmacy 29/2 (n.d.), 590-598. https://doi.org/10.12991/jrespharm.1662084.
JAMA Yavuz M, Dolu G, Azevedo R, Almeida A, Onat F. Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats. J. Res. Pharm.;29:590–598.
MLA Yavuz, Melis et al. “Unaltered Trace Element Levels Following the Absence Status Induction by an Alpha 2A Receptor Agonist in the Cortex and Hippocampus of Genetic Absence Epilepsy Rats”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 590-8, doi:10.12991/jrespharm.1662084.
Vancouver Yavuz M, Dolu G, Azevedo R, Almeida A, Onat F. Unaltered trace element levels following the absence status induction by an alpha 2A receptor agonist in the cortex and hippocampus of genetic absence epilepsy rats. J. Res. Pharm. 29(2):590-8.