Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 673 - 681
https://doi.org/10.12991/jrespharm.1664894

Abstract

References

  • [1]Knowles MA, Hurst CD. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. https://doi.org/10.1038/nrc3817
  • [2]Sancı A, Oktar A, Gokce MI, Süer E, Gülpinar O, Gögüs C, Baltacı S, Turkolmez K. Comparison of microscopic hematuria guidelines as applied in 1018 patients with microscopic hematuria. Urology. 2021;154: 28–32. https://doi.org/10.1016/j.urology.2021.04.031
  • [3]Zhang Y, Rumgay H, Li M, Yu H, Pan H, Ni J. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040. J Glob Health. 2023;13: 04109. https://doi.org/10.7189/jogh.13.04109
  • [4]Kim KH, Lee HW, Ha HK, Seo HK. Perioperative systemic therapy in muscle invasive bladder cancer: Current standard method, biomarkers, and emerging strategies. Invest Clin Urology. 2023;64(3): 202-218. https://doi.org/10.4111/icu.20230006
  • [5]Fuertes MA, Castilla J, Alonso C, Pérez JM. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem. 2003;10(3): 257-266. https://doi.org/10.2174/0929867033368484
  • [6]Zhou XY, Zhao QW, Li Z, Liu XY, Wang Y, Wu FH, Zhao M, Zhang YM, Zhao G, Yang GH, Guo XH. Capsaicin exerts synergistic pro-apoptotic effects with cisplatin in TSCC through the calpain pathway via TRPV1. J Cancer. 2024; 15(15): 4801–4817. https://doi.org/10.7150/jca.98075
  • [7]Ravetti S, Garro AG, Gaitán A, Murature M, Galiano M, Brignone SG, Palma SD. Naringin: nanotechnological strategies for potential pharmaceutical applications. Pharmaceutics. 2023;15(3): 863. https://doi.org/10.3390/pharmaceutics15030863
  • [8]Kim KH, Lee HW, Ha HK, Seo HK. Perioperative systemic therapy in muscle invasive bladder cancer: Current standard method, biomarkers and emerging strategies. Investig Clin Urol. 2023;64(3):202-218. https://doi.org/10.4111/icu.20230006
  • [9]Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and Naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines. 2022; 10: 1686. https://doi.org/10.3390/biomedicines10071686
  • [10]Zhou J, Xia L, Zhang Y. Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathol Res Pract. 2019;215(12):152707. https://doi.org/10.1016/j.prp.2019.152707
  • [11]Vincer B, Sindya J, Rajanathadurai J, Perumal E. Exploring the cytotoxic and anticancer potential of naringin on oral cancer cell line. Cureus. 2024;16(7):e64739. https://doi.org/10.7759/cureus.64739
  • [12]Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY). 2018;10(12):4141-4151. https://doi.org/10.18632/aging.101710
  • [13]Gil D, Zarzycka M, Dulińska-Litewka J, Ciołczyk-Wierzbicka D, Lekka M, Laidler P. Dihydrotestosterone increases the risk of bladder cancer in men. Hum Cell. 2019;32(3):379-389. https://doi.org/10.1007/s13577-019-00255-3
  • [14]Farhan M, Rizvi A, Aatif M, Ahmad A. Current understanding of flavonoids in cancer therapy and prevention. Metabolites. 2023;13(4):481. https://doi.org/10.3390/metabo13040481
  • [15]Ferreira M, Costa D, Sousa Â. Flavonoids-based delivery systems towards cancer therapies. Bioengineering (Basel). 2022;9(5):197. https://doi.org/10.3390/bioengineering9050197
  • [16]Ajji PK, Walder K, Puri M. Combination of balsamin and flavonoids ınduce apoptotic effects in liver and breast cancer cells. Front Pharmacol. 2020;11:574496. https://doi.org/10.3389/fphar.2020.574496
  • [17]Banjerdpongchai R, Wudtiwai B, Khawon P. Induction of human hepatocellular carcinoma HepG2 Cell apoptosis by naringin. Asian Pac J Cancer Prev. 2016;17(7):3289-3294.
  • [18]Effat H, Abosharaf HA, Radwan AM. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells. Sci Rep. 2024;14(1):2824. https://doi.org/10.1038/s41598-024-53320-9
  • [19]Xu C, Huang X, Huang Y, Liu X, Wu M, Wang J, Duan X. Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating pro death autophagy. Mol Med Rep. 2021;24(5):772. https://doi.org/10.3892/mmr.2021.12412
  • [20]Dai TY, Wang B, Lin SY, Jiang JP, Wu LQ, Qian WB. Pure total flavonoids from Citrus paradisi Macfad induce leukemia cell apoptosis in vitro. Chin J Integr Med. 2017;23(5):370-375. https://doi.org/10.1007/s11655-016-2593-z
  • [21]Ramesh E, Alshatwi AA. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 2013;51:97-105. https://doi.org/10.1016/j.fct.2012.07.033
  • [22]Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. Phytomedicine. 2022;96:153897. https://doi.org/10.1016/j.phymed.2021.153897
  • [23] Jan BL, Ahmad A, Khan A, Rehman MU, Alkharfy KM. Protective effect of chrysin, a flavonoid, on the genotoxic activity of carboplatin in mice. Drug Chem Toxicol. 2022;45(5):2146-2152. https://doi.org/10.1080/01480545.2021.1908752
  • [23] Albayrak D, Doğanlar O, Erdoğan S, Meraklı M, Doğan A, Turker P, Bostancı A, Doğanlar ZB. Naringin combined with NF-κB ınhibition and endoplasmic reticulum stress ınduces apoptotic cell death via oxidative stress and the PERK/eIF2α/ATF4/CHOP Axis in HT29 colon cancer cells. Biochem Genet. 2021;59(1):159-184. https://doi.org/10.1007/s10528-020-09996-5
  • [24] Sanci TO, Terzi E, Oz Bedir BE, Gumustas M, Aydin T, Cakir A. Effect of Herniarin on cell viability, cell cycle, and Erk protein levels in different stages of bladder cancer cells. Chem Biodivers. 2024;21(3):e202301645. https://doi.org/10.1002/cbdv.202301645
  • [25] Oz Bedir BE, Ozdemir Sanci T, Ercan E, Kaya Sezginer E, Terzi E. In vitro anticancer effect of theobromine in A549 non-small cell lung cancer cells. Int J Med Biochem. 2024;7(3):143-149. https://doi.org/10.14744/ijmb.2024.35582

Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells

Year 2025, Volume: 29 Issue: 2, 673 - 681
https://doi.org/10.12991/jrespharm.1664894

Abstract

Bladder cancer is a prevalent malignancy characterized by high recurrence rates and limited therapeutic options, particularly due to resistance and toxicity associated with cisplatin therapy. Bladder cancer remains a significant global health concern, and while cisplatin is a cornerstone of treatment, its efficacy is often limited by resistance and toxicity. Therefore, there is a critical need for novel agents that can enhance cisplatin's effects while mitigating its drawbacks. This study investigates the potential of naringin, a natural flavonoid, to exhibit antiproliferative and proapoptotic effects in human bladder cancer cell lines (HTB-9 and HT-1376), both as a monotherapy and in combination with cisplatin. Cytotoxicity was assessed via the MTT ((3-(4,5-dimetiltiazol-2-il)-2,5 difeniltetrazoliumbromid) assay, and apoptosis was evaluated using Annexin V/PI staining and caspase 3/7 activation assays. Results demonstrated that naringin reduced cell viability in a dose-dependent manner in both cell lines. When combined with cisplatin, naringin significantly enhanced the antiproliferative and pro-apoptotic effects compared to either treatment alone. Caspase 3/7 activity was markedly elevated in the combination groups, indicating an amplified apoptotic response. These findings suggest that naringin can potentiate cisplatin’s efficacy and could serve as a promising adjunctive therapy in bladder cancer treatment. Further studies are warranted to explore the underlying mechanisms and potential clinical applications of naringin in enhancing cisplatin-based chemotherapy.

References

  • [1]Knowles MA, Hurst CD. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. https://doi.org/10.1038/nrc3817
  • [2]Sancı A, Oktar A, Gokce MI, Süer E, Gülpinar O, Gögüs C, Baltacı S, Turkolmez K. Comparison of microscopic hematuria guidelines as applied in 1018 patients with microscopic hematuria. Urology. 2021;154: 28–32. https://doi.org/10.1016/j.urology.2021.04.031
  • [3]Zhang Y, Rumgay H, Li M, Yu H, Pan H, Ni J. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040. J Glob Health. 2023;13: 04109. https://doi.org/10.7189/jogh.13.04109
  • [4]Kim KH, Lee HW, Ha HK, Seo HK. Perioperative systemic therapy in muscle invasive bladder cancer: Current standard method, biomarkers, and emerging strategies. Invest Clin Urology. 2023;64(3): 202-218. https://doi.org/10.4111/icu.20230006
  • [5]Fuertes MA, Castilla J, Alonso C, Pérez JM. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr Med Chem. 2003;10(3): 257-266. https://doi.org/10.2174/0929867033368484
  • [6]Zhou XY, Zhao QW, Li Z, Liu XY, Wang Y, Wu FH, Zhao M, Zhang YM, Zhao G, Yang GH, Guo XH. Capsaicin exerts synergistic pro-apoptotic effects with cisplatin in TSCC through the calpain pathway via TRPV1. J Cancer. 2024; 15(15): 4801–4817. https://doi.org/10.7150/jca.98075
  • [7]Ravetti S, Garro AG, Gaitán A, Murature M, Galiano M, Brignone SG, Palma SD. Naringin: nanotechnological strategies for potential pharmaceutical applications. Pharmaceutics. 2023;15(3): 863. https://doi.org/10.3390/pharmaceutics15030863
  • [8]Kim KH, Lee HW, Ha HK, Seo HK. Perioperative systemic therapy in muscle invasive bladder cancer: Current standard method, biomarkers and emerging strategies. Investig Clin Urol. 2023;64(3):202-218. https://doi.org/10.4111/icu.20230006
  • [9]Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and Naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines. 2022; 10: 1686. https://doi.org/10.3390/biomedicines10071686
  • [10]Zhou J, Xia L, Zhang Y. Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathol Res Pract. 2019;215(12):152707. https://doi.org/10.1016/j.prp.2019.152707
  • [11]Vincer B, Sindya J, Rajanathadurai J, Perumal E. Exploring the cytotoxic and anticancer potential of naringin on oral cancer cell line. Cureus. 2024;16(7):e64739. https://doi.org/10.7759/cureus.64739
  • [12]Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY). 2018;10(12):4141-4151. https://doi.org/10.18632/aging.101710
  • [13]Gil D, Zarzycka M, Dulińska-Litewka J, Ciołczyk-Wierzbicka D, Lekka M, Laidler P. Dihydrotestosterone increases the risk of bladder cancer in men. Hum Cell. 2019;32(3):379-389. https://doi.org/10.1007/s13577-019-00255-3
  • [14]Farhan M, Rizvi A, Aatif M, Ahmad A. Current understanding of flavonoids in cancer therapy and prevention. Metabolites. 2023;13(4):481. https://doi.org/10.3390/metabo13040481
  • [15]Ferreira M, Costa D, Sousa Â. Flavonoids-based delivery systems towards cancer therapies. Bioengineering (Basel). 2022;9(5):197. https://doi.org/10.3390/bioengineering9050197
  • [16]Ajji PK, Walder K, Puri M. Combination of balsamin and flavonoids ınduce apoptotic effects in liver and breast cancer cells. Front Pharmacol. 2020;11:574496. https://doi.org/10.3389/fphar.2020.574496
  • [17]Banjerdpongchai R, Wudtiwai B, Khawon P. Induction of human hepatocellular carcinoma HepG2 Cell apoptosis by naringin. Asian Pac J Cancer Prev. 2016;17(7):3289-3294.
  • [18]Effat H, Abosharaf HA, Radwan AM. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells. Sci Rep. 2024;14(1):2824. https://doi.org/10.1038/s41598-024-53320-9
  • [19]Xu C, Huang X, Huang Y, Liu X, Wu M, Wang J, Duan X. Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating pro death autophagy. Mol Med Rep. 2021;24(5):772. https://doi.org/10.3892/mmr.2021.12412
  • [20]Dai TY, Wang B, Lin SY, Jiang JP, Wu LQ, Qian WB. Pure total flavonoids from Citrus paradisi Macfad induce leukemia cell apoptosis in vitro. Chin J Integr Med. 2017;23(5):370-375. https://doi.org/10.1007/s11655-016-2593-z
  • [21]Ramesh E, Alshatwi AA. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 2013;51:97-105. https://doi.org/10.1016/j.fct.2012.07.033
  • [22]Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. Phytomedicine. 2022;96:153897. https://doi.org/10.1016/j.phymed.2021.153897
  • [23] Jan BL, Ahmad A, Khan A, Rehman MU, Alkharfy KM. Protective effect of chrysin, a flavonoid, on the genotoxic activity of carboplatin in mice. Drug Chem Toxicol. 2022;45(5):2146-2152. https://doi.org/10.1080/01480545.2021.1908752
  • [23] Albayrak D, Doğanlar O, Erdoğan S, Meraklı M, Doğan A, Turker P, Bostancı A, Doğanlar ZB. Naringin combined with NF-κB ınhibition and endoplasmic reticulum stress ınduces apoptotic cell death via oxidative stress and the PERK/eIF2α/ATF4/CHOP Axis in HT29 colon cancer cells. Biochem Genet. 2021;59(1):159-184. https://doi.org/10.1007/s10528-020-09996-5
  • [24] Sanci TO, Terzi E, Oz Bedir BE, Gumustas M, Aydin T, Cakir A. Effect of Herniarin on cell viability, cell cycle, and Erk protein levels in different stages of bladder cancer cells. Chem Biodivers. 2024;21(3):e202301645. https://doi.org/10.1002/cbdv.202301645
  • [25] Oz Bedir BE, Ozdemir Sanci T, Ercan E, Kaya Sezginer E, Terzi E. In vitro anticancer effect of theobromine in A549 non-small cell lung cancer cells. Int J Med Biochem. 2024;7(3):143-149. https://doi.org/10.14744/ijmb.2024.35582
There are 26 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Tuba Ozdemir-sanci This is me

Ebru Alimogullari This is me

Publication Date
Submission Date December 5, 2024
Acceptance Date January 17, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Ozdemir-sanci, T., & Alimogullari, E. (n.d.). Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells. Journal of Research in Pharmacy, 29(2), 673-681. https://doi.org/10.12991/jrespharm.1664894
AMA Ozdemir-sanci T, Alimogullari E. Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells. J. Res. Pharm. 29(2):673-681. doi:10.12991/jrespharm.1664894
Chicago Ozdemir-sanci, Tuba, and Ebru Alimogullari. “Effect of Naringin and Cisplatin Combination on Cell Viability and Cell Death in Bladder Cancer Cells”. Journal of Research in Pharmacy 29, no. 2 n.d.: 673-81. https://doi.org/10.12991/jrespharm.1664894.
EndNote Ozdemir-sanci T, Alimogullari E Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells. Journal of Research in Pharmacy 29 2 673–681.
IEEE T. Ozdemir-sanci and E. Alimogullari, “Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells”, J. Res. Pharm., vol. 29, no. 2, pp. 673–681, doi: 10.12991/jrespharm.1664894.
ISNAD Ozdemir-sanci, Tuba - Alimogullari, Ebru. “Effect of Naringin and Cisplatin Combination on Cell Viability and Cell Death in Bladder Cancer Cells”. Journal of Research in Pharmacy 29/2 (n.d.), 673-681. https://doi.org/10.12991/jrespharm.1664894.
JAMA Ozdemir-sanci T, Alimogullari E. Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells. J. Res. Pharm.;29:673–681.
MLA Ozdemir-sanci, Tuba and Ebru Alimogullari. “Effect of Naringin and Cisplatin Combination on Cell Viability and Cell Death in Bladder Cancer Cells”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 673-81, doi:10.12991/jrespharm.1664894.
Vancouver Ozdemir-sanci T, Alimogullari E. Effect of naringin and cisplatin combination on cell viability and cell death in bladder cancer cells. J. Res. Pharm. 29(2):673-81.