Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 722 - 741
https://doi.org/10.12991/jrespharm.1664934

Abstract

References

  • [1] Mulaudzi RB, Ndhlala AR, Kulkarni MG, Finnie JF, Van Staden J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. J Ethnopharmacol. 2011; 135(2): 330-337. https://doi.org/10.1016/j.jep.2011.03.022.
  • [2] Leonti M, Nebel S, Rivera D, Heinrich M. Wild gathered food plants in the European Mediterranean: A comperative analysis. Econ Bot. 2006; 60 (2): 130-142. https://doi.org/10.1663/00130001(2006)60[130:WGFPIT]2.0.CO;2.
  • [3] UICN, OMS, WWF. Directrices sobre conservación de plantas medicinales Organización Mundial de la Salud (OMS), Unión Internacional para la Conservación de la Naturaleza (UICN) and World Wildlife Fund (WWF), Gland, Switzerland. 1993.
  • [4] Pardo‐de‐Santayana M, Quave CL, Sõukand R, Pieroni A. Medical ethnobotany and ethnopharmacology of Europe. In: Ethnopharmacology. John Wiley & Sons, 2015; pp. 343-356. https://doi.org/10.1002/9781118930717.ch29.
  • [5] Abdelhalim A, Hanrahan J. Biologically active compounds from Lamiaceae family: Central nervous system effects. Stud Nat Prod Chem. 2021; 68: 255-315. https://doi.org/10.1016/B978-0-12-819485-0.00017-7.
  • [6] Ivanišová E, Kačániová M, Savitskaya TA, Grinshpan DD. Medicinal Herbs: Important Source of Bioactive Compounds for Food Industry. In: Herbs and Spices - New Processing Technologies. IntechOpen. https://doi.org/10.5772/intechopen.98819.
  • [7] Blank DE, Alves GH, Nascente PDS, Freitag RA, Cleff MB. Bioactive compounds and antifungal activities of extracts of Lamiaceae species. J Agric Chem Environ. 2020; 9(3): 85-96. https://doi.org/10.4236/jacen.2020.93008.
  • [8] Rauchensteiner F, Nejati S, Saukel J. The Achillea millefolium group (Asteraceae) in Middle Europe and the Balkans: A diverse source for the crude drug Herba Millefolii. Tradit Med Res. 2004; 21(3): 113-119. https://doi.org/10.11339/jtm.21.113.
  • [9] Redžić S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll Antropol. 2007; 31(3): 869-890.
  • [10] Nikitina VS, Kuz’mina LY, Melent’ev AI, Shendel’ GV. Antibacterial activity of polyphenolic compounds isolated from plants of Geraniaceae and Rosaceae families. Appl Biochem Microbiol. 2007; 43: 629-634. https://doi.org/10.1134/S0003683807060117.
  • [11] Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M. Fruit seeds of the Rosaceae family: A waste, new life, or a danger to human health? J Agric Food Chem. 2017; 65(48): 10621-10629. https://doi.org/10.1021/acs.jafc.7b03408.
  • [12] Jurikova T, Skrovankova S, Mlcek J, Balla S, Snopek L. Bioactive compounds, antioxidant activity, and biological effects of European cranberry (Vaccinium oxycoccos). Molecules. 2018; 24(1): 24. https://doi.org/10.3390/molecules24010024.
  • [13] Turrill WB. The Plant-life of the Balkan Peninsula. Leipzig, Oxford, 1929.
  • [14] Šarić-Kundalić B, Dobeš C, Klatte-Asselmeyer V, Saukel J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J Ethnopharmacol. 2010; 131(1): 33-55. https://doi.org/10.1016/j.jep.2010.05.061.
  • [15] Ferrier J, Saciragic L, Trakić S, Chen EC, Gendron RL, Cuerrier A, Balick MJ, Redžić S, Alikadić E, Arnason JT. An ethnobotany of the Lukomir highlanders of Bosnia & Herzegovina. J Ethnobiol Ethnomed. 2015; 11(1): 81. https://doi.org/10.1186/s13002-015-0068-5.
  • [16] Redžić S. Wild medicinal plants and their usage in traditional human therapy (Southern Bosnia and Herzegovina, W. Balkan). J Med Plants Res. 2010; 4(11): 1003-1027.
  • [17] Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005; 91(3): 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
  • [18] Boufellous M, Lrhorfi LA, Berrani A, Haoud HE, Zaher A, Bouhaddioui B, Bengueddour R. Phytochemical screening of a medicinal plant: Lavandula stoechas (Lamiaceae). J Pharmacogn Phytochem. 2017; 6(2): 56-62.
  • [19] Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric. 1978; 29(9): 788-794. https://doi.org/10.1002/jsfa.2740290908.
  • [20] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181: 1199–1200, https://doi.org/10.1038/1811199a0.
  • [21] Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292.
  • [22] NCCLS. Performance Standards for Antimicrobial Disc Susceptibility Tests; Approved Standard NCCLS Publication M2-A5: Villanova, PA, USA. 1993.
  • [23] Makkar HPS, Siddhuraju P, Becker K. Plant Secondary Metabolites. Humana Press, New Jersey, 2007.
  • [24] Bączek K, Przybył JL, Kosakowska O, Węglarz Z. Introducing wild-growing medicinal plants into cultivation: Dropwort (Filipendula vulgaris Moench)-A Rich Source of Phenolic Compounds. In: Ekiert HM, Ramawat KG, Arora J. (Eds.). Medicinal Plant Domestication, Biotechnology and Regional Importance. Springer, 2021; pp. 33-53.
  • [25] Rubio L, Valiño M, Expósito M, Lores M, Garcia-Jares C. Sourcing new ingredients for organic cosmetics: Phytochemicals of Filipendula vulgaris flower extracts. Cosmetics. 2022; 9(6): 132. https://doi.org/10.3390/cosmetics9060132.
  • [26] Sharaf M, Kotb ER. Phytoconstituents of Filipendula vulgaris Moench and their biological uses: A review. Egypt J Chem. 2022; 65(8): 371-377. https://doi.org/10.21608/ejchem.2022.112038.5096.
  • [27] Sasadara MMV, Wirawan IGP. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. In: IOP Conference Series: Earth and Environmental Science 2021; 712(1):012005. IOP Publishing. https://doi.org/10.1088/1755-1315/712/1/012005.
  • [28] Zhang H, Li G, Han R, Zhang R, Ma X, Wang M, Shao S, Yan M, Zhao D. Antioxidant, anti-inflammatory, and cytotoxic properties and chemical compositions of Filipendula palmata (Pall.) Maxim. Evid Based Complement Altern Med. 2021; 6659620. https://doi.org/10.1155/2021/6659620.
  • [29] Šamec D, Karalija E, Šola, I, Vujčić Bok V, Salopek-Sondi B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants. 2021; 10(1): 118. https://doi.org/10.3390/plants10010118.
  • [30] da Silva Borges L, Lima GPP, Artés F, de Souza ME, de Souza Freitas L, de Jesus HI, de Fatima Alves Santos N, da Silva Melo MR. Efficiency of DPPH and FRAP assays for estimating antioxidant activity and separation of organic acids and phenolic compounds by liquid chromatography in fresh-cut nectarine. Aust J Crop Sci. 2019; 13(7): 1053-1060. https://doi.org/10.21475/ajcs.19.13.07.p1368.
  • [31] Sethi S, Joshi A, Arora B, Bhowmik A, Sharma RR, Kumar P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur Food Res Technol. 2020; 246: 591-598. https://doi.org/10.1007/s00217-020-03432-z.
  • [32] Krzepiłko A, Prażak R, Święciło A. Chemical composition, antioxidant and antimicrobial activity of raspberry, blackberry and raspberry-blackberry hybrid leaf buds. Molecules. 2021; 26(2): 327. https://doi.org/10.3390/molecules26020327.
  • [33] Fandakli S, Korkmaz B, Faiz Ö, Kiliç G, Erik İ, Terzioğlu S, Yaylı N. Chemical variation, antimicrobial, nitric oxide scavenging activities and tyrosinase inhibition of essential oils and solvent extracts from Filipendula vulgaris Moench growing in Turkey. Iran J Pharm Res. 2021; 20(3): 110. https://doi.org/10.22037/ijpr.2021.114302.14786.
  • [34] Yousefbeyk F, Gohari AR, Hashemighahderijani Z, Ostad SN, Salehi Sourmaghi MH, Amini M, Golfakhrabadi F, Jamalifar H, Amin G. Bioactive terpenoids and flavonoids from Daucus littoralis Smith subsp. hyrcanicus Rech. f, an endemic species of Iran. DARU J Pharm Sci. 2014; 22: 1-6. https://doi.org/10.1186/2008-2231-22-33.
  • [35] Seleem D, Pardi V, Murata RM. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol. 2017; 76: 76-83. https://doi.org/10.1016/j.archoralbio.2016.08.030.
  • [36] Koyu H, Kazan A, Nalbantsoy A, Yalcin HT, Yesil-Celiktas O. Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves. Mol Biol Rep. 2020; 47(1): 569-581. https://doi.org/10.1007/s11033-019-05163-1.
  • [37] Elshamy AI, Abdallah HMI, El Gendy AENG, El-Kashak W, Muscatello B, De Leo M, Pistell, L. Evaluation of anti-inflammatory, antinociceptive, and antipyretic activities of Prunus persica var. nucipersica (nectarine) kernel. Planta Med. 2019; 85(11/12): 1016-1023. https://doi.org/10.1055/a-0955-5876.
  • [38] Šarić-Kundalić B, Ahmedbegović A, Cilović E, Ademović Z. Ethnobotanical study of traditionally used plants in human therapy of Treštenica and Tulovići, north-east Bosnia and Herzegovina. Pharmacia. 2015; 18 (2): 221-234. https://doi.org/10.1016/j.jep.2010.05.061.
  • [39] Šarić-Kundalić B, Fritz E, Dobeš C, Saukel J. Traditional medicine in the pristine village of Prokoško lake on Vranica Mountain, Bosnia and Herzegovina. Sci Pharm. 2010; 78(2): 275-290. https://doi.org/10.3797/scipharm.1003-06.
  • [40] Savić J, Mačukanović-Jocić M, Jarić S. Medical ethnobotany on the Javor mountain (Bosnia and Herzegovina). Eur J Integr Med. 2019; 27: 52-64. http://dx.doi.org/10.1016/J.EUJIM.2019.02.007.

Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina

Year 2025, Volume: 29 Issue: 2, 722 - 741
https://doi.org/10.12991/jrespharm.1664934

Abstract

In traditional medicine, plants are widely utilized as sources of bioactive compounds for treating various diseases. This study aimed to evaluate the secondary metabolite composition, antioxidant properties, and antimicrobial effects of 38 medicinal plants commonly used in Bosnia and Herzegovina. Plants were collected from natural habitats, and dried plant material from different organs, selected based on their traditional medicinal use, was used for the extraction of bioactive compounds with 80% ethanol. The extracts were analysed for phenolic, flavonoid, and tannin content, as well as antioxidant capacity (using DPPH and FRAP assays) and antimicrobial activity. The antimicrobial activity of all 38 plants was initially screened using the disc diffusion method. For plants showing significant antimicrobial activity (inhibition zones > 20 mm), the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. All analysed plants exhibited high phenolic content, with Melissa officinalis leaf extract, Filipendula vulgaris flower extract, and Rubus plicatus leaf extract containing over 300 mg GAE/g DW. According to the DPPH assay, high antioxidant capacity was observed in extracts from the leaves of Fragaria vesca, Prunus armeniaca, Rubus plicatus, and R. ideus, as well as in Rosa canina fruit and Filipendula vulgaris flower extracts, with values reaching 702.39 mg TE/g DW. Among the 38 tested plants, 16 exhibited high antimicrobial activity with inhibition zones greater than 20 mm. To ensure both the efficacy and safety of these plants, further studies on their toxicity, particularly dose-dependent toxicity, are necessary.

References

  • [1] Mulaudzi RB, Ndhlala AR, Kulkarni MG, Finnie JF, Van Staden J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. J Ethnopharmacol. 2011; 135(2): 330-337. https://doi.org/10.1016/j.jep.2011.03.022.
  • [2] Leonti M, Nebel S, Rivera D, Heinrich M. Wild gathered food plants in the European Mediterranean: A comperative analysis. Econ Bot. 2006; 60 (2): 130-142. https://doi.org/10.1663/00130001(2006)60[130:WGFPIT]2.0.CO;2.
  • [3] UICN, OMS, WWF. Directrices sobre conservación de plantas medicinales Organización Mundial de la Salud (OMS), Unión Internacional para la Conservación de la Naturaleza (UICN) and World Wildlife Fund (WWF), Gland, Switzerland. 1993.
  • [4] Pardo‐de‐Santayana M, Quave CL, Sõukand R, Pieroni A. Medical ethnobotany and ethnopharmacology of Europe. In: Ethnopharmacology. John Wiley & Sons, 2015; pp. 343-356. https://doi.org/10.1002/9781118930717.ch29.
  • [5] Abdelhalim A, Hanrahan J. Biologically active compounds from Lamiaceae family: Central nervous system effects. Stud Nat Prod Chem. 2021; 68: 255-315. https://doi.org/10.1016/B978-0-12-819485-0.00017-7.
  • [6] Ivanišová E, Kačániová M, Savitskaya TA, Grinshpan DD. Medicinal Herbs: Important Source of Bioactive Compounds for Food Industry. In: Herbs and Spices - New Processing Technologies. IntechOpen. https://doi.org/10.5772/intechopen.98819.
  • [7] Blank DE, Alves GH, Nascente PDS, Freitag RA, Cleff MB. Bioactive compounds and antifungal activities of extracts of Lamiaceae species. J Agric Chem Environ. 2020; 9(3): 85-96. https://doi.org/10.4236/jacen.2020.93008.
  • [8] Rauchensteiner F, Nejati S, Saukel J. The Achillea millefolium group (Asteraceae) in Middle Europe and the Balkans: A diverse source for the crude drug Herba Millefolii. Tradit Med Res. 2004; 21(3): 113-119. https://doi.org/10.11339/jtm.21.113.
  • [9] Redžić S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll Antropol. 2007; 31(3): 869-890.
  • [10] Nikitina VS, Kuz’mina LY, Melent’ev AI, Shendel’ GV. Antibacterial activity of polyphenolic compounds isolated from plants of Geraniaceae and Rosaceae families. Appl Biochem Microbiol. 2007; 43: 629-634. https://doi.org/10.1134/S0003683807060117.
  • [11] Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M. Fruit seeds of the Rosaceae family: A waste, new life, or a danger to human health? J Agric Food Chem. 2017; 65(48): 10621-10629. https://doi.org/10.1021/acs.jafc.7b03408.
  • [12] Jurikova T, Skrovankova S, Mlcek J, Balla S, Snopek L. Bioactive compounds, antioxidant activity, and biological effects of European cranberry (Vaccinium oxycoccos). Molecules. 2018; 24(1): 24. https://doi.org/10.3390/molecules24010024.
  • [13] Turrill WB. The Plant-life of the Balkan Peninsula. Leipzig, Oxford, 1929.
  • [14] Šarić-Kundalić B, Dobeš C, Klatte-Asselmeyer V, Saukel J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J Ethnopharmacol. 2010; 131(1): 33-55. https://doi.org/10.1016/j.jep.2010.05.061.
  • [15] Ferrier J, Saciragic L, Trakić S, Chen EC, Gendron RL, Cuerrier A, Balick MJ, Redžić S, Alikadić E, Arnason JT. An ethnobotany of the Lukomir highlanders of Bosnia & Herzegovina. J Ethnobiol Ethnomed. 2015; 11(1): 81. https://doi.org/10.1186/s13002-015-0068-5.
  • [16] Redžić S. Wild medicinal plants and their usage in traditional human therapy (Southern Bosnia and Herzegovina, W. Balkan). J Med Plants Res. 2010; 4(11): 1003-1027.
  • [17] Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005; 91(3): 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
  • [18] Boufellous M, Lrhorfi LA, Berrani A, Haoud HE, Zaher A, Bouhaddioui B, Bengueddour R. Phytochemical screening of a medicinal plant: Lavandula stoechas (Lamiaceae). J Pharmacogn Phytochem. 2017; 6(2): 56-62.
  • [19] Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric. 1978; 29(9): 788-794. https://doi.org/10.1002/jsfa.2740290908.
  • [20] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181: 1199–1200, https://doi.org/10.1038/1811199a0.
  • [21] Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292.
  • [22] NCCLS. Performance Standards for Antimicrobial Disc Susceptibility Tests; Approved Standard NCCLS Publication M2-A5: Villanova, PA, USA. 1993.
  • [23] Makkar HPS, Siddhuraju P, Becker K. Plant Secondary Metabolites. Humana Press, New Jersey, 2007.
  • [24] Bączek K, Przybył JL, Kosakowska O, Węglarz Z. Introducing wild-growing medicinal plants into cultivation: Dropwort (Filipendula vulgaris Moench)-A Rich Source of Phenolic Compounds. In: Ekiert HM, Ramawat KG, Arora J. (Eds.). Medicinal Plant Domestication, Biotechnology and Regional Importance. Springer, 2021; pp. 33-53.
  • [25] Rubio L, Valiño M, Expósito M, Lores M, Garcia-Jares C. Sourcing new ingredients for organic cosmetics: Phytochemicals of Filipendula vulgaris flower extracts. Cosmetics. 2022; 9(6): 132. https://doi.org/10.3390/cosmetics9060132.
  • [26] Sharaf M, Kotb ER. Phytoconstituents of Filipendula vulgaris Moench and their biological uses: A review. Egypt J Chem. 2022; 65(8): 371-377. https://doi.org/10.21608/ejchem.2022.112038.5096.
  • [27] Sasadara MMV, Wirawan IGP. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. In: IOP Conference Series: Earth and Environmental Science 2021; 712(1):012005. IOP Publishing. https://doi.org/10.1088/1755-1315/712/1/012005.
  • [28] Zhang H, Li G, Han R, Zhang R, Ma X, Wang M, Shao S, Yan M, Zhao D. Antioxidant, anti-inflammatory, and cytotoxic properties and chemical compositions of Filipendula palmata (Pall.) Maxim. Evid Based Complement Altern Med. 2021; 6659620. https://doi.org/10.1155/2021/6659620.
  • [29] Šamec D, Karalija E, Šola, I, Vujčić Bok V, Salopek-Sondi B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants. 2021; 10(1): 118. https://doi.org/10.3390/plants10010118.
  • [30] da Silva Borges L, Lima GPP, Artés F, de Souza ME, de Souza Freitas L, de Jesus HI, de Fatima Alves Santos N, da Silva Melo MR. Efficiency of DPPH and FRAP assays for estimating antioxidant activity and separation of organic acids and phenolic compounds by liquid chromatography in fresh-cut nectarine. Aust J Crop Sci. 2019; 13(7): 1053-1060. https://doi.org/10.21475/ajcs.19.13.07.p1368.
  • [31] Sethi S, Joshi A, Arora B, Bhowmik A, Sharma RR, Kumar P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur Food Res Technol. 2020; 246: 591-598. https://doi.org/10.1007/s00217-020-03432-z.
  • [32] Krzepiłko A, Prażak R, Święciło A. Chemical composition, antioxidant and antimicrobial activity of raspberry, blackberry and raspberry-blackberry hybrid leaf buds. Molecules. 2021; 26(2): 327. https://doi.org/10.3390/molecules26020327.
  • [33] Fandakli S, Korkmaz B, Faiz Ö, Kiliç G, Erik İ, Terzioğlu S, Yaylı N. Chemical variation, antimicrobial, nitric oxide scavenging activities and tyrosinase inhibition of essential oils and solvent extracts from Filipendula vulgaris Moench growing in Turkey. Iran J Pharm Res. 2021; 20(3): 110. https://doi.org/10.22037/ijpr.2021.114302.14786.
  • [34] Yousefbeyk F, Gohari AR, Hashemighahderijani Z, Ostad SN, Salehi Sourmaghi MH, Amini M, Golfakhrabadi F, Jamalifar H, Amin G. Bioactive terpenoids and flavonoids from Daucus littoralis Smith subsp. hyrcanicus Rech. f, an endemic species of Iran. DARU J Pharm Sci. 2014; 22: 1-6. https://doi.org/10.1186/2008-2231-22-33.
  • [35] Seleem D, Pardi V, Murata RM. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol. 2017; 76: 76-83. https://doi.org/10.1016/j.archoralbio.2016.08.030.
  • [36] Koyu H, Kazan A, Nalbantsoy A, Yalcin HT, Yesil-Celiktas O. Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves. Mol Biol Rep. 2020; 47(1): 569-581. https://doi.org/10.1007/s11033-019-05163-1.
  • [37] Elshamy AI, Abdallah HMI, El Gendy AENG, El-Kashak W, Muscatello B, De Leo M, Pistell, L. Evaluation of anti-inflammatory, antinociceptive, and antipyretic activities of Prunus persica var. nucipersica (nectarine) kernel. Planta Med. 2019; 85(11/12): 1016-1023. https://doi.org/10.1055/a-0955-5876.
  • [38] Šarić-Kundalić B, Ahmedbegović A, Cilović E, Ademović Z. Ethnobotanical study of traditionally used plants in human therapy of Treštenica and Tulovići, north-east Bosnia and Herzegovina. Pharmacia. 2015; 18 (2): 221-234. https://doi.org/10.1016/j.jep.2010.05.061.
  • [39] Šarić-Kundalić B, Fritz E, Dobeš C, Saukel J. Traditional medicine in the pristine village of Prokoško lake on Vranica Mountain, Bosnia and Herzegovina. Sci Pharm. 2010; 78(2): 275-290. https://doi.org/10.3797/scipharm.1003-06.
  • [40] Savić J, Mačukanović-Jocić M, Jarić S. Medical ethnobotany on the Javor mountain (Bosnia and Herzegovina). Eur J Integr Med. 2019; 27: 52-64. http://dx.doi.org/10.1016/J.EUJIM.2019.02.007.
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Saida Ibragić This is me

Sabina Dahija This is me

Renata Bešta-gajević This is me

Selma Durak This is me

Hava Garbo This is me

Erna Karalija This is me

Publication Date
Submission Date July 2, 2024
Acceptance Date October 29, 2024
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Ibragić, S., Dahija, S., Bešta-gajević, R., Durak, S., et al. (n.d.). Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina. Journal of Research in Pharmacy, 29(2), 722-741. https://doi.org/10.12991/jrespharm.1664934
AMA Ibragić S, Dahija S, Bešta-gajević R, Durak S, Garbo H, Karalija E. Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina. J. Res. Pharm. 29(2):722-741. doi:10.12991/jrespharm.1664934
Chicago Ibragić, Saida, Sabina Dahija, Renata Bešta-gajević, Selma Durak, Hava Garbo, and Erna Karalija. “Phytochemicals and Antimicrobial Properties of Traditional Medicinal Plants in Bosnia and Herzegovina”. Journal of Research in Pharmacy 29, no. 2 n.d.: 722-41. https://doi.org/10.12991/jrespharm.1664934.
EndNote Ibragić S, Dahija S, Bešta-gajević R, Durak S, Garbo H, Karalija E Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina. Journal of Research in Pharmacy 29 2 722–741.
IEEE S. Ibragić, S. Dahija, R. Bešta-gajević, S. Durak, H. Garbo, and E. Karalija, “Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina”, J. Res. Pharm., vol. 29, no. 2, pp. 722–741, doi: 10.12991/jrespharm.1664934.
ISNAD Ibragić, Saida et al. “Phytochemicals and Antimicrobial Properties of Traditional Medicinal Plants in Bosnia and Herzegovina”. Journal of Research in Pharmacy 29/2 (n.d.), 722-741. https://doi.org/10.12991/jrespharm.1664934.
JAMA Ibragić S, Dahija S, Bešta-gajević R, Durak S, Garbo H, Karalija E. Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina. J. Res. Pharm.;29:722–741.
MLA Ibragić, Saida et al. “Phytochemicals and Antimicrobial Properties of Traditional Medicinal Plants in Bosnia and Herzegovina”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 722-41, doi:10.12991/jrespharm.1664934.
Vancouver Ibragić S, Dahija S, Bešta-gajević R, Durak S, Garbo H, Karalija E. Phytochemicals and antimicrobial properties of traditional medicinal plants in Bosnia and Herzegovina. J. Res. Pharm. 29(2):722-41.