Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 639 - 666
https://doi.org/10.12991/jrespharm.1664884

Abstract

References

  • [1] Laamari Y, Oubella A, Bimoussa A, El Mansouri AE, Ketatni EM, Mentre O, Ait Itto MY, Morjani H, Khouili M, Auhmani A. Design, Hemiysnthesis, crystal structure and anticancer activity of 1, 2, 3-triazoles derivatives of totarol. Bioorg Chem. 2021;115:105165. https://doi.org/10.1016/j.bioorg.2021.105165.
  • [2] Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment. Clin Ther. 2016;38(7):1551-1566. https://doi.org/10.1016/j.clinthera.2016.03.026.
  • [3] Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448-451. https://doi.org/10.21037/jtd.2017.02.75.
  • [4] Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. https://doi.org/10.3322/caac.21763.
  • [5] GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459-1544. Erratum in: Lancet. 2017 ;389(10064):e1. https://doi.org/10.1016/s0140-6736(16)31012-1.
  • [6] Ma LY, Pang LP, Wang B, Zhang M, Hu B, Xue DQ, Shao KP, Zhang BL, Liu Y, Zhang E, Liu HM. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur J Med Chem. 2014;86:368-380. https://doi.org/10.1016/j.ejmech.2014.08.010.
  • [7] Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem. 2019;183:111700. https://doi.org/10.1016/j.ejmech.2019.111700.
  • [8] Gao F, Zhang X, Wang T, Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur J Med Chem. 2019;;165:59-79. https://doi.org/10.1016/j.ejmech.2019.01.017.
  • [9] Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur J Med Chem. 2019;163:883-895. https://doi.org/10.1016/j.ejmech.2018.12.035.
  • [10] Kashyap A, Silakari O, Chapter 9 - Triazoles: Multidimensional 5-Membered Nucleus for Designing Multitargeting Agents. In: Key Heterocycle Cores for Designing Multitargeting Molecules. Silakari O, Editor. 2018, Elsevier. p. 323-342.
  • [11] Duan YC, Ma YC, Zhang E, Shi XJ, Wang MM, Ye XW, Liu HM. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem. 2013;62:11-19. https://doi.org/10.1016/j.ejmech.2012.12.046.
  • [12] Ram VJ, Sethi A, Nath M, Pratap R. Five-Membered Heterocycles. In: The Chemistry of Heterocycles. 2019, Elsevier. p. 149-478.
  • [13] Masood MM. Progress in Synthetic Trends Followed for the Development of 1,2,3-Triazole Derivatives: A Review. Polycycl Aromat Comp. 2023; 44(6): 4273-4304. https://doi.org/10.1080/10406638.2023.2247119.
  • [14] Akhtar J, Khan AA, Ali Z, Haider R, Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem. 2017 ;125:143-189. https://doi.org/10.1016/j.ejmech.2016.09.023.
  • [15] Lal K, Yadav P. Recent Advancements in 1,4-Disubstituted 1H-1,2,3-Triazoles as Potential Anticancer Agents. Anticancer Agents Med Chem. 2018;18(1):21-37. https://doi.org/10.2174/1871520616666160811113531.
  • [16] Arabiyat S, Kasabri V, Al-Hiari Y, Bustanji YK, Albashiti R, Almasri IM, Sabbah DA. Antilipase and antiproliferative activities of novel fluoroquinolones and triazolofluoroquinolones. Chem Biol Drug Des. 2017;90(6):1282-1294. https://doi.org/10.1111/cbdd.13049.
  • [17] Jin X, Yan L, Li HJ, Wang RL, Hu ZL, Jiang YY, Cao YB, Yan TH, Sun QY. Novel triazolyl berberine derivatives prepared via CuAAC click chemistry: synthesis, anticancer activity and structure-activity relationships. Anticancer Agents Med Chem. 2015;15(1):89-98. https://doi.org/10.2174/1871520614666141203142012.
  • [18] Ke Y, Wang W, Zhao LF, Liang JJ, Liu Y, Zhang X, Feng K, Liu HM. Design, synthesis and biological mechanisms research on 1,2,3-triazole derivatives of Jiyuan Oridonin A. Bioorg Med Chem. 2018;26(17):4761-4773. https://doi.org/10.1016/j.bmc.2017.11.005.
  • [19] Taia A, Essaber M, Oubella A, Aatif A, Bodiguel J, Jamart-Gregoire B, Itto MYA, Marjani H. Synthesis, characterization, and biological evaluation of new heterocyclic systems 1, 2, 3-triazole-isoxazoline from eugenol by the mixed condensation reactions. Synth Commun. 2020; 50(13): 2052-2065. https://doi.org/10.1080/00397911.2020.1762224.
  • [20] Guan LP, Jin QH, Tian GR, Chai KY, Quan ZS. Synthesis of some quinoline-2(1H)-one and 1, 2, 4 - triazolo [ 4 , 3 -a ] quinoline derivatives as potent anticonvulsants. J Pharm Pharm Sci. 2007;10(3):254-262
  • [21] Aher NG, Pore VS, Mishra NN, Kumar A, Shukla PK, Sharma A, Bhat MK. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett. 2009;19(3):759-763. https://doi.org/10.1016/j.bmcl.2008.12.026
  • [22] Wang XL, Wan K, Zhou CH. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem. 2010;45(10):4631-4639. https://doi.org/10.1016/j.ejmech.2010.07.031.
  • [23] Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem. 2017;71:30-54. https://doi.org/10.1016/j.bioorg.2017.01.010.
  • [24] Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem. 2019;168:357-372.https://doi.org/10.1016/j.ejmech.2019.02.055 .
  • [25] Lee T, Cho M, Ko SY, Youn HJ, Baek DJ, Cho WJ, Kang CY, Kim S. Synthesis and evaluation of 1,2,3-triazole containing analogues of the immunostimulant alpha-GalCer. J Med Chem. 2007;50(3):585-589. https://doi.org/10.1021/jm061243q
  • [26] Wang G, Peng Z, Wang J, Li X, Li J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur J Med Chem. 2017;125:423-429. https://doi.org/10.1016/j.ejmech.2016.09.067.
  • [27] Buckle DR, Outred DJ, Rockell CJ, Smith H, Spicer BA. Studies on v-triazoles. 7. Antiallergic 9-oxo-1H,9H-benzopyrano[2,3-d]-v-triazoles. J Med Chem. 1983;26(2):251-254. https://doi.org/10.1021/jm00356a025.
  • [28] De Simone R, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G. Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem. 2011;54(6):1565-75. https://doi.org/ 10.1021/jm101238d.
  • [29] Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm 2015; 6(6): 1104-1116. https://doi.org/10.1039/c5md00057b.
  • [30] Costa MS, Boechat N, Rangel EA, da Silva Fde C, de Souza AM, Rodrigues CR, Castro HC, Junior IN, Lourenço MC, Wardell SM, Ferreira VF. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg Med Chem. 2006 Dec 15;14(24):8644-53. https://doi.org/10.1016/j.bmc.2006.08.019.
  • [31] Yan W, Wang X, Li K, Li TX, Wang JJ, Yao KC, Cao LL, Zhao SS, Ye YH. Design, synthesis, and antifungal activity of carboxamide derivatives possessing 1,2,3-triazole as potential succinate dehydrogenase inhibitors. Pestic Biochem Physiol. 2019;156:160-169. https://doi.org/10.1016/j.pestbp.2019.02.017.
  • [32] El-Sayed WA, Khalaf HS, Mohamed SF, Hussein HA, Kutkat OM, Amr AE. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ J Gen Chem. 2017; 87(10): 2444-2453. https://doi.org/10.1134/s1070363217100279.
  • [33] Whiting M, Tripp JC, Lin Y-C, Lindstrom W, Olson AJ, Elder JH, Sharpless KB, Fokin VV. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J Med Chem. 2006; 49(26): 7697-7710. https://doi.org/10.1021/jm060754+.
  • [34] Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem. 2008;51(20):6263-6270. https://doi.org/10.1021/jm800149m .
  • [35] Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem. 2011;26(1):1-21. https://doi.org/10.3109/14756360903524304.
  • [36] Kumar R, Sharma V, Bua S, Supuran CT, Sharma PK. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J Enzyme Inhib Med Chem. 2017; 32(1):1187-1194. https://doi.org/10.1080/14756366.2017.1367775.
  • [37] Kumar R, Vats L, Bua S, Supuran CT, Sharma PK. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545-551. https://doi.org/10.1016/j.ejmech.2018.06.021.
  • [38] Kumar R, Vats L, Bua S, Supuran CT, Sharma PK. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545-551. https://doi.org/10.3390/biomedicines9060628.
  • [39] Mojaddami A, Sakhteman A, Fereidoonnezhad M, Faghih Z, Najdian A, Khabnadideh S, Sadeghpour H, Rezaei Z. Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies. Res Pharm Sci. 2017;12(1):21-30. https://doi.org/10.4103/1735-5362.199043.
  • [40] Maghraby MT, Mazyad Almutairi T, Bräse S, Salem OIA, Youssif BGM, Sheha MM. New 1,2,3-Triazole/1,2,4-triazole Hybrids as Aromatase Inhibitors: Design, Synthesis, and Apoptotic Antiproliferative Activity. Molecules. 2023;28(20):7092. https://doi.org/10.3390/molecules28207092.
  • [41] Sanphanya K, Wattanapitayakul SK, Phowichit S, Fokin VV, Vajragupta O. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach. Bioorg Med Chem Lett. 2013;23(10):2962-2967. https://doi.org/10.1016/j.bmcl.2013.03.042.
  • [42] Banerji B, Chandrasekhar K, Sreenath K, Roy S, Nag S, Saha KD. Synthesis of Triazole-Substituted Quinazoline Hybrids for Anticancer Activity and a Lead Compound as the EGFR Blocker and ROS Inducer Agent. ACS Omega. 2018;3(11):16134-16142. https://doi.org/10.1021/acsomega.8b01960.
  • [43] Ali AA. 1,2,3-Triazoles: Synthesis and Biological Application. In: Azoles, Aleksey K, Editor. 2020, IntechOpen: Rijeka.
  • [44] Tsogoeva S, Jalani H, Karagöz A. Synthesis of Substituted 1,2,3-Triazoles via Metal-Free Click Cycloaddition Reactions and Alternative Cyclization Methods. Synthesis. 2016; 49(01): 29-41. https://doi.org/10.1055/s-0036-1588904.
  • [45] Kadhim MM, Mahmood EA, Heravi MRP, Soleimani-Amiri S, Ebadi AG, Vessally E. The synthesis of biologically active 1-sulfonyl-1, 2, 3-triazoles from sulfonyl azides and alkynes: a focus review. J Sulfur Chem. 2022; 44(3): 377-391. https://doi.org/10.1080/17415993.2022.2149266.
  • [46] Ohkanda J. Self-Assembled Receptors for Protein Surface Recognition. In: Comprehensive Supramolecular Chemistry II, J.L. Atwood, Editor. 2017, Elsevier: Oxford. p. 351-369.
  • [47] Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002;41(14):2596-2599.https://doi.org/10.1002/1521-773(20020715)41:14%3C2596::aid-anie2596%3E3.0.co;2-4.
  • [48] Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67(9):3057-3064. https://doi.org/10.1021/jo011148j.
  • [49] Song Y, Lee S, Dutta P, Ryu J-S. A Copper(I)-Mediated Tandem Three-Component Synthesis of 5-Allyl-1,2,3-triazoles. Synthesis. 2019; 52(05): 744-754. https://doi.org/10.1055/s-0039-1691506.
  • [50] Wang XX, Xin Y, Li Y, Xia WJ, Zhou B, Ye RR, Li YM. Copper-Catalyzed Decarboxylative Cycloaddition of Propiolic Acids, Azides, and Arylboronic Acids: Construction of Fully Substituted 1,2,3-Triazoles. J Org Chem. 2020;85(5):3576-3586. https://doi.org/10.1021/acs.joc.9b03285.
  • [51] Rajeswari PS, Nagarajan R, Sujith KP, Emmanuvel L. Synthesis of new Copper Catalyst with Pyrazole Based Tridentate Ligand and Study of Its Activity for Azide Alkyne Coupling. J Organomet Chem. 2021; 931: 121627. https://doi.org/10.1016/j.jorganchem.2020.121627.
  • [52] Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(43):16793-16797. https://doi.org/10.1073/pnas.0707090104.
  • [53] Sletten EM, Bertozzi CR. A hydrophilic azacyclooctyne for Cu-free click chemistry. Org Lett. 2008;10(14):3097-3099. https://doi.org/10.1021/ol801141k.
  • [54] He Y, Liu L, Cheng L. A Short Review of Research Progress on the Synthesis Approaches of Aza-Dibenzocyclooctyne Derivatives. Molecules. 2023;28(9):3715. https://doi.org/ 10.3390/molecules28093715.
  • [55] Yan SJ, Liu YJ, Chen YL, Liu L, Lin J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorg Med Chem Lett. 2010;20(17):5225-5228. https://doi.org/ 10.1016/j.bmcl.2010.06.141 .
  • [56] Thomas J, Jana S, John J, Liekens S, Dehaen W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem Commun (Camb). 2016;52(14):2885-8. https://doi.org/10.1039/C5CC08347H .
  • [57] Sravanthi SV, Babu H, Shiva R. Design, Synthesis, Molecular Docking, ADMET Studies, and Biological Evaluation of Isoxazoline and Pyrazoline Incorporating 1,2,3-Triazole Benzene Sulfonamides. Russ J Bioorg Chem. 2019; 45(5): 381-390. https://doi.org/10.1134/S1068162019050108.
  • [58] Silaichev PS, Beryozkina TV, Melekhin VV, Filimonov VO, Maslivets AN, Ilkin VG, Dehaen W, Bakulev VA. Cycloaddition reactions of heterocyclic azides with 2-cyanoacetamidines as a new route to C,N-diheteroarylcarbamidines. Beilstein J Org Chem. 2024;20:17-24. https://doi.org/ 10.3762/bjoc.20.3.
  • [59] Dai J, Tian S, Yang X, Liu Z. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem. 2022 ;10:891484. https://doi.org/10.3389/fchem.2022.891484.
  • [60] Arafa WAA, Ibrahim HM. Sustainable and scalable synthesis of polysubstituted bis-1,2,4-triazoles, bis-2-iminothiazolines and bis-thiobarbiturates using bis-N,N-disubstituted thioureas as versatile substrate. R Soc Open Sci. 2019;6(6):181963. https://doi.org/10.1098/rsos.181963.
  • [61] Xia JX, Huang MC. Heterogeneous Copper(I)-Catalyzed Cascade Addition–Oxidative Cyclization of Nitriles with 2-Aminopyridines or Amidines: Efficient and Practical Synthesis of 1,2,4-Triazoles. Synthesis. 2019; 51(09): 2014-2022. https://doi.org/10.1055/s-0037-1611712.
  • [62] Balewski Ł, Sączewski F, Bednarski PJ, Wolff L, Nadworska A, Gdaniec M, Kornicka A. Synthesis, Structure and Cytotoxicity Testing of Novel 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-Imine Derivatives. Molecules. 2020;25(24):5924. https://doi.org/10.3390/molecules25245924.
  • [63] Channa Basappa V, Hamse Kameshwar V, Kumara K, Achutha DK, Neratur Krishnappagowda L, Kariyappa AK. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon. 2020;6(10):e05290. https://doi.org/10.1016/j.heliyon.2020.e05290.
  • [64] Jahani R, Reza Abtahi S, Nematpour M, Fasihi Dastjerdi H, Chamanara M, Hami Z, Paknejad B. Design, synthesis, and pharmacological evaluation of novel 1,2,4-triazol-3-amine derivatives as potential agonists of GABAA subtype receptors with anticonvulsant and hypnotic effects. Bioorg Chem. 2020;104:104212. https://doi.org/10.1016/j.bioorg.2020.104212.
  • [65] Guo W, Liu G, Deng L, Mei W, Zou X, Zhong Y, Zhuo X, Fan X, Zheng L. Metal- and Oxidant-Free Green Three-Component Desulfurization and Deamination Condensation Approach to Fully Substituted 1H-1,2,4-Triazol-3-amines and Their Photophysical Properties. J Org Chem. 2021;86(24):17986-18003. https://doi.org/10.1021/acs.joc.1c02313.
  • [66] Zhang X, Luo J, Li Q, Xin Q, Ye L, Zhu Q, Shi Z, Zhan F, Chu B, Liu Z, Jiang Y. Design, synthesis and anti-tumor evaluation of 1,2,4-triazol-3-one derivatives and pyridazinone derivatives as novel CXCR2 antagonists. Eur J Med Chem. 2021;226:113812. https://doi.org/10.1016/j.ejmech.2021.113812.
  • [67] Semenets AP, Suleiman MM, Fedosov AI, Shtrygol SY, Havrylov IO, Mishchenko MV, Kovalenko SM, Georgiyants VA, Perekhoda LO. Synthesis, docking, and biological evaluation of novel 1-benzyl-4-(4-(R)-5-sulfonylidene-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyrrolidin-2-ones as potential nootropic agents. Eur J Med Chem. 2022;244:114823. https://doi.org/10.1016/j.ejmech.2022.114823.
  • [68] Liu C, Fei Q, Pan N, Wu W. Design, Synthesis, and Antifungal Activity of Novel 1,2,4-Triazolo[4,3-c]trifluoromethylpyrimidine Derivatives Bearing the Thioether Moiety. Front Chem. 2022;10:939644. https://doi.org/10.3389/fchem.2022.939644.
  • [69] Zhang Y, Zeng JL, Chen Z, Wang R. Base-Promoted (3 + 2) Cycloaddition of Trifluoroacetohydrazonoyl Chlorides with Imidates En Route to Trifluoromethyl-1,2,4-Triazoles. J Org Chem. 2022;87(21):14514-14522. https://doi.org/10.1021/acs.joc.2c01926.
  • [70] Aggarwal M, McKenna R. Update on carbonic anhydrase inhibitors: a patent review (2008 - 2011). Expert Opin Ther Pat. 2012;22(8):903-915. https://doi.org/10.1517/13543776.2012.707646.
  • [71] Angeli A, Pinteala M, Maier SS, Del Prete S, Capasso C, Simionescu BC, Supuran CT. Inhibition of α-, β-, γ-, δ-, ζ- and η-class carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. J Enzyme Inhib Med Chem. 2019;34(1):644-650. https://doi.org/10.1080/14756366.2019.1571273.
  • [72] Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem. 2013;21(6):1570-1582 . https://doi.org/10.1016/j.bmc.2012.04.044.
  • [73] Casini A, Scozzafava A, Mastrolorenzo A, Supuran LT. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets. 2002;2(1):55-75. https://doi.org/10.2174/1568009023334060 .
  • [74] Huentupil Y, Peña L, Novoa N, Berrino E, Arancibia R, Supuran CT. New sulfonamides containing organometallic-acylhydrazones: synthesis, characterisation and biological evaluation as inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem. 2019;34(1):451-458. https://doi.org/ 10.1080/14756366.2018.1555156.
  • [75] Cecchi A, Hulikova A, Pastorek J, Pastoreková S, Scozzafava A, Winum JY, Montero JL, Supuran CT. Carbonic anhydrase inhibitors. Design of fluorescent sulfonamides as probes of tumor-associated carbonic anhydrase IX that inhibit isozyme IX-mediated acidification of hypoxic tumors. J Med Chem. 2005;48(15):4834-4841. https://doi.org/10.1021/jm0501073 .
  • [76] Puccetti L, Fasolis G, Vullo D, Chohan ZH, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff's bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes. Bioorg Med Chem Lett. 2005;15(12):3096-3101. https://doi.org/10.1016/j.bmcl.2005.04.055.
  • [77] Vats L, Kumar R, Bua S, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem. 2019;183:111698. https://doi.org/10.1016/j.ejmech.2019.111698.
  • [78] Chinchilli KK, Angeli A, Thacker PS, Korra LN, Biswas R, Arifuddin M, Supuran CT. Design, Synthesis, and Biological Evaluation of 1,2,3-Triazole-Linked Triazino[5,6-B]Indole-Benzene Sulfonamide Conjugates as Potent Carbonic Anhydrase I, II, IX, and XIII Inhibitors. Metabolites. 2020;10(5):200. https://doi.org/10.3390/metabo10050200.
  • [79] Hao S, Cheng X, Wang X, An R, Xu H, Guo M, Li C, Wang Y, Hou Z, Guo C. Design, synthesis and biological evaluation of novel carbohydrate-based sulfonamide derivatives as antitumor agents. Bioorg Chem. 2020;104:104237. https://doi.org/10.1016/j.bioorg.2020.104237.
  • [80] Kumar A, Siwach K, Rom T, Kumar R, Angeli A, Kumar Paul A, Supuran CT, Sharma PK. Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors. Bioorg Chem. 2022;123:105764. https://doi.org/10.1016/j.bioorg.2022.105764.
  • [81] Gao C, Wang Y, Tian W, Zhu Y, Xue F. The therapeutic significance of aromatase inhibitors in endometrial carcinoma. Gynecol Oncol. 2014 ;134(1):190-195. https://doi.org/10.1016/j.ygyno.2014.04.060.
  • [82] Takahashi-Shiga N, Utsunomiya H, Miki Y, Nagase S, Kobayashi R, Matsumoto M, Niikura H, Ito K, Yaegashi N. Local biosynthesis of estrogen in human endometrial carcinoma through tumor-stromal cell interactions. Clin Cancer Res. 2009;15(19):6028-6034. https://doi.org/10.1158/1078-0432.CCR-09-1013.
  • [83] Kang H, Xiao X, Huang C, Yuan Y, Tang D, Dai X, Zeng X. Potent aromatase inhibitors and molecular mechanism of inhibitory action. Eur J Med Chem. 2018;143:426-437. https://doi.org/10.1016/j.ejmech.2017.11.057 .
  • [84] Chamduang C, Pingaew R, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg Chem. 2019;93:103327. https://doi.org/10.1016/j.bioorg.2019.103327.
  • [85] El-Naggar M, El-All ASA, El-Naem SIA, Abdalla MM, Rashdan HRM. New Potent 5α- Reductase and Aromatase Inhibitors Derived from 1,2,3-Triazole Derivative. Molecules. 2020;25(3):672. https://doi.org/10.3390/molecules25030672.
  • [86] Osmaniye D, Sağlık BN, Levent S, Ilgın S, Özkay Y, Kaplancıklı AZ. Design, synthesis, in vitro and in silico studies of some novel triazoles as anticancer agents for breast cancer. J Mol Struc. 2021; 1246: 131198. https://doi.org/10.1016/j.molstruc.2021.131198.
  • [87] Ammazzalorso A, Gallorini M, Fantacuzzi M, Gambacorta N, De Filippis B, Giampietro L, Maccallini C, Nicolotti O, Cataldi A, Amoroso R. Design, synthesis and biological evaluation of imidazole and triazole-based carbamates as novel aromatase inhibitors. Eur J Med Chem. 2021;211:113115. https://doi.org/10.1016/j.ejmech.2020.113115.
  • [88] Bai RY, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 2011;13(9):974-982. https://doi.org/10.1093/neuonc/nor077.
  • [89] Doudican N, Rodriguez A, Osman I, Orlow SJ. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res. 2008;6(8):1308-1315. https://doi.org/10.1158/1541-7786.MCR-07-2159.
  • [90] Singh P, Rathinasamy K, Mohan R, Panda D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life. 2008;60(6):368-375. https://doi.org/10.1002/iub.42.
  • [91] Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem. 2021;64(12):7963-7990. https://doi.org/10.1021/acs.jmedchem.1c00100.
  • [92] Haider K, Rahaman S, Yar MS, Kamal A. Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opin Ther Pat. 2019;29(8):623-641. https://doi.org/10.1080/13543776.2019.1648433.
  • [93] Fu DJ, Li P, Wu BW, Cui XX, Zhao CB, Zhang SY. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors. Eur J Med Chem. 2019;165:309-322. https://doi.org/10.1016/j.ejmech.2019.01.033.
  • [94] Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem. 2022;37(1):1346-1363. https://doi.org/10.1080/14756366.2022.2072308.
  • [95] Li N, Guan Q, Hong Y, Zhang B, Li M, Li X, Li B, Wu L, Zhang W. Discovery of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles as potent tubulin polymerization inhibitors. Eur J Med Chem. 2023;256:115402. https://doi.org/10.1016/j.ejmech.2023.115402.
  • [96] Alzhrani ZMM, Alam MM, Neamatallah T, Nazreen S. Design, synthesis and in vitro antiproliferative activity of new thiazolidinedione-1,3,4-oxadiazole hybrids as thymidylate synthase inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):1116-1123. https://doi.org/10.1080/14756366.2020.1759581.
  • [97] Kumar VP, Cisneros JA, Frey KM, Castellanos-Gonzalez A, Wang Y, Gangjee A, White AC Jr, Jorgensen WL, Anderson KS. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase. Bioorg Med Chem Lett. 2014 ;24(17):4158-61. https://doi.org/10.1016/j.bmcl.2014.07.049.
  • [98] Catalano A, Luciani R, Carocci A, Cortesi D, Pozzi C, Borsari C, Ferrari S, Mangani S. X-ray crystal structures of Enterococcus faecalis thymidylate synthase with folate binding site inhibitors. Eur J Med Chem. 2016;123:649-664. https://doi.org/10.1016/j.ejmech.2016.07.066.
  • [99] Lu GQ, Li XY, Mohamed O K, Wang D, Meng FH. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem. 2019;171:282-296. https://doi.org/10.1016/j.ejmech.2019.03.047.
  • [100] Alam MM, Almalki AS, Neamatallah T, Ali NM, Malebari AM, Nazreen S. Synthesis of New 1, 3, 4-Oxadiazole-Incorporated 1, 2, 3-Triazole Moieties as Potential Anticancer Agents Targeting Thymidylate Synthase and Their Docking Studies. Pharmaceuticals (Basel). 2020;13(11):390. https://doi.org/10.3390/ph13110390 .
  • [101] Alam MM, Almalki AS, Neamatallah T, Ali NM, Malebari AM, Nazreen S. Synthesis of New 1, 3, 4-Oxadiazole-Incorporated 1, 2, 3-Triazole Moieties as Potential Anticancer Agents Targeting Thymidylate Synthase and Their Docking Studies. Pharmaceuticals (Basel). 2020;13(11):390. https://doi.org/10.1016/j.bmc.2021.116136.
  • [102] Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G, Aprile G. Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med. 2014;2(12):123. https://doi.org/10.3978/j.issn.2305-5839.2014.08.14.
  • [103] Wang DP, Liu KL, Li XY, Lu GQ, Xue WH, Qian XH, Mohamed O K, Meng FH. Design, synthesis, and in vitro and in vivo anti-angiogenesis study of a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor based on 1,2,3-triazole scaffold. Eur J Med Chem. 2021;211:113083. https://doi.org/10.1016/j.ejmech.2020.113083.
  • [104] Zengin M, Unsal Tan O, Arafa RK, Balkan A. Design and synthesis of new 2-oxoquinoxalinyl-1,2,4-triazoles as antitumor VEGFR-2 inhibitors. Bioorg Chem. 2022;121:105696. https://doi.org/10.1016/j.bioorg.2022.105696.
  • [105] Zawal AG, Abdel-Aziz MM, Elbatreek MH, El-Shanawani AA, Abdel-Aziz LM, Elbaramawi SS. Design, synthesis, in vitro and in silico evaluation of novel substituted 1,2,4-triazole analogues as dual human VEGFR-2 and TB-InhA inhibitors. Bioorg Chem. 2023;141:106883. https://doi.org/10.1016/j.bioorg.2023.106883.
  • [106] Othman DIA, Hamdi A, Tawfik SS, Elgazar AA, Mostafa AS. Identification of new benzimidazole-triazole hybrids as anticancer agents: multi-target recognition, in vitro and in silico studies. J Enzyme Inhib Med Chem. 2023;38(1):2166037. https://doi.org/10.1080/14756366.2023.2166037.
  • [107] Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65(10):1566-1584. https://doi.org/10.1007/s00018-008-7440-8.
  • [108] Kilic A. Inhibitors of Epidermal Growth Factor Receptor and Dermatological Side Effects. Turk J Dermatol. 2012; 6(4): 168-174. https://doi.org/10.5152/tdd.2012.36.
  • [109] Mao L, Sun G, Zhao J, Xu G, Yuan M, Li YM. Design, synthesis and antitumor activity of icotinib derivatives. Bioorg Chem. 2020;105:104421. https://doi.org/10.1016/j.bioorg.2020.104421.
  • [110] Ihmaid SK, Alraqa SY, Aouad MR, Aljuhani A, Elbadawy HM, Salama SA, Rezki N, Ahmed HEA. Design of molecular hybrids of phthalimide-triazole agents with potent selective MCF-7/HepG2 cytotoxicity: Synthesis, EGFR inhibitory effect, and metabolic stability. Bioorg Chem. 2021;111:104835. https://doi.org/10.1016/j.bioorg.2021.104835.
  • [111] Damghani T, Moosavi F, Khoshneviszadeh M, Mortazavi M, Pirhadi S, Kayani Z, Saso L, Edraki N, Firuzi O. Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci Rep. 2021;11(1):3644. https://doi.org/10.1038/s41598-021-83069-4.
  • [112] Liu J, Liu F, Li Z, Li C, Wu S, Shen J, Wang H, Du S, Wei H, Hou Y, Ding S, Chen Y. Novel 4-phenoxypyridine derivatives bearing imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide moieties: Design, synthesis and biological evaluation as potent antitumor agents. Bioorg Chem. 2022;120:105629. https://doi.org/10.1016/j.bioorg.2022.105629.
  • [113] Zhang Q, Liu X, Gan W, Wu J, Zhou H, Yang Z, Zhang Y, Liao M, Yuan P, Xu S, Zheng P, Zhu W. Discovery of Triazolo-pyridazine/-pyrimidine Derivatives Bearing Aromatic (Heterocycle)-Coupled Azole Units as Class II c-Met Inhibitors. ACS Omega. 2020;5(27):16482-16490. https://doi.org/10.1021/acsomega.0c00838.
  • [114] Mortazavi M, Eskandari M, Moosavi F, Damghani T, Khoshneviszadeh M, Pirhadi S, Saso L, Edraki N, Firuzi O. Novel quinazoline-1,2,3-triazole hybrids with anticancer and MET kinase targeting properties. Sci Rep. 2023;13(1):14685. https://doi.org/10.1038/s41598-023-41283-2.
  • [115] Guo C, Wang L, Li X, Wang S, Yu X, Xu K, Zhao Y, Luo J, Li X, Jiang B, Shi D. Discovery of Novel Bromophenol-Thiosemicarbazone Hybrids as Potent Selective Inhibitors of Poly(ADP-ribose) Polymerase-1 (PARP-1) for Use in Cancer. J Med Chem. 2019;62(6):3051-3067. https://doi.org/10.1021/acs.jmedchem.8b01946.
  • [116] Papeo G, Orsini P, Avanzi NR, Borghi D, Casale E, Ciomei M, Cirla A, Desperati V, Donati D, Felder ER, Galvani A, Guanci M, Isacchi A, Posteri H, Rainoldi S, Riccardi-Sirtori F, Scolaro A, Montagnoli A. Discovery of Stereospecific PARP-1 Inhibitor Isoindolinone NMS-P515. ACS Med Chem Lett. 2019;10(4):534-538. https://doi.org/10.1021/acsmedchemlett.8b00569.
  • [117] Toy Y, Gündoğdu R, Sever A, Erdoğan MK. Defektif Homolog Rekombinasyon DNA Tamiri ve PARP İnhibisyonu Arasındaki Sentetik Letal Etkileşim. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 12(4):2459-2475. DOI: https://doi.org/10.21597/jist.1095366.
  • [118] Li S, Li XY, Zhang TJ, Kamara MO, Liang JW, Zhu J, Meng FH. Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem. 2020 ;94:103385. https://doi.org/10.1016/j.bioorg.2019.103385.
  • [119] Thabet FM, Dawood KM, Ragab EA, Nafie MS, Abbas AA. Design and synthesis of new bis(1,2,4-triazolo[3,4-b][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition. RSC Adv. 2022;12(36):23644-23660. https://doi.org/10.1039/d2ra03549a.
  • [120] Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Apoptosis induction, PARP-1 inhibition, and cell cycle analysis of leukemia cancer cells treated with novel synthetic 1,2,3-triazole-chalcone conjugates. Bioorg Chem. 2022;123:105762. https://doi.org/10.1016/j.bioorg.2022.105762.
  • [121] Zhou S, Hou X, Li L, Guo L, Wang H, Mao L, Shi L, Yuan M. Discovery of dolutegravir-1,2,3-triazole derivatives against prostate cancer via inducing DNA damage. Bioorg Chem. 2023;141:106926. https://doi.org/10.1016/j.bioorg.2023.106926.
  • [122] Xu GQ, Gong XQ, Zhu YY, Yao XJ, Peng LZ, Sun G, Yang JX, Mao LF. Novel 1,2,3-Triazole Erlotinib Derivatives as Potent IDO1 Inhibitors: Design, Drug-Target Interactions Prediction, Synthesis, Biological Evaluation, Molecular Docking and ADME Properties Studies. Front Pharmacol. 2022 ;13:854965. https://doi.org/10.3389/fphar.2022.854965.
  • [123] Hou XX, Wu ZY, Zhan A, Gao E, Mao LF, Wang HL, Yang JX. Synthesis and activity study of novel N,N-diphenylurea derivatives as IDO1 inhibitors. Front Chem. 2023;11:1222825. https://doi.org/10.3389/fchem.2023.1222825.
  • [124] Mao LF, Wang YW, Zhao J, Xu GQ, Yao XJ, Li YM. Discovery of Icotinib-1,2,3-Triazole Derivatives as IDO1 Inhibitors. Front Pharmacol. 2020;11:579024. https://doi.org/10.3389/fphar.2020.579024.
  • [125] Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem. 2020;207:112703. https://doi.org/10.1016/j.ejmech.2020.112703.
  • [126] Hou XX, Gong XQ, Mao LF, Sun G, Yang JX. Design, synthesis and biological evaluation of erlotinib-based IDO1 inhibitors. Front Pharmacol. 2022;13:940704. https://doi.org/10.3389/fphar.2022.940704.

A comprehensive review on triazoles as anticancer agents

Year 2025, Volume: 29 Issue: 2, 639 - 666
https://doi.org/10.12991/jrespharm.1664884

Abstract

Despite the advancements in anticancer drug design, new pharmacological compounds that are safer, more effective, and able to stop the emergence of resistance to themselves are still desperately needed. Triazoles have a broad range of biological activities, including anticancer, antiviral, and antibacterial activities. Also, they can interact with diverse enzyme systems via hydrogen bonds, electrostatic interactions, and other mechanisms. Due to these advantages, triazoles have become one of the most popular scaffolds in medicinal chemistry and have attracted researchers' attention. In this review, a comprehensive overview of recent advances in anticancer triazoles, focusing on developments within the last five years, their classification based on their mode of action and synthesis methodology, and a summary of historical progress in synthesis techniques are provided to offer researchers a broad perspective.

References

  • [1] Laamari Y, Oubella A, Bimoussa A, El Mansouri AE, Ketatni EM, Mentre O, Ait Itto MY, Morjani H, Khouili M, Auhmani A. Design, Hemiysnthesis, crystal structure and anticancer activity of 1, 2, 3-triazoles derivatives of totarol. Bioorg Chem. 2021;115:105165. https://doi.org/10.1016/j.bioorg.2021.105165.
  • [2] Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment. Clin Ther. 2016;38(7):1551-1566. https://doi.org/10.1016/j.clinthera.2016.03.026.
  • [3] Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448-451. https://doi.org/10.21037/jtd.2017.02.75.
  • [4] Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. https://doi.org/10.3322/caac.21763.
  • [5] GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459-1544. Erratum in: Lancet. 2017 ;389(10064):e1. https://doi.org/10.1016/s0140-6736(16)31012-1.
  • [6] Ma LY, Pang LP, Wang B, Zhang M, Hu B, Xue DQ, Shao KP, Zhang BL, Liu Y, Zhang E, Liu HM. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur J Med Chem. 2014;86:368-380. https://doi.org/10.1016/j.ejmech.2014.08.010.
  • [7] Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem. 2019;183:111700. https://doi.org/10.1016/j.ejmech.2019.111700.
  • [8] Gao F, Zhang X, Wang T, Xiao J. Quinolone hybrids and their anti-cancer activities: An overview. Eur J Med Chem. 2019;;165:59-79. https://doi.org/10.1016/j.ejmech.2019.01.017.
  • [9] Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment. Eur J Med Chem. 2019;163:883-895. https://doi.org/10.1016/j.ejmech.2018.12.035.
  • [10] Kashyap A, Silakari O, Chapter 9 - Triazoles: Multidimensional 5-Membered Nucleus for Designing Multitargeting Agents. In: Key Heterocycle Cores for Designing Multitargeting Molecules. Silakari O, Editor. 2018, Elsevier. p. 323-342.
  • [11] Duan YC, Ma YC, Zhang E, Shi XJ, Wang MM, Ye XW, Liu HM. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem. 2013;62:11-19. https://doi.org/10.1016/j.ejmech.2012.12.046.
  • [12] Ram VJ, Sethi A, Nath M, Pratap R. Five-Membered Heterocycles. In: The Chemistry of Heterocycles. 2019, Elsevier. p. 149-478.
  • [13] Masood MM. Progress in Synthetic Trends Followed for the Development of 1,2,3-Triazole Derivatives: A Review. Polycycl Aromat Comp. 2023; 44(6): 4273-4304. https://doi.org/10.1080/10406638.2023.2247119.
  • [14] Akhtar J, Khan AA, Ali Z, Haider R, Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem. 2017 ;125:143-189. https://doi.org/10.1016/j.ejmech.2016.09.023.
  • [15] Lal K, Yadav P. Recent Advancements in 1,4-Disubstituted 1H-1,2,3-Triazoles as Potential Anticancer Agents. Anticancer Agents Med Chem. 2018;18(1):21-37. https://doi.org/10.2174/1871520616666160811113531.
  • [16] Arabiyat S, Kasabri V, Al-Hiari Y, Bustanji YK, Albashiti R, Almasri IM, Sabbah DA. Antilipase and antiproliferative activities of novel fluoroquinolones and triazolofluoroquinolones. Chem Biol Drug Des. 2017;90(6):1282-1294. https://doi.org/10.1111/cbdd.13049.
  • [17] Jin X, Yan L, Li HJ, Wang RL, Hu ZL, Jiang YY, Cao YB, Yan TH, Sun QY. Novel triazolyl berberine derivatives prepared via CuAAC click chemistry: synthesis, anticancer activity and structure-activity relationships. Anticancer Agents Med Chem. 2015;15(1):89-98. https://doi.org/10.2174/1871520614666141203142012.
  • [18] Ke Y, Wang W, Zhao LF, Liang JJ, Liu Y, Zhang X, Feng K, Liu HM. Design, synthesis and biological mechanisms research on 1,2,3-triazole derivatives of Jiyuan Oridonin A. Bioorg Med Chem. 2018;26(17):4761-4773. https://doi.org/10.1016/j.bmc.2017.11.005.
  • [19] Taia A, Essaber M, Oubella A, Aatif A, Bodiguel J, Jamart-Gregoire B, Itto MYA, Marjani H. Synthesis, characterization, and biological evaluation of new heterocyclic systems 1, 2, 3-triazole-isoxazoline from eugenol by the mixed condensation reactions. Synth Commun. 2020; 50(13): 2052-2065. https://doi.org/10.1080/00397911.2020.1762224.
  • [20] Guan LP, Jin QH, Tian GR, Chai KY, Quan ZS. Synthesis of some quinoline-2(1H)-one and 1, 2, 4 - triazolo [ 4 , 3 -a ] quinoline derivatives as potent anticonvulsants. J Pharm Pharm Sci. 2007;10(3):254-262
  • [21] Aher NG, Pore VS, Mishra NN, Kumar A, Shukla PK, Sharma A, Bhat MK. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett. 2009;19(3):759-763. https://doi.org/10.1016/j.bmcl.2008.12.026
  • [22] Wang XL, Wan K, Zhou CH. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem. 2010;45(10):4631-4639. https://doi.org/10.1016/j.ejmech.2010.07.031.
  • [23] Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem. 2017;71:30-54. https://doi.org/10.1016/j.bioorg.2017.01.010.
  • [24] Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem. 2019;168:357-372.https://doi.org/10.1016/j.ejmech.2019.02.055 .
  • [25] Lee T, Cho M, Ko SY, Youn HJ, Baek DJ, Cho WJ, Kang CY, Kim S. Synthesis and evaluation of 1,2,3-triazole containing analogues of the immunostimulant alpha-GalCer. J Med Chem. 2007;50(3):585-589. https://doi.org/10.1021/jm061243q
  • [26] Wang G, Peng Z, Wang J, Li X, Li J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur J Med Chem. 2017;125:423-429. https://doi.org/10.1016/j.ejmech.2016.09.067.
  • [27] Buckle DR, Outred DJ, Rockell CJ, Smith H, Spicer BA. Studies on v-triazoles. 7. Antiallergic 9-oxo-1H,9H-benzopyrano[2,3-d]-v-triazoles. J Med Chem. 1983;26(2):251-254. https://doi.org/10.1021/jm00356a025.
  • [28] De Simone R, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G. Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem. 2011;54(6):1565-75. https://doi.org/ 10.1021/jm101238d.
  • [29] Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm 2015; 6(6): 1104-1116. https://doi.org/10.1039/c5md00057b.
  • [30] Costa MS, Boechat N, Rangel EA, da Silva Fde C, de Souza AM, Rodrigues CR, Castro HC, Junior IN, Lourenço MC, Wardell SM, Ferreira VF. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg Med Chem. 2006 Dec 15;14(24):8644-53. https://doi.org/10.1016/j.bmc.2006.08.019.
  • [31] Yan W, Wang X, Li K, Li TX, Wang JJ, Yao KC, Cao LL, Zhao SS, Ye YH. Design, synthesis, and antifungal activity of carboxamide derivatives possessing 1,2,3-triazole as potential succinate dehydrogenase inhibitors. Pestic Biochem Physiol. 2019;156:160-169. https://doi.org/10.1016/j.pestbp.2019.02.017.
  • [32] El-Sayed WA, Khalaf HS, Mohamed SF, Hussein HA, Kutkat OM, Amr AE. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ J Gen Chem. 2017; 87(10): 2444-2453. https://doi.org/10.1134/s1070363217100279.
  • [33] Whiting M, Tripp JC, Lin Y-C, Lindstrom W, Olson AJ, Elder JH, Sharpless KB, Fokin VV. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J Med Chem. 2006; 49(26): 7697-7710. https://doi.org/10.1021/jm060754+.
  • [34] Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem. 2008;51(20):6263-6270. https://doi.org/10.1021/jm800149m .
  • [35] Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem. 2011;26(1):1-21. https://doi.org/10.3109/14756360903524304.
  • [36] Kumar R, Sharma V, Bua S, Supuran CT, Sharma PK. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J Enzyme Inhib Med Chem. 2017; 32(1):1187-1194. https://doi.org/10.1080/14756366.2017.1367775.
  • [37] Kumar R, Vats L, Bua S, Supuran CT, Sharma PK. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545-551. https://doi.org/10.1016/j.ejmech.2018.06.021.
  • [38] Kumar R, Vats L, Bua S, Supuran CT, Sharma PK. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545-551. https://doi.org/10.3390/biomedicines9060628.
  • [39] Mojaddami A, Sakhteman A, Fereidoonnezhad M, Faghih Z, Najdian A, Khabnadideh S, Sadeghpour H, Rezaei Z. Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies. Res Pharm Sci. 2017;12(1):21-30. https://doi.org/10.4103/1735-5362.199043.
  • [40] Maghraby MT, Mazyad Almutairi T, Bräse S, Salem OIA, Youssif BGM, Sheha MM. New 1,2,3-Triazole/1,2,4-triazole Hybrids as Aromatase Inhibitors: Design, Synthesis, and Apoptotic Antiproliferative Activity. Molecules. 2023;28(20):7092. https://doi.org/10.3390/molecules28207092.
  • [41] Sanphanya K, Wattanapitayakul SK, Phowichit S, Fokin VV, Vajragupta O. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach. Bioorg Med Chem Lett. 2013;23(10):2962-2967. https://doi.org/10.1016/j.bmcl.2013.03.042.
  • [42] Banerji B, Chandrasekhar K, Sreenath K, Roy S, Nag S, Saha KD. Synthesis of Triazole-Substituted Quinazoline Hybrids for Anticancer Activity and a Lead Compound as the EGFR Blocker and ROS Inducer Agent. ACS Omega. 2018;3(11):16134-16142. https://doi.org/10.1021/acsomega.8b01960.
  • [43] Ali AA. 1,2,3-Triazoles: Synthesis and Biological Application. In: Azoles, Aleksey K, Editor. 2020, IntechOpen: Rijeka.
  • [44] Tsogoeva S, Jalani H, Karagöz A. Synthesis of Substituted 1,2,3-Triazoles via Metal-Free Click Cycloaddition Reactions and Alternative Cyclization Methods. Synthesis. 2016; 49(01): 29-41. https://doi.org/10.1055/s-0036-1588904.
  • [45] Kadhim MM, Mahmood EA, Heravi MRP, Soleimani-Amiri S, Ebadi AG, Vessally E. The synthesis of biologically active 1-sulfonyl-1, 2, 3-triazoles from sulfonyl azides and alkynes: a focus review. J Sulfur Chem. 2022; 44(3): 377-391. https://doi.org/10.1080/17415993.2022.2149266.
  • [46] Ohkanda J. Self-Assembled Receptors for Protein Surface Recognition. In: Comprehensive Supramolecular Chemistry II, J.L. Atwood, Editor. 2017, Elsevier: Oxford. p. 351-369.
  • [47] Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002;41(14):2596-2599.https://doi.org/10.1002/1521-773(20020715)41:14%3C2596::aid-anie2596%3E3.0.co;2-4.
  • [48] Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67(9):3057-3064. https://doi.org/10.1021/jo011148j.
  • [49] Song Y, Lee S, Dutta P, Ryu J-S. A Copper(I)-Mediated Tandem Three-Component Synthesis of 5-Allyl-1,2,3-triazoles. Synthesis. 2019; 52(05): 744-754. https://doi.org/10.1055/s-0039-1691506.
  • [50] Wang XX, Xin Y, Li Y, Xia WJ, Zhou B, Ye RR, Li YM. Copper-Catalyzed Decarboxylative Cycloaddition of Propiolic Acids, Azides, and Arylboronic Acids: Construction of Fully Substituted 1,2,3-Triazoles. J Org Chem. 2020;85(5):3576-3586. https://doi.org/10.1021/acs.joc.9b03285.
  • [51] Rajeswari PS, Nagarajan R, Sujith KP, Emmanuvel L. Synthesis of new Copper Catalyst with Pyrazole Based Tridentate Ligand and Study of Its Activity for Azide Alkyne Coupling. J Organomet Chem. 2021; 931: 121627. https://doi.org/10.1016/j.jorganchem.2020.121627.
  • [52] Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(43):16793-16797. https://doi.org/10.1073/pnas.0707090104.
  • [53] Sletten EM, Bertozzi CR. A hydrophilic azacyclooctyne for Cu-free click chemistry. Org Lett. 2008;10(14):3097-3099. https://doi.org/10.1021/ol801141k.
  • [54] He Y, Liu L, Cheng L. A Short Review of Research Progress on the Synthesis Approaches of Aza-Dibenzocyclooctyne Derivatives. Molecules. 2023;28(9):3715. https://doi.org/ 10.3390/molecules28093715.
  • [55] Yan SJ, Liu YJ, Chen YL, Liu L, Lin J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorg Med Chem Lett. 2010;20(17):5225-5228. https://doi.org/ 10.1016/j.bmcl.2010.06.141 .
  • [56] Thomas J, Jana S, John J, Liekens S, Dehaen W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem Commun (Camb). 2016;52(14):2885-8. https://doi.org/10.1039/C5CC08347H .
  • [57] Sravanthi SV, Babu H, Shiva R. Design, Synthesis, Molecular Docking, ADMET Studies, and Biological Evaluation of Isoxazoline and Pyrazoline Incorporating 1,2,3-Triazole Benzene Sulfonamides. Russ J Bioorg Chem. 2019; 45(5): 381-390. https://doi.org/10.1134/S1068162019050108.
  • [58] Silaichev PS, Beryozkina TV, Melekhin VV, Filimonov VO, Maslivets AN, Ilkin VG, Dehaen W, Bakulev VA. Cycloaddition reactions of heterocyclic azides with 2-cyanoacetamidines as a new route to C,N-diheteroarylcarbamidines. Beilstein J Org Chem. 2024;20:17-24. https://doi.org/ 10.3762/bjoc.20.3.
  • [59] Dai J, Tian S, Yang X, Liu Z. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem. 2022 ;10:891484. https://doi.org/10.3389/fchem.2022.891484.
  • [60] Arafa WAA, Ibrahim HM. Sustainable and scalable synthesis of polysubstituted bis-1,2,4-triazoles, bis-2-iminothiazolines and bis-thiobarbiturates using bis-N,N-disubstituted thioureas as versatile substrate. R Soc Open Sci. 2019;6(6):181963. https://doi.org/10.1098/rsos.181963.
  • [61] Xia JX, Huang MC. Heterogeneous Copper(I)-Catalyzed Cascade Addition–Oxidative Cyclization of Nitriles with 2-Aminopyridines or Amidines: Efficient and Practical Synthesis of 1,2,4-Triazoles. Synthesis. 2019; 51(09): 2014-2022. https://doi.org/10.1055/s-0037-1611712.
  • [62] Balewski Ł, Sączewski F, Bednarski PJ, Wolff L, Nadworska A, Gdaniec M, Kornicka A. Synthesis, Structure and Cytotoxicity Testing of Novel 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-Imine Derivatives. Molecules. 2020;25(24):5924. https://doi.org/10.3390/molecules25245924.
  • [63] Channa Basappa V, Hamse Kameshwar V, Kumara K, Achutha DK, Neratur Krishnappagowda L, Kariyappa AK. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon. 2020;6(10):e05290. https://doi.org/10.1016/j.heliyon.2020.e05290.
  • [64] Jahani R, Reza Abtahi S, Nematpour M, Fasihi Dastjerdi H, Chamanara M, Hami Z, Paknejad B. Design, synthesis, and pharmacological evaluation of novel 1,2,4-triazol-3-amine derivatives as potential agonists of GABAA subtype receptors with anticonvulsant and hypnotic effects. Bioorg Chem. 2020;104:104212. https://doi.org/10.1016/j.bioorg.2020.104212.
  • [65] Guo W, Liu G, Deng L, Mei W, Zou X, Zhong Y, Zhuo X, Fan X, Zheng L. Metal- and Oxidant-Free Green Three-Component Desulfurization and Deamination Condensation Approach to Fully Substituted 1H-1,2,4-Triazol-3-amines and Their Photophysical Properties. J Org Chem. 2021;86(24):17986-18003. https://doi.org/10.1021/acs.joc.1c02313.
  • [66] Zhang X, Luo J, Li Q, Xin Q, Ye L, Zhu Q, Shi Z, Zhan F, Chu B, Liu Z, Jiang Y. Design, synthesis and anti-tumor evaluation of 1,2,4-triazol-3-one derivatives and pyridazinone derivatives as novel CXCR2 antagonists. Eur J Med Chem. 2021;226:113812. https://doi.org/10.1016/j.ejmech.2021.113812.
  • [67] Semenets AP, Suleiman MM, Fedosov AI, Shtrygol SY, Havrylov IO, Mishchenko MV, Kovalenko SM, Georgiyants VA, Perekhoda LO. Synthesis, docking, and biological evaluation of novel 1-benzyl-4-(4-(R)-5-sulfonylidene-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyrrolidin-2-ones as potential nootropic agents. Eur J Med Chem. 2022;244:114823. https://doi.org/10.1016/j.ejmech.2022.114823.
  • [68] Liu C, Fei Q, Pan N, Wu W. Design, Synthesis, and Antifungal Activity of Novel 1,2,4-Triazolo[4,3-c]trifluoromethylpyrimidine Derivatives Bearing the Thioether Moiety. Front Chem. 2022;10:939644. https://doi.org/10.3389/fchem.2022.939644.
  • [69] Zhang Y, Zeng JL, Chen Z, Wang R. Base-Promoted (3 + 2) Cycloaddition of Trifluoroacetohydrazonoyl Chlorides with Imidates En Route to Trifluoromethyl-1,2,4-Triazoles. J Org Chem. 2022;87(21):14514-14522. https://doi.org/10.1021/acs.joc.2c01926.
  • [70] Aggarwal M, McKenna R. Update on carbonic anhydrase inhibitors: a patent review (2008 - 2011). Expert Opin Ther Pat. 2012;22(8):903-915. https://doi.org/10.1517/13543776.2012.707646.
  • [71] Angeli A, Pinteala M, Maier SS, Del Prete S, Capasso C, Simionescu BC, Supuran CT. Inhibition of α-, β-, γ-, δ-, ζ- and η-class carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. J Enzyme Inhib Med Chem. 2019;34(1):644-650. https://doi.org/10.1080/14756366.2019.1571273.
  • [72] Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem. 2013;21(6):1570-1582 . https://doi.org/10.1016/j.bmc.2012.04.044.
  • [73] Casini A, Scozzafava A, Mastrolorenzo A, Supuran LT. Sulfonamides and sulfonylated derivatives as anticancer agents. Curr Cancer Drug Targets. 2002;2(1):55-75. https://doi.org/10.2174/1568009023334060 .
  • [74] Huentupil Y, Peña L, Novoa N, Berrino E, Arancibia R, Supuran CT. New sulfonamides containing organometallic-acylhydrazones: synthesis, characterisation and biological evaluation as inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem. 2019;34(1):451-458. https://doi.org/ 10.1080/14756366.2018.1555156.
  • [75] Cecchi A, Hulikova A, Pastorek J, Pastoreková S, Scozzafava A, Winum JY, Montero JL, Supuran CT. Carbonic anhydrase inhibitors. Design of fluorescent sulfonamides as probes of tumor-associated carbonic anhydrase IX that inhibit isozyme IX-mediated acidification of hypoxic tumors. J Med Chem. 2005;48(15):4834-4841. https://doi.org/10.1021/jm0501073 .
  • [76] Puccetti L, Fasolis G, Vullo D, Chohan ZH, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff's bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes. Bioorg Med Chem Lett. 2005;15(12):3096-3101. https://doi.org/10.1016/j.bmcl.2005.04.055.
  • [77] Vats L, Kumar R, Bua S, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem. 2019;183:111698. https://doi.org/10.1016/j.ejmech.2019.111698.
  • [78] Chinchilli KK, Angeli A, Thacker PS, Korra LN, Biswas R, Arifuddin M, Supuran CT. Design, Synthesis, and Biological Evaluation of 1,2,3-Triazole-Linked Triazino[5,6-B]Indole-Benzene Sulfonamide Conjugates as Potent Carbonic Anhydrase I, II, IX, and XIII Inhibitors. Metabolites. 2020;10(5):200. https://doi.org/10.3390/metabo10050200.
  • [79] Hao S, Cheng X, Wang X, An R, Xu H, Guo M, Li C, Wang Y, Hou Z, Guo C. Design, synthesis and biological evaluation of novel carbohydrate-based sulfonamide derivatives as antitumor agents. Bioorg Chem. 2020;104:104237. https://doi.org/10.1016/j.bioorg.2020.104237.
  • [80] Kumar A, Siwach K, Rom T, Kumar R, Angeli A, Kumar Paul A, Supuran CT, Sharma PK. Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors. Bioorg Chem. 2022;123:105764. https://doi.org/10.1016/j.bioorg.2022.105764.
  • [81] Gao C, Wang Y, Tian W, Zhu Y, Xue F. The therapeutic significance of aromatase inhibitors in endometrial carcinoma. Gynecol Oncol. 2014 ;134(1):190-195. https://doi.org/10.1016/j.ygyno.2014.04.060.
  • [82] Takahashi-Shiga N, Utsunomiya H, Miki Y, Nagase S, Kobayashi R, Matsumoto M, Niikura H, Ito K, Yaegashi N. Local biosynthesis of estrogen in human endometrial carcinoma through tumor-stromal cell interactions. Clin Cancer Res. 2009;15(19):6028-6034. https://doi.org/10.1158/1078-0432.CCR-09-1013.
  • [83] Kang H, Xiao X, Huang C, Yuan Y, Tang D, Dai X, Zeng X. Potent aromatase inhibitors and molecular mechanism of inhibitory action. Eur J Med Chem. 2018;143:426-437. https://doi.org/10.1016/j.ejmech.2017.11.057 .
  • [84] Chamduang C, Pingaew R, Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg Chem. 2019;93:103327. https://doi.org/10.1016/j.bioorg.2019.103327.
  • [85] El-Naggar M, El-All ASA, El-Naem SIA, Abdalla MM, Rashdan HRM. New Potent 5α- Reductase and Aromatase Inhibitors Derived from 1,2,3-Triazole Derivative. Molecules. 2020;25(3):672. https://doi.org/10.3390/molecules25030672.
  • [86] Osmaniye D, Sağlık BN, Levent S, Ilgın S, Özkay Y, Kaplancıklı AZ. Design, synthesis, in vitro and in silico studies of some novel triazoles as anticancer agents for breast cancer. J Mol Struc. 2021; 1246: 131198. https://doi.org/10.1016/j.molstruc.2021.131198.
  • [87] Ammazzalorso A, Gallorini M, Fantacuzzi M, Gambacorta N, De Filippis B, Giampietro L, Maccallini C, Nicolotti O, Cataldi A, Amoroso R. Design, synthesis and biological evaluation of imidazole and triazole-based carbamates as novel aromatase inhibitors. Eur J Med Chem. 2021;211:113115. https://doi.org/10.1016/j.ejmech.2020.113115.
  • [88] Bai RY, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 2011;13(9):974-982. https://doi.org/10.1093/neuonc/nor077.
  • [89] Doudican N, Rodriguez A, Osman I, Orlow SJ. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res. 2008;6(8):1308-1315. https://doi.org/10.1158/1541-7786.MCR-07-2159.
  • [90] Singh P, Rathinasamy K, Mohan R, Panda D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life. 2008;60(6):368-375. https://doi.org/10.1002/iub.42.
  • [91] Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem. 2021;64(12):7963-7990. https://doi.org/10.1021/acs.jmedchem.1c00100.
  • [92] Haider K, Rahaman S, Yar MS, Kamal A. Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opin Ther Pat. 2019;29(8):623-641. https://doi.org/10.1080/13543776.2019.1648433.
  • [93] Fu DJ, Li P, Wu BW, Cui XX, Zhao CB, Zhang SY. Molecular diversity of trimethoxyphenyl-1,2,3-triazole hybrids as novel colchicine site tubulin polymerization inhibitors. Eur J Med Chem. 2019;165:309-322. https://doi.org/10.1016/j.ejmech.2019.01.033.
  • [94] Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem. 2022;37(1):1346-1363. https://doi.org/10.1080/14756366.2022.2072308.
  • [95] Li N, Guan Q, Hong Y, Zhang B, Li M, Li X, Li B, Wu L, Zhang W. Discovery of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles as potent tubulin polymerization inhibitors. Eur J Med Chem. 2023;256:115402. https://doi.org/10.1016/j.ejmech.2023.115402.
  • [96] Alzhrani ZMM, Alam MM, Neamatallah T, Nazreen S. Design, synthesis and in vitro antiproliferative activity of new thiazolidinedione-1,3,4-oxadiazole hybrids as thymidylate synthase inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):1116-1123. https://doi.org/10.1080/14756366.2020.1759581.
  • [97] Kumar VP, Cisneros JA, Frey KM, Castellanos-Gonzalez A, Wang Y, Gangjee A, White AC Jr, Jorgensen WL, Anderson KS. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase. Bioorg Med Chem Lett. 2014 ;24(17):4158-61. https://doi.org/10.1016/j.bmcl.2014.07.049.
  • [98] Catalano A, Luciani R, Carocci A, Cortesi D, Pozzi C, Borsari C, Ferrari S, Mangani S. X-ray crystal structures of Enterococcus faecalis thymidylate synthase with folate binding site inhibitors. Eur J Med Chem. 2016;123:649-664. https://doi.org/10.1016/j.ejmech.2016.07.066.
  • [99] Lu GQ, Li XY, Mohamed O K, Wang D, Meng FH. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem. 2019;171:282-296. https://doi.org/10.1016/j.ejmech.2019.03.047.
  • [100] Alam MM, Almalki AS, Neamatallah T, Ali NM, Malebari AM, Nazreen S. Synthesis of New 1, 3, 4-Oxadiazole-Incorporated 1, 2, 3-Triazole Moieties as Potential Anticancer Agents Targeting Thymidylate Synthase and Their Docking Studies. Pharmaceuticals (Basel). 2020;13(11):390. https://doi.org/10.3390/ph13110390 .
  • [101] Alam MM, Almalki AS, Neamatallah T, Ali NM, Malebari AM, Nazreen S. Synthesis of New 1, 3, 4-Oxadiazole-Incorporated 1, 2, 3-Triazole Moieties as Potential Anticancer Agents Targeting Thymidylate Synthase and Their Docking Studies. Pharmaceuticals (Basel). 2020;13(11):390. https://doi.org/10.1016/j.bmc.2021.116136.
  • [102] Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G, Aprile G. Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med. 2014;2(12):123. https://doi.org/10.3978/j.issn.2305-5839.2014.08.14.
  • [103] Wang DP, Liu KL, Li XY, Lu GQ, Xue WH, Qian XH, Mohamed O K, Meng FH. Design, synthesis, and in vitro and in vivo anti-angiogenesis study of a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor based on 1,2,3-triazole scaffold. Eur J Med Chem. 2021;211:113083. https://doi.org/10.1016/j.ejmech.2020.113083.
  • [104] Zengin M, Unsal Tan O, Arafa RK, Balkan A. Design and synthesis of new 2-oxoquinoxalinyl-1,2,4-triazoles as antitumor VEGFR-2 inhibitors. Bioorg Chem. 2022;121:105696. https://doi.org/10.1016/j.bioorg.2022.105696.
  • [105] Zawal AG, Abdel-Aziz MM, Elbatreek MH, El-Shanawani AA, Abdel-Aziz LM, Elbaramawi SS. Design, synthesis, in vitro and in silico evaluation of novel substituted 1,2,4-triazole analogues as dual human VEGFR-2 and TB-InhA inhibitors. Bioorg Chem. 2023;141:106883. https://doi.org/10.1016/j.bioorg.2023.106883.
  • [106] Othman DIA, Hamdi A, Tawfik SS, Elgazar AA, Mostafa AS. Identification of new benzimidazole-triazole hybrids as anticancer agents: multi-target recognition, in vitro and in silico studies. J Enzyme Inhib Med Chem. 2023;38(1):2166037. https://doi.org/10.1080/14756366.2023.2166037.
  • [107] Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65(10):1566-1584. https://doi.org/10.1007/s00018-008-7440-8.
  • [108] Kilic A. Inhibitors of Epidermal Growth Factor Receptor and Dermatological Side Effects. Turk J Dermatol. 2012; 6(4): 168-174. https://doi.org/10.5152/tdd.2012.36.
  • [109] Mao L, Sun G, Zhao J, Xu G, Yuan M, Li YM. Design, synthesis and antitumor activity of icotinib derivatives. Bioorg Chem. 2020;105:104421. https://doi.org/10.1016/j.bioorg.2020.104421.
  • [110] Ihmaid SK, Alraqa SY, Aouad MR, Aljuhani A, Elbadawy HM, Salama SA, Rezki N, Ahmed HEA. Design of molecular hybrids of phthalimide-triazole agents with potent selective MCF-7/HepG2 cytotoxicity: Synthesis, EGFR inhibitory effect, and metabolic stability. Bioorg Chem. 2021;111:104835. https://doi.org/10.1016/j.bioorg.2021.104835.
  • [111] Damghani T, Moosavi F, Khoshneviszadeh M, Mortazavi M, Pirhadi S, Kayani Z, Saso L, Edraki N, Firuzi O. Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci Rep. 2021;11(1):3644. https://doi.org/10.1038/s41598-021-83069-4.
  • [112] Liu J, Liu F, Li Z, Li C, Wu S, Shen J, Wang H, Du S, Wei H, Hou Y, Ding S, Chen Y. Novel 4-phenoxypyridine derivatives bearing imidazole-4-carboxamide and 1,2,4-triazole-3-carboxamide moieties: Design, synthesis and biological evaluation as potent antitumor agents. Bioorg Chem. 2022;120:105629. https://doi.org/10.1016/j.bioorg.2022.105629.
  • [113] Zhang Q, Liu X, Gan W, Wu J, Zhou H, Yang Z, Zhang Y, Liao M, Yuan P, Xu S, Zheng P, Zhu W. Discovery of Triazolo-pyridazine/-pyrimidine Derivatives Bearing Aromatic (Heterocycle)-Coupled Azole Units as Class II c-Met Inhibitors. ACS Omega. 2020;5(27):16482-16490. https://doi.org/10.1021/acsomega.0c00838.
  • [114] Mortazavi M, Eskandari M, Moosavi F, Damghani T, Khoshneviszadeh M, Pirhadi S, Saso L, Edraki N, Firuzi O. Novel quinazoline-1,2,3-triazole hybrids with anticancer and MET kinase targeting properties. Sci Rep. 2023;13(1):14685. https://doi.org/10.1038/s41598-023-41283-2.
  • [115] Guo C, Wang L, Li X, Wang S, Yu X, Xu K, Zhao Y, Luo J, Li X, Jiang B, Shi D. Discovery of Novel Bromophenol-Thiosemicarbazone Hybrids as Potent Selective Inhibitors of Poly(ADP-ribose) Polymerase-1 (PARP-1) for Use in Cancer. J Med Chem. 2019;62(6):3051-3067. https://doi.org/10.1021/acs.jmedchem.8b01946.
  • [116] Papeo G, Orsini P, Avanzi NR, Borghi D, Casale E, Ciomei M, Cirla A, Desperati V, Donati D, Felder ER, Galvani A, Guanci M, Isacchi A, Posteri H, Rainoldi S, Riccardi-Sirtori F, Scolaro A, Montagnoli A. Discovery of Stereospecific PARP-1 Inhibitor Isoindolinone NMS-P515. ACS Med Chem Lett. 2019;10(4):534-538. https://doi.org/10.1021/acsmedchemlett.8b00569.
  • [117] Toy Y, Gündoğdu R, Sever A, Erdoğan MK. Defektif Homolog Rekombinasyon DNA Tamiri ve PARP İnhibisyonu Arasındaki Sentetik Letal Etkileşim. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 12(4):2459-2475. DOI: https://doi.org/10.21597/jist.1095366.
  • [118] Li S, Li XY, Zhang TJ, Kamara MO, Liang JW, Zhu J, Meng FH. Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem. 2020 ;94:103385. https://doi.org/10.1016/j.bioorg.2019.103385.
  • [119] Thabet FM, Dawood KM, Ragab EA, Nafie MS, Abbas AA. Design and synthesis of new bis(1,2,4-triazolo[3,4-b][1,3,4]thiadiazines) and bis((quinoxalin-2-yl)phenoxy)alkanes as anti-breast cancer agents through dual PARP-1 and EGFR targets inhibition. RSC Adv. 2022;12(36):23644-23660. https://doi.org/10.1039/d2ra03549a.
  • [120] Othman EM, Fayed EA, Husseiny EM, Abulkhair HS. Apoptosis induction, PARP-1 inhibition, and cell cycle analysis of leukemia cancer cells treated with novel synthetic 1,2,3-triazole-chalcone conjugates. Bioorg Chem. 2022;123:105762. https://doi.org/10.1016/j.bioorg.2022.105762.
  • [121] Zhou S, Hou X, Li L, Guo L, Wang H, Mao L, Shi L, Yuan M. Discovery of dolutegravir-1,2,3-triazole derivatives against prostate cancer via inducing DNA damage. Bioorg Chem. 2023;141:106926. https://doi.org/10.1016/j.bioorg.2023.106926.
  • [122] Xu GQ, Gong XQ, Zhu YY, Yao XJ, Peng LZ, Sun G, Yang JX, Mao LF. Novel 1,2,3-Triazole Erlotinib Derivatives as Potent IDO1 Inhibitors: Design, Drug-Target Interactions Prediction, Synthesis, Biological Evaluation, Molecular Docking and ADME Properties Studies. Front Pharmacol. 2022 ;13:854965. https://doi.org/10.3389/fphar.2022.854965.
  • [123] Hou XX, Wu ZY, Zhan A, Gao E, Mao LF, Wang HL, Yang JX. Synthesis and activity study of novel N,N-diphenylurea derivatives as IDO1 inhibitors. Front Chem. 2023;11:1222825. https://doi.org/10.3389/fchem.2023.1222825.
  • [124] Mao LF, Wang YW, Zhao J, Xu GQ, Yao XJ, Li YM. Discovery of Icotinib-1,2,3-Triazole Derivatives as IDO1 Inhibitors. Front Pharmacol. 2020;11:579024. https://doi.org/10.3389/fphar.2020.579024.
  • [125] Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem. 2020;207:112703. https://doi.org/10.1016/j.ejmech.2020.112703.
  • [126] Hou XX, Gong XQ, Mao LF, Sun G, Yang JX. Design, synthesis and biological evaluation of erlotinib-based IDO1 inhibitors. Front Pharmacol. 2022;13:940704. https://doi.org/10.3389/fphar.2022.940704.
There are 126 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Lala Ahmadova This is me

Merve Camci Eren This is me

Özlen Güzel Akdemir

Publication Date
Submission Date June 4, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Ahmadova, L., Camci Eren, M., & Güzel Akdemir, Ö. (n.d.). A comprehensive review on triazoles as anticancer agents. Journal of Research in Pharmacy, 29(2), 639-666. https://doi.org/10.12991/jrespharm.1664884
AMA Ahmadova L, Camci Eren M, Güzel Akdemir Ö. A comprehensive review on triazoles as anticancer agents. J. Res. Pharm. 29(2):639-666. doi:10.12991/jrespharm.1664884
Chicago Ahmadova, Lala, Merve Camci Eren, and Özlen Güzel Akdemir. “A Comprehensive Review on Triazoles As Anticancer Agents”. Journal of Research in Pharmacy 29, no. 2 n.d.: 639-66. https://doi.org/10.12991/jrespharm.1664884.
EndNote Ahmadova L, Camci Eren M, Güzel Akdemir Ö A comprehensive review on triazoles as anticancer agents. Journal of Research in Pharmacy 29 2 639–666.
IEEE L. Ahmadova, M. Camci Eren, and Ö. Güzel Akdemir, “A comprehensive review on triazoles as anticancer agents”, J. Res. Pharm., vol. 29, no. 2, pp. 639–666, doi: 10.12991/jrespharm.1664884.
ISNAD Ahmadova, Lala et al. “A Comprehensive Review on Triazoles As Anticancer Agents”. Journal of Research in Pharmacy 29/2 (n.d.), 639-666. https://doi.org/10.12991/jrespharm.1664884.
JAMA Ahmadova L, Camci Eren M, Güzel Akdemir Ö. A comprehensive review on triazoles as anticancer agents. J. Res. Pharm.;29:639–666.
MLA Ahmadova, Lala et al. “A Comprehensive Review on Triazoles As Anticancer Agents”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 639-66, doi:10.12991/jrespharm.1664884.
Vancouver Ahmadova L, Camci Eren M, Güzel Akdemir Ö. A comprehensive review on triazoles as anticancer agents. J. Res. Pharm. 29(2):639-66.