Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 667 - 672
https://doi.org/10.12991/jrespharm.1664891

Abstract

References

  • [1] Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, Hendawy AO, De Los Ríos-Escalante PR, Aboubakr M, Zakai SA, Nageeb WM. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol. 2024; 15: 1374466. https://doi.org/10.3389/fmicb.2024.1374466.
  • [2] Ceken N, Duran H, Atik B. Yoğun bakım ünitelerinden izole edilen Pseudomonas aeruginosa suşlarının 4 yıllık direnç profili. Pam Tıp Derg. 2021; 14(2): 306-311. https://doi.org/10.31362/patd.789332.
  • [3] Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan BK, Schaudinn C, Lavigne R, Turner PE, Raschke MJ, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nat Commun. 2024; 15(1): 8572. https://doi.org/10.1038/s41467-024-52595-w.
  • [4] Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect Med (Beijing). 2023; 2(3): 178-194. https://doi.org/10.1016/j.imj.2023.05.003.
  • [5] Huang W, Wei X, Xu G, Zhang X, Wang X. Carbapenem-resistant Pseudomonas aeruginosa infections in critically ill children: Prevalence, risk factors, and impact on outcome in a large tertiary pediatric hospital of China. Front Public Health. 2023; 11: 1088262. https://doi.org/10.3389/fpubh.2023.1088262.
  • [6] Cerioli M, Batailler C, Conrad A, Roux S, Perpoint T, Becker A, Triffault-Fillit C, Lustig S, Fessy MH, Laurent F, Valour F, Chidiac C, Ferry T. Pseudomonas aeruginosa implant-associated bone and joint infections: Experience in a regional reference center in france. Front Med (Lausanne). 2020; 7: 513242. https://doi.org/10.3389/fmed.2020.513242.
  • [7] Ashok AK, Jaryal SC, Thakur K, Sood A, Gupta PK, Thakur S. Detection of inducible and non-inducible (constitutive) AmpC β-lactamase–producing Gram-negative bacteria among family Enterobacteriaceae by two phenotypic methods-disk antagonism test (DAT) and mpC disk Test at a tertiary care Hospital, Himachal Pradesh, India. Int J Curr Microbiol App Sci. 2016; 5(4): 133-139. https://doi.org/10.20546/ijcmas.2016.504.018.
  • [8] Boyle RJ, Curtis N, Kelly N, Garland SM, Carapetis JR. Clinical implications of inducible beta-lactamase activity in Gram-negative bacteremia in children. Pediatr Infect Dis J. 2002; 21(10): 935-940. https://doi.org/10.1097/00006454-200210000-00010.
  • [9] Kumar SH, De AS, Baveja SM, Gore MA. Prevalence and risk factors of Metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital. J Lab Physicians. 2012; 4(1): 39-42. https://doi.org/10.4103/0974-2727.98670.
  • [10] Medina-Polo J, Jiménez-Alcaide E, García-González L, Guerrero-Ramos F, Pérez-Cadavid S, Arrébola-Pajares A, Sopeña-Sutil R, Benítez-Salas R, Díaz-González R, Tejido-Sánchez Á. Healthcare-associated infections in a department of urology: Incidence and patterns of antibiotic resistance. Scand J Urol. 2014; 48(2): 203-209. https://doi.org/10.3109/21681805.2013.834512.
  • [11] Botelho J, Grosso F, Peixe L. Characterization of the pJB12 plasmid from Pseudomonas aeruginosa reveals Tn6352, a novel putative transposon associated with mobilization of the blaVIM-2-harboring In58 integron. Antimicrob Agents Chemother. 2017; 61(5): e02532-16. https://doi.org/10.1128/AAC.02532-16.
  • [12] CDC. Centers for Disease Control and Prevention. Antimicrobial resistance threats report, 2019. https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 16 December 2024).
  • [13] Dantas RCC, Silva RTE, Ferreira ML, Gonçalves IR, Araújo BF, Campos PA, Royer S, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Molecular epidemiological survey of bacteremia by multidrug resistant Pseudomonas aeruginosa: the relevance of intrinsic resistance mechanisms. PLoS One. 2017; 12(5): e0176774. https://doi.org/10.1371/journal.pone.0176774.
  • [14] GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet. 2024; 404(10459): 1199-1226. https://doi.org/10.1016/S0140-6736(24)01867-1.
  • [15] Requena-Cabello H, Rodríguez-Guerrero E, Expósito-Ruiz M, Navarro-Marí JM, Gutierrez-Fernandez J. Antibiotic resistances of Pseudomonas aeruginosa and Acinetobacter baumannii in urine cultures: experience in a hospital of Southeast Spain. APMIS. 2024; 132(2): 100-111. https://doi.org/10.1111/apm.13360.
  • [16] Kal Cakmakliogullari E, Kuru C. Pseudomonas aeruginosa suşlarının antibiyotik duyarlılıkları: farklı örnek türlerinde değerlendirme. Ankem Derg. 2019; 33(2): 37-42. https://doi.org/10.5222/ankem.2019.197.
  • [17] Durmaz S, Toka Özer T. Klinik örneklerden izole edilen Pseudomonas aeruginosa suşlarında antibiyotik direnci. Abant Med J. 2015; 4(3): 239-242. https://doi.org/10.5505/abantmedj.2015.38981.
  • [18] Gültepe B, Iraz M, Ceylan A, Doymaz MZ. Çeşitli klinik örneklerden izole edilen Pseudomonas aeruginosa suşlarının antibiyotiklere direnci. ANKEM Derg. 2014; 28(1): 32-36. https://doi.org/10.5222/ankem.2014.032.
  • [19] Tümer S, Kirişçi Ö, Özkaya E, Çalışkan A. Çeşitli klinik örneklerden izole edilen Pseudomonas aerugınosa suşlarının antibiyotik duyarlılıkları. ANKEM Derg. 2015; 29(3): 99-104. https://doi.org/10.5222/ankem.2015.099.
  • [20] Uğur M, Genç S. Yoğun bakım ünitelerinden izole edilen Acinetobacter baumannii ve Pseudomonas aeruginosa suşlarının üç yıllık direnç profili. Turk J Soc Intensive Care. 2019; 17(3): 130-137. https://doi.org/10.4274/tybd.galenos.2018.94103.
  • [21] Özyurt M, Haznedaroğlu T, Baylan O, Hoşbul T, Ardıç N, Bektöre B. Yatan hastalardan izole edilen Pseudomonas izolatlarında antibiyotik direnci. ANKEM Derg. 2010; 24(3): 124-129.
  • [22] Eyigör M, Telli M, Tiryaki Y, Okulu Y, Aydın N. Yatan hastalardan izole edilen Pseudomonas aeruginosa suşlarının antibiyotik duyarlılıkları. ANKEM Derg. 2009;23(3):101-105.
  • [23] Flamm RK, Weaver MK, Thornsberry C, Jones ME, Karlowsky JA, Sahm DF. Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother. 2004; 48(7): 2431-2436. https://doi.org/10.1128/AAC.48.7.2431-2436.2004.
  • [24] Öztürk CE, Türkmen Albayrak H, Telli M, Altınöz A, Okulu Y, Ankaralı H. Pseudomonas aeruginosa suşlarında antibiyotiklere direnç ve beta-laktamaz oranları. ANKEM Derg. 2010;24(3):117-123.
  • [25] Kürkçü MF, Fatsa T, Tanrıverdi ES, Karakuş H, Hoşbul T, Otlu B. Investigation of resistance nodulation division (RND) efflux pump and OPRD expression levels in antibiotic resistance of clinical Pseudomonas aeruginosa isolates. Mikrobiyol Bul. 2024; 58(4): 393-407. https://doi.org/10.5578/mb.20249666.
  • [26] CLSI. Clinical & Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. https://clsi.org/ (accessed on 13 December 2024).
  • [27] Arıcı N, Kansak N, Adaleti R, Aksaray S. Comparison of broth microdilution and colistin disk elution methods for the determination of colistin susceptibility in multidrug-resistant Pseudomonas aeruginosa isolates. Mediterr J Infect Microb Antimicrob. 2023; 12(1): 14. https://doi.org/10.4274/mjima.galenos.2023.2023.14.

Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations

Year 2025, Volume: 29 Issue: 2, 667 - 672
https://doi.org/10.12991/jrespharm.1664891

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic pathogen associated with nosocomial infections. The intrinsic resistance of P. aeruginosa to many antibiotics and the ability of P. aeruginosa to rapidly acquire resistance make the management of infections difficult. This study aimed to evaluate the antibiotic resistance profiles and inducible beta-lactamase (ibl) synthesis in P. aeruginosa strains isolated from hospitalized patients at the Azerbaijan Medical Faculty Hospital. This study included 125 samples including 44 sputum samples from pneumonia patients, 44 urine samples from individuals with urinary tract infections, and 41 postoperative samples encompassing pus, drainage, and abscess contents derived from surgical site infections. P. aeruginosa was isolated by conventional culture methods and drug susceptibility and ibl synthesis were investigated by disc diffusion. Fisher's exact test compared the ibl synthesis of P. aeruginosa strains isolated from different infection sources. Statistical significance was accepted as 0.05 (p≤0.05). Of 26 P. aeruginosa, 19 (73.1%) were resistant to ceftazidime, 20 (76.9%) to cefepime, 20 (76.9%) to piperacillin and 23 (88.4%) to aztreonam, while 19 (73.1%) were susceptible to imipenem, 19 (73.1%) to amikacin, 23 (76.9%) to piperacillin and 23 (88.4%) to colistin. In addition, the ibl synthesis (+) P. aeruginosa strains isolated from pneumonia patients (77.8%) were marginally significantly higher than those isolated from urinary tract infections (25.0%) (p=0.057). Our results reveal high rates of antibiotic resistance among P. aeruginosa strains isolated from patients in our hospital, particularly against several key antibiotics. We recommend larger studies involving multiple centers and various sample types.

References

  • [1] Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, Hendawy AO, De Los Ríos-Escalante PR, Aboubakr M, Zakai SA, Nageeb WM. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol. 2024; 15: 1374466. https://doi.org/10.3389/fmicb.2024.1374466.
  • [2] Ceken N, Duran H, Atik B. Yoğun bakım ünitelerinden izole edilen Pseudomonas aeruginosa suşlarının 4 yıllık direnç profili. Pam Tıp Derg. 2021; 14(2): 306-311. https://doi.org/10.31362/patd.789332.
  • [3] Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan BK, Schaudinn C, Lavigne R, Turner PE, Raschke MJ, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nat Commun. 2024; 15(1): 8572. https://doi.org/10.1038/s41467-024-52595-w.
  • [4] Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect Med (Beijing). 2023; 2(3): 178-194. https://doi.org/10.1016/j.imj.2023.05.003.
  • [5] Huang W, Wei X, Xu G, Zhang X, Wang X. Carbapenem-resistant Pseudomonas aeruginosa infections in critically ill children: Prevalence, risk factors, and impact on outcome in a large tertiary pediatric hospital of China. Front Public Health. 2023; 11: 1088262. https://doi.org/10.3389/fpubh.2023.1088262.
  • [6] Cerioli M, Batailler C, Conrad A, Roux S, Perpoint T, Becker A, Triffault-Fillit C, Lustig S, Fessy MH, Laurent F, Valour F, Chidiac C, Ferry T. Pseudomonas aeruginosa implant-associated bone and joint infections: Experience in a regional reference center in france. Front Med (Lausanne). 2020; 7: 513242. https://doi.org/10.3389/fmed.2020.513242.
  • [7] Ashok AK, Jaryal SC, Thakur K, Sood A, Gupta PK, Thakur S. Detection of inducible and non-inducible (constitutive) AmpC β-lactamase–producing Gram-negative bacteria among family Enterobacteriaceae by two phenotypic methods-disk antagonism test (DAT) and mpC disk Test at a tertiary care Hospital, Himachal Pradesh, India. Int J Curr Microbiol App Sci. 2016; 5(4): 133-139. https://doi.org/10.20546/ijcmas.2016.504.018.
  • [8] Boyle RJ, Curtis N, Kelly N, Garland SM, Carapetis JR. Clinical implications of inducible beta-lactamase activity in Gram-negative bacteremia in children. Pediatr Infect Dis J. 2002; 21(10): 935-940. https://doi.org/10.1097/00006454-200210000-00010.
  • [9] Kumar SH, De AS, Baveja SM, Gore MA. Prevalence and risk factors of Metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital. J Lab Physicians. 2012; 4(1): 39-42. https://doi.org/10.4103/0974-2727.98670.
  • [10] Medina-Polo J, Jiménez-Alcaide E, García-González L, Guerrero-Ramos F, Pérez-Cadavid S, Arrébola-Pajares A, Sopeña-Sutil R, Benítez-Salas R, Díaz-González R, Tejido-Sánchez Á. Healthcare-associated infections in a department of urology: Incidence and patterns of antibiotic resistance. Scand J Urol. 2014; 48(2): 203-209. https://doi.org/10.3109/21681805.2013.834512.
  • [11] Botelho J, Grosso F, Peixe L. Characterization of the pJB12 plasmid from Pseudomonas aeruginosa reveals Tn6352, a novel putative transposon associated with mobilization of the blaVIM-2-harboring In58 integron. Antimicrob Agents Chemother. 2017; 61(5): e02532-16. https://doi.org/10.1128/AAC.02532-16.
  • [12] CDC. Centers for Disease Control and Prevention. Antimicrobial resistance threats report, 2019. https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 16 December 2024).
  • [13] Dantas RCC, Silva RTE, Ferreira ML, Gonçalves IR, Araújo BF, Campos PA, Royer S, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Molecular epidemiological survey of bacteremia by multidrug resistant Pseudomonas aeruginosa: the relevance of intrinsic resistance mechanisms. PLoS One. 2017; 12(5): e0176774. https://doi.org/10.1371/journal.pone.0176774.
  • [14] GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet. 2024; 404(10459): 1199-1226. https://doi.org/10.1016/S0140-6736(24)01867-1.
  • [15] Requena-Cabello H, Rodríguez-Guerrero E, Expósito-Ruiz M, Navarro-Marí JM, Gutierrez-Fernandez J. Antibiotic resistances of Pseudomonas aeruginosa and Acinetobacter baumannii in urine cultures: experience in a hospital of Southeast Spain. APMIS. 2024; 132(2): 100-111. https://doi.org/10.1111/apm.13360.
  • [16] Kal Cakmakliogullari E, Kuru C. Pseudomonas aeruginosa suşlarının antibiyotik duyarlılıkları: farklı örnek türlerinde değerlendirme. Ankem Derg. 2019; 33(2): 37-42. https://doi.org/10.5222/ankem.2019.197.
  • [17] Durmaz S, Toka Özer T. Klinik örneklerden izole edilen Pseudomonas aeruginosa suşlarında antibiyotik direnci. Abant Med J. 2015; 4(3): 239-242. https://doi.org/10.5505/abantmedj.2015.38981.
  • [18] Gültepe B, Iraz M, Ceylan A, Doymaz MZ. Çeşitli klinik örneklerden izole edilen Pseudomonas aeruginosa suşlarının antibiyotiklere direnci. ANKEM Derg. 2014; 28(1): 32-36. https://doi.org/10.5222/ankem.2014.032.
  • [19] Tümer S, Kirişçi Ö, Özkaya E, Çalışkan A. Çeşitli klinik örneklerden izole edilen Pseudomonas aerugınosa suşlarının antibiyotik duyarlılıkları. ANKEM Derg. 2015; 29(3): 99-104. https://doi.org/10.5222/ankem.2015.099.
  • [20] Uğur M, Genç S. Yoğun bakım ünitelerinden izole edilen Acinetobacter baumannii ve Pseudomonas aeruginosa suşlarının üç yıllık direnç profili. Turk J Soc Intensive Care. 2019; 17(3): 130-137. https://doi.org/10.4274/tybd.galenos.2018.94103.
  • [21] Özyurt M, Haznedaroğlu T, Baylan O, Hoşbul T, Ardıç N, Bektöre B. Yatan hastalardan izole edilen Pseudomonas izolatlarında antibiyotik direnci. ANKEM Derg. 2010; 24(3): 124-129.
  • [22] Eyigör M, Telli M, Tiryaki Y, Okulu Y, Aydın N. Yatan hastalardan izole edilen Pseudomonas aeruginosa suşlarının antibiyotik duyarlılıkları. ANKEM Derg. 2009;23(3):101-105.
  • [23] Flamm RK, Weaver MK, Thornsberry C, Jones ME, Karlowsky JA, Sahm DF. Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother. 2004; 48(7): 2431-2436. https://doi.org/10.1128/AAC.48.7.2431-2436.2004.
  • [24] Öztürk CE, Türkmen Albayrak H, Telli M, Altınöz A, Okulu Y, Ankaralı H. Pseudomonas aeruginosa suşlarında antibiyotiklere direnç ve beta-laktamaz oranları. ANKEM Derg. 2010;24(3):117-123.
  • [25] Kürkçü MF, Fatsa T, Tanrıverdi ES, Karakuş H, Hoşbul T, Otlu B. Investigation of resistance nodulation division (RND) efflux pump and OPRD expression levels in antibiotic resistance of clinical Pseudomonas aeruginosa isolates. Mikrobiyol Bul. 2024; 58(4): 393-407. https://doi.org/10.5578/mb.20249666.
  • [26] CLSI. Clinical & Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. https://clsi.org/ (accessed on 13 December 2024).
  • [27] Arıcı N, Kansak N, Adaleti R, Aksaray S. Comparison of broth microdilution and colistin disk elution methods for the determination of colistin susceptibility in multidrug-resistant Pseudomonas aeruginosa isolates. Mediterr J Infect Microb Antimicrob. 2023; 12(1): 14. https://doi.org/10.4274/mjima.galenos.2023.2023.14.
There are 27 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Articles
Authors

Sadraddin Atakishizada This is me

Ali Uckayabasi This is me

Toğrul Nağıyev

Publication Date
Submission Date January 6, 2025
Acceptance Date January 13, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Atakishizada, S., Uckayabasi, A., & Nağıyev, T. (n.d.). Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations. Journal of Research in Pharmacy, 29(2), 667-672. https://doi.org/10.12991/jrespharm.1664891
AMA Atakishizada S, Uckayabasi A, Nağıyev T. Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations. J. Res. Pharm. 29(2):667-672. doi:10.12991/jrespharm.1664891
Chicago Atakishizada, Sadraddin, Ali Uckayabasi, and Toğrul Nağıyev. “Antimicrobial Resistance and Inducible Beta-Lactamase Synthesis in Pseudomonas Aeruginosa Strains Isolated from Nosocomial Infections of Various Localizations”. Journal of Research in Pharmacy 29, no. 2 n.d.: 667-72. https://doi.org/10.12991/jrespharm.1664891.
EndNote Atakishizada S, Uckayabasi A, Nağıyev T Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations. Journal of Research in Pharmacy 29 2 667–672.
IEEE S. Atakishizada, A. Uckayabasi, and T. Nağıyev, “Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations”, J. Res. Pharm., vol. 29, no. 2, pp. 667–672, doi: 10.12991/jrespharm.1664891.
ISNAD Atakishizada, Sadraddin et al. “Antimicrobial Resistance and Inducible Beta-Lactamase Synthesis in Pseudomonas Aeruginosa Strains Isolated from Nosocomial Infections of Various Localizations”. Journal of Research in Pharmacy 29/2 (n.d.), 667-672. https://doi.org/10.12991/jrespharm.1664891.
JAMA Atakishizada S, Uckayabasi A, Nağıyev T. Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations. J. Res. Pharm.;29:667–672.
MLA Atakishizada, Sadraddin et al. “Antimicrobial Resistance and Inducible Beta-Lactamase Synthesis in Pseudomonas Aeruginosa Strains Isolated from Nosocomial Infections of Various Localizations”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 667-72, doi:10.12991/jrespharm.1664891.
Vancouver Atakishizada S, Uckayabasi A, Nağıyev T. Antimicrobial resistance and inducible beta-lactamase synthesis in Pseudomonas aeruginosa strains isolated from nosocomial infections of various localizations. J. Res. Pharm. 29(2):667-72.