Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 2, 820 - 832
https://doi.org/10.12991/jrespharm.1666362

Abstract

References

  • [1] Scannapieco FA, Gershovich E. The prevention of periodontal disease—An overview. Periodontol 2000. 2020;84(1):9-13. https://doi.org/10.1111/prd.12330
  • [2] Mirzaeei S, Ezzati A, Mehrandish S, Asare-Addo K, Nokhodchi A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J Drug Deliv Sci Technol. 2022;71:103341-103352. https://doi.org/10.1016/j.jddst.2022.103341
  • [3] Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater. 2021 Mar 18;6(10):3328-3342. https://doi.org/10.1016/j.bioactmat.2021.03.012
  • [4] Gao Y, Wang S, Shi B, Wang Y, Chen Y, Wang X, Lee ES, Jiang HB. Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: A review. Polymers. 2022;14(5):871-894. https://doi.org/10.3390/polym14050871
  • [5] Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater. 2020;5(2):297-308. https://doi.org/10.1016/j.bioactmat.2020.02.012
  • [6] Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006 May;27(15):2951-2961. https://doi.org/10.1016/j.biomaterials.2006.01.015
  • [7] Pina S, Oliveira JM, Reis RL. Natural‐based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv Mater. 2015;27(7):1143-1169. https://doi.org/10.1002/adma.201403354
  • [8] Guo S, He L, Yang R, Chen B, Xie X, Jiang B, Weidong T, Ding Y. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J Biomater Sci Polym Ed. 2020;31(2):155-168. https://doi.org/10.1080/09205063.2019.1680927
  • [9] Xie Y, Zinkle A, Chen L, Mohammadi M. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol. 2020;16(10):547-564. https://doi.org/10.1038/s41584-020-0469-2
  • [10] Ren X, Zhao M, Lash B, Martino MM, Julier Z. Growth factor engineering strategies for regenerative medicine applications. Front Bioeng Biotechnol. 2020;7:469-478. https://doi.org/10.3389/fbioe.2019.00469
  • [11] Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma. 2019;7:10. https://doi.org/10.1186/s41038-019-0148-1
  • [12] Zarei F, Soleimaninejad M. Role of growth factors and biomaterials in wound healing. Artif Cells Nanomed Biotechnol. 2018;46(sup1):906-911. https://doi.org/10.1080/21691401.2018.1439836
  • [13] Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005;26(6):743-774. https://doi.org/10.1210/er.2004-0001
  • [14] Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: A review. Eur Polym J. 2019;117:304-336. https://doi.org/10.1016/j.eurpolymj.2019.05.020
  • [15] Chen K, Hu H, Zeng Y, Pan H, Wang S, Zhang Y, Shi L, Tan G, Pan W, Liu H. Recent advances in electrospun nanofibers for wound dressing. Eur Polym J. 2022; 178:111490. https://doi.org/10.1016/j.eurpolymj.2022.111490
  • [16] Pant B, Park M, Park S-J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics. 2019;11(7):305. https://doi.org/10.3390/pharmaceutics11070305
  • [17] Dwivedi P, Han S, Mangrio F, Fan R, Dwivedi M, Zhu Z, Huang F, Wu Q, Khatik R, Cohn DE, Si T, Hu S, Sparreboom A, Xu RX. Engineered multifunctional biodegradable hybrid microparticles for paclitaxel delivery in cancer therapy. Mater Sci Eng C. 2019;102:113-123. https://doi.org/10.1016/j.msec.2019.03.009
  • [18] Qin X. Coaxial electrospinning of nanofibers. Electrospun nanofibers: Elsevier; 2017. p. 41-71. https://doi.org/10.1016/B978-0-08-100907-9.00003-9
  • [19] Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(5):654-677. https://doi.org/10.1002/wnan.1391
  • [20] Rafiei M, Jooybar E, Abdekhodaie MJ, Alvi M. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. Mater Sci Eng C. 2020;113:110913. https://doi.org/10.1016/j.msec.2020.110913
  • [21] Wang N, Zhao Y. Coaxial electrospinning. Electrospinning: Nanofabrication and Applications: Elsevier; 2019. p. 125-200. https://doi.org/10.1016/B978-0-323-51270-1.00005-4
  • [22] Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809-1820. https://doi.org/10.1016/S0140-6736(05)67728-8
  • [23] Mizraji G, Davidzohn A, Gursoy M, Gursoy UK, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000. 2023;93(1):56-76. https://doi.org/10.1111/prd.12502
  • [24] Liu X, He X, Jin D, Wu S, Wang H, Yin M, Aldalbahi A, El-Newehy M, Mo X, Wu J. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater. 2020;108:207-222. https://doi.org/10.1016/j.actbio.2020.03.044
  • [25] Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided bone regeneration using barrier membrane in dental applications. ACS Biomater Sci Eng. 2023;9(10):5457-5478. https://doi.org/10.1021/acsbiomaterials.3c00690
  • [26] Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X, Xing X, Xie C, Shi X, Du Y, Deng H, Li Z. Controlled co-delivery of growth factors through layer-by-layer assembly of core–shell nanofibers for improving bone regeneration. ACS Nano. 2019;13(6):6372-6382. https://doi.org/10.1021/acsnano.8b06032
  • [27] Dems D, Rodrigues da Silva J, Hélary C, Wien F, Marchand M, Debons N, Muller L, Chen Y, Schanne-Klein MC, Laberty-Robert C, Krins N, Aimé C. Native collagen: electrospinning of pure, cross-linker-free, self-supported membrane. ACS Appl Bio Mater. 2020;3(5):2948-2957. https://doi.org/10.1021/acsabm.0c00006
  • [28] Moradipour P, Limoee M, Janfaza S, Behbood L. Core-shell nanofibers based on polycaprolactone/polyvinyl alcohol and polycaprolactone/collagen for biomedical applications. J Pharm Innov. 2021;17:911-920. https://doi.org/10.1007/s12247-021-09568-z
  • [29] Lv Y-Y, Wu J, Wan L-S, Xu Z-K. Novel porphyrinated polyimide nanofibers by electrospinning. J Phys Chem C 2008;112(29):10609-10615. https://doi.org/10.1021/jp7105549
  • [30] Cianciolo G, Stefoni S, Zanchelli F, Iannelli S, Colì L, Borgnino LC, De Sanctis LB, Stefoni V, De Pascalis A, Isola E, La Hanna G. PDGF-AB release during and after haemodialysis procedure. Nephrol Dial Transplant. 1999;14(10):2413-2419. https://doi.org/10.1093/ndt/14.10.2413
  • [31] Yamano S, Ty L, Dai J. Bioactive collagen membrane as a carrier for sustained release of PDGF. J Tissue Sci Eng. 2011;02(04). https://doi.org/10.4172/2157-7552.1000110
  • [32] Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873-884. https://doi.org/10.1002/jcb.10435
  • [33] Liao IC, Chew SY, Leong KW. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine (London, England). 2006;1(4):465-471. https://doi.org/10.2217/17435889.1.4.465
  • [34] Kagami S, Kondo S, Löster K, Reutter W, Kuhara T, Yasutomo K, Kuroda Y. α1β1 integrin-mediated collagen matrix remodeling by rat mesangial cells is differentially regulated by transforming growth factor-β and platelet-derived growth factor-BB. J Am Soc Nephrol. 1999;10(4):779-789. https://journals.lww.com/jasn/toc/1999/04000
  • [35] Khatami N, Khoshfetrat AB, Khaksar M, Zamani ARN, Rahbarghazi R. Collagen‐alginate‐nano‐silica microspheres improved the osteogenic potential of human osteoblast‐like MG‐63 cells. J Cell Biochem. 2019;120(9):15069-15082. https://doi.org/10.1002/jcb.28768
  • [36] Kim HK, Kim M-G, Leem K-H. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct. 2014;5(3):573-578. https://doi.org/10.1039/C3FO60509D
  • [37] Sahoo S, Ang LT, Goh JCH, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;93(4):1539-1550. https://doi.org/10.1002/jbm.a.32645
  • [38] Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96(1):1-11. https://doi.org/10.1007/s10266-008-0087-y
  • [39] Strayhorn CL, Garrett JS, Dunn RL, Benedict JJ, Somerman MJ. Growth factors regulate expression of osteoblast-associated genes. J Periodontol. 1999;70(11):1345-1354. https://doi.org/10.1902/jop.1999.70.11.1345
  • [40] Limoee M, Moradipour P, Godarzi M, Arkan E, Behbood L. Fabrication and in-vitro investigation of polycaprolactone-(polyvinyl alcohol/collagen) hybrid nanofiber as anti-inflammatory guided tissue regeneration membrane. Curr Pharm Biotechnol. 2019;20(13):1122-1133. https://doi.org/10.2174/1389201020666190722161004
  • [41] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45
  • [42] Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694-1705. https://doi.org/10.3390/ijms20071694
  • [43] Laflamme C, Curt S, Rouabhia M. Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol. 2010;55(9):689-701. https://doi.org/10.1016/j.archoralbio.2010.06.010
  • [44] McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int Orthop. 2007;31:729-734. https://doi.org/10.1007/s00264-007-0418-6
  • [45] White AP, Vaccaro AR, Hall JA, Whang PG, Friel BC, McKee MD. Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int Orthop. 2007;31:735-741. https://doi.org/10.1007/s00264-007-0422-x
  • [46] Daniels TR, Anderson J, Swords MP, Maislin G, Donahue R, Pinsker E, Quiton JD. Recombinant Human Platelet–Derived Growth Factor BB in Combination with a Beta-Tricalcium Phosphate (RhPDGF-BB/β-TCP)-Collagen Matrix as an Alternative to Autograft. Foot Ankle Int. 2019;40(9):1068-1078. https://doi.org/10.1177/1071100719851468
  • [47] Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 2014;41(5):3521-3527. https://doi.org/10.1007/s11033-014-3216-4
  • [48] Tort S, Demiröz FT, Yıldız S, Acartürk F. Effects of UV exposure time on nanofiber wound dressing properties during sterilization. J Pharm Innov. 2020;15:325-332. https://doi.org/10.1007/s12247-019-09383-7
  • [49] Dai J, Jian J, Bosland M, Frenkel K, Bernhardt G, Huang X. Roles of hormone replacement therapy and iron in proliferation of breast epithelial cells with different estrogen and progesterone receptor status. Breast (Edinburgh, Scotland). 2008;17(2):172-179. https://doi.org/10.1016/j.breast.2007.08.009

Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane

Year 2025, Volume: 29 Issue: 2, 820 - 832
https://doi.org/10.12991/jrespharm.1666362

Abstract

Guided tissue regeneration (GTR) is a dental surgical procedure that uses barrier membranes to guide the growth of bone, tissue, or gingiva in small places for proper function, beauty, or restoration of the prosthesis. Recently, many efforts have been made to accelerate tissue repair by adding agents such as growth factors to the GTR structure in a targeted and controlled manner of drug release, which makes the treatment more effective and reduces its side effects. The aim of this study was the preparation and evaluation of growth factor-loaded, biodegradable fibers, as a GTR membrane in oral cavity disease. In this study, two electrostatic systems of polycaprolactone (PCL) (shell) and plateletderived growth factor (PDGF) loaded collagen (core) were fabricated via coaxial electrospinning. Core-shell fibers were analyzed by FTIR, SEM, TEM, and ELISA techniques to determine the PDGF release and supplemented via in-vitro cytotoxicity, proliferation, and real-time PCR investigation. FT-IR shows that the fiber's constituents do not interfere with each other. The diameter of the nanofibers is in the range of 400 nm, and the results of the TEM images show that the core-shell structure is formed. PDGF is released from fibers in a controlled manner. The fibers do not show any cellular toxicity, have a positive effect on cell proliferation, and increase the number of cells.

References

  • [1] Scannapieco FA, Gershovich E. The prevention of periodontal disease—An overview. Periodontol 2000. 2020;84(1):9-13. https://doi.org/10.1111/prd.12330
  • [2] Mirzaeei S, Ezzati A, Mehrandish S, Asare-Addo K, Nokhodchi A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J Drug Deliv Sci Technol. 2022;71:103341-103352. https://doi.org/10.1016/j.jddst.2022.103341
  • [3] Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater. 2021 Mar 18;6(10):3328-3342. https://doi.org/10.1016/j.bioactmat.2021.03.012
  • [4] Gao Y, Wang S, Shi B, Wang Y, Chen Y, Wang X, Lee ES, Jiang HB. Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: A review. Polymers. 2022;14(5):871-894. https://doi.org/10.3390/polym14050871
  • [5] Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater. 2020;5(2):297-308. https://doi.org/10.1016/j.bioactmat.2020.02.012
  • [6] Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006 May;27(15):2951-2961. https://doi.org/10.1016/j.biomaterials.2006.01.015
  • [7] Pina S, Oliveira JM, Reis RL. Natural‐based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv Mater. 2015;27(7):1143-1169. https://doi.org/10.1002/adma.201403354
  • [8] Guo S, He L, Yang R, Chen B, Xie X, Jiang B, Weidong T, Ding Y. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J Biomater Sci Polym Ed. 2020;31(2):155-168. https://doi.org/10.1080/09205063.2019.1680927
  • [9] Xie Y, Zinkle A, Chen L, Mohammadi M. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol. 2020;16(10):547-564. https://doi.org/10.1038/s41584-020-0469-2
  • [10] Ren X, Zhao M, Lash B, Martino MM, Julier Z. Growth factor engineering strategies for regenerative medicine applications. Front Bioeng Biotechnol. 2020;7:469-478. https://doi.org/10.3389/fbioe.2019.00469
  • [11] Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma. 2019;7:10. https://doi.org/10.1186/s41038-019-0148-1
  • [12] Zarei F, Soleimaninejad M. Role of growth factors and biomaterials in wound healing. Artif Cells Nanomed Biotechnol. 2018;46(sup1):906-911. https://doi.org/10.1080/21691401.2018.1439836
  • [13] Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005;26(6):743-774. https://doi.org/10.1210/er.2004-0001
  • [14] Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: A review. Eur Polym J. 2019;117:304-336. https://doi.org/10.1016/j.eurpolymj.2019.05.020
  • [15] Chen K, Hu H, Zeng Y, Pan H, Wang S, Zhang Y, Shi L, Tan G, Pan W, Liu H. Recent advances in electrospun nanofibers for wound dressing. Eur Polym J. 2022; 178:111490. https://doi.org/10.1016/j.eurpolymj.2022.111490
  • [16] Pant B, Park M, Park S-J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics. 2019;11(7):305. https://doi.org/10.3390/pharmaceutics11070305
  • [17] Dwivedi P, Han S, Mangrio F, Fan R, Dwivedi M, Zhu Z, Huang F, Wu Q, Khatik R, Cohn DE, Si T, Hu S, Sparreboom A, Xu RX. Engineered multifunctional biodegradable hybrid microparticles for paclitaxel delivery in cancer therapy. Mater Sci Eng C. 2019;102:113-123. https://doi.org/10.1016/j.msec.2019.03.009
  • [18] Qin X. Coaxial electrospinning of nanofibers. Electrospun nanofibers: Elsevier; 2017. p. 41-71. https://doi.org/10.1016/B978-0-08-100907-9.00003-9
  • [19] Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(5):654-677. https://doi.org/10.1002/wnan.1391
  • [20] Rafiei M, Jooybar E, Abdekhodaie MJ, Alvi M. Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. Mater Sci Eng C. 2020;113:110913. https://doi.org/10.1016/j.msec.2020.110913
  • [21] Wang N, Zhao Y. Coaxial electrospinning. Electrospinning: Nanofabrication and Applications: Elsevier; 2019. p. 125-200. https://doi.org/10.1016/B978-0-323-51270-1.00005-4
  • [22] Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809-1820. https://doi.org/10.1016/S0140-6736(05)67728-8
  • [23] Mizraji G, Davidzohn A, Gursoy M, Gursoy UK, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000. 2023;93(1):56-76. https://doi.org/10.1111/prd.12502
  • [24] Liu X, He X, Jin D, Wu S, Wang H, Yin M, Aldalbahi A, El-Newehy M, Mo X, Wu J. A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomater. 2020;108:207-222. https://doi.org/10.1016/j.actbio.2020.03.044
  • [25] Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided bone regeneration using barrier membrane in dental applications. ACS Biomater Sci Eng. 2023;9(10):5457-5478. https://doi.org/10.1021/acsbiomaterials.3c00690
  • [26] Cheng G, Yin C, Tu H, Jiang S, Wang Q, Zhou X, Xing X, Xie C, Shi X, Du Y, Deng H, Li Z. Controlled co-delivery of growth factors through layer-by-layer assembly of core–shell nanofibers for improving bone regeneration. ACS Nano. 2019;13(6):6372-6382. https://doi.org/10.1021/acsnano.8b06032
  • [27] Dems D, Rodrigues da Silva J, Hélary C, Wien F, Marchand M, Debons N, Muller L, Chen Y, Schanne-Klein MC, Laberty-Robert C, Krins N, Aimé C. Native collagen: electrospinning of pure, cross-linker-free, self-supported membrane. ACS Appl Bio Mater. 2020;3(5):2948-2957. https://doi.org/10.1021/acsabm.0c00006
  • [28] Moradipour P, Limoee M, Janfaza S, Behbood L. Core-shell nanofibers based on polycaprolactone/polyvinyl alcohol and polycaprolactone/collagen for biomedical applications. J Pharm Innov. 2021;17:911-920. https://doi.org/10.1007/s12247-021-09568-z
  • [29] Lv Y-Y, Wu J, Wan L-S, Xu Z-K. Novel porphyrinated polyimide nanofibers by electrospinning. J Phys Chem C 2008;112(29):10609-10615. https://doi.org/10.1021/jp7105549
  • [30] Cianciolo G, Stefoni S, Zanchelli F, Iannelli S, Colì L, Borgnino LC, De Sanctis LB, Stefoni V, De Pascalis A, Isola E, La Hanna G. PDGF-AB release during and after haemodialysis procedure. Nephrol Dial Transplant. 1999;14(10):2413-2419. https://doi.org/10.1093/ndt/14.10.2413
  • [31] Yamano S, Ty L, Dai J. Bioactive collagen membrane as a carrier for sustained release of PDGF. J Tissue Sci Eng. 2011;02(04). https://doi.org/10.4172/2157-7552.1000110
  • [32] Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873-884. https://doi.org/10.1002/jcb.10435
  • [33] Liao IC, Chew SY, Leong KW. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine (London, England). 2006;1(4):465-471. https://doi.org/10.2217/17435889.1.4.465
  • [34] Kagami S, Kondo S, Löster K, Reutter W, Kuhara T, Yasutomo K, Kuroda Y. α1β1 integrin-mediated collagen matrix remodeling by rat mesangial cells is differentially regulated by transforming growth factor-β and platelet-derived growth factor-BB. J Am Soc Nephrol. 1999;10(4):779-789. https://journals.lww.com/jasn/toc/1999/04000
  • [35] Khatami N, Khoshfetrat AB, Khaksar M, Zamani ARN, Rahbarghazi R. Collagen‐alginate‐nano‐silica microspheres improved the osteogenic potential of human osteoblast‐like MG‐63 cells. J Cell Biochem. 2019;120(9):15069-15082. https://doi.org/10.1002/jcb.28768
  • [36] Kim HK, Kim M-G, Leem K-H. Collagen hydrolysates increased osteogenic gene expressions via a MAPK signaling pathway in MG-63 human osteoblasts. Food Funct. 2014;5(3):573-578. https://doi.org/10.1039/C3FO60509D
  • [37] Sahoo S, Ang LT, Goh JCH, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;93(4):1539-1550. https://doi.org/10.1002/jbm.a.32645
  • [38] Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96(1):1-11. https://doi.org/10.1007/s10266-008-0087-y
  • [39] Strayhorn CL, Garrett JS, Dunn RL, Benedict JJ, Somerman MJ. Growth factors regulate expression of osteoblast-associated genes. J Periodontol. 1999;70(11):1345-1354. https://doi.org/10.1902/jop.1999.70.11.1345
  • [40] Limoee M, Moradipour P, Godarzi M, Arkan E, Behbood L. Fabrication and in-vitro investigation of polycaprolactone-(polyvinyl alcohol/collagen) hybrid nanofiber as anti-inflammatory guided tissue regeneration membrane. Curr Pharm Biotechnol. 2019;20(13):1122-1133. https://doi.org/10.2174/1389201020666190722161004
  • [41] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45
  • [42] Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694-1705. https://doi.org/10.3390/ijms20071694
  • [43] Laflamme C, Curt S, Rouabhia M. Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol. 2010;55(9):689-701. https://doi.org/10.1016/j.archoralbio.2010.06.010
  • [44] McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int Orthop. 2007;31:729-734. https://doi.org/10.1007/s00264-007-0418-6
  • [45] White AP, Vaccaro AR, Hall JA, Whang PG, Friel BC, McKee MD. Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int Orthop. 2007;31:735-741. https://doi.org/10.1007/s00264-007-0422-x
  • [46] Daniels TR, Anderson J, Swords MP, Maislin G, Donahue R, Pinsker E, Quiton JD. Recombinant Human Platelet–Derived Growth Factor BB in Combination with a Beta-Tricalcium Phosphate (RhPDGF-BB/β-TCP)-Collagen Matrix as an Alternative to Autograft. Foot Ankle Int. 2019;40(9):1068-1078. https://doi.org/10.1177/1071100719851468
  • [47] Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 2014;41(5):3521-3527. https://doi.org/10.1007/s11033-014-3216-4
  • [48] Tort S, Demiröz FT, Yıldız S, Acartürk F. Effects of UV exposure time on nanofiber wound dressing properties during sterilization. J Pharm Innov. 2020;15:325-332. https://doi.org/10.1007/s12247-019-09383-7
  • [49] Dai J, Jian J, Bosland M, Frenkel K, Bernhardt G, Huang X. Roles of hormone replacement therapy and iron in proliferation of breast epithelial cells with different estrogen and progesterone receptor status. Breast (Edinburgh, Scotland). 2008;17(2):172-179. https://doi.org/10.1016/j.breast.2007.08.009
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Mazdak Limoee This is me

Mahsa Rasekhian This is me

Pouran Moradipour This is me

Zahra Pourmanouchehri This is me

Leila Behbood This is me

Publication Date
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Limoee, M., Rasekhian, M., Moradipour, P., Pourmanouchehri, Z., et al. (n.d.). Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane. Journal of Research in Pharmacy, 29(2), 820-832. https://doi.org/10.12991/jrespharm.1666362
AMA Limoee M, Rasekhian M, Moradipour P, Pourmanouchehri Z, Behbood L. Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane. J. Res. Pharm. 29(2):820-832. doi:10.12991/jrespharm.1666362
Chicago Limoee, Mazdak, Mahsa Rasekhian, Pouran Moradipour, Zahra Pourmanouchehri, and Leila Behbood. “Evaluation of Platelet-Derived Growth Factor Loaded polycaprolactone/Collagen Core-Shell Nanofibers As Guided Tissue Membrane”. Journal of Research in Pharmacy 29, no. 2 n.d.: 820-32. https://doi.org/10.12991/jrespharm.1666362.
EndNote Limoee M, Rasekhian M, Moradipour P, Pourmanouchehri Z, Behbood L Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane. Journal of Research in Pharmacy 29 2 820–832.
IEEE M. Limoee, M. Rasekhian, P. Moradipour, Z. Pourmanouchehri, and L. Behbood, “Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane”, J. Res. Pharm., vol. 29, no. 2, pp. 820–832, doi: 10.12991/jrespharm.1666362.
ISNAD Limoee, Mazdak et al. “Evaluation of Platelet-Derived Growth Factor Loaded polycaprolactone/Collagen Core-Shell Nanofibers As Guided Tissue Membrane”. Journal of Research in Pharmacy 29/2 (n.d.), 820-832. https://doi.org/10.12991/jrespharm.1666362.
JAMA Limoee M, Rasekhian M, Moradipour P, Pourmanouchehri Z, Behbood L. Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane. J. Res. Pharm.;29:820–832.
MLA Limoee, Mazdak et al. “Evaluation of Platelet-Derived Growth Factor Loaded polycaprolactone/Collagen Core-Shell Nanofibers As Guided Tissue Membrane”. Journal of Research in Pharmacy, vol. 29, no. 2, pp. 820-32, doi:10.12991/jrespharm.1666362.
Vancouver Limoee M, Rasekhian M, Moradipour P, Pourmanouchehri Z, Behbood L. Evaluation of platelet-derived growth factor loaded polycaprolactone/collagen core-shell nanofibers as guided tissue membrane. J. Res. Pharm. 29(2):820-32.