Review
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 2165 - 2179, 01.09.2025
https://doi.org/10.12991/jrespharm.1707084

Abstract

References

  • [1] Tenchov R, Sasso JM, Zhou QA. Alzheimer’s disease: exploring the landscape of cognitive decline. ACS Chem Neurosci. 2024;15(21):3800–3827. https://doi.org/10.1021/acschemneuro.4c00339.
  • [2] Kumar S, Hasan M, Singhal S, Anupam A. Alzheimer’s disease: Pathological changes, recent treatment and future perspectives. Int J Health Sci. 2022;6(S8):1462–1475. https://doi.org/10.53730/ijhs.v6nS8.10006.
  • [3] Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain. 2024;17(1):44. https://doi.org/10.1186/s13041-024-01118-1.
  • [4] Zhang C. Etiology of Alzheimer’s disease. Discov Med. 2023;35(178):757–776. https://doi.org/10.24976/Discov.Med.202335178.71.
  • [5] Saragea PD. Alzheimer’s disease (AD): environmental modifiable risk factors. Int J Multidisc Res. (IJFMR). 2024;6(4). https://doi.org/10.36948/ijfmr.2024.v06i04.26759.
  • [6] Jiang A. Challenges in early diagnosis and treatment of Alzheimer’s disease. Highl Sci Eng Technol. 2023;74(1):713–718. https://doi.org/10.54097/3knv6p63.
  • [7] Majdi A, Sadigh-Eteghad S, Aghsan SR, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci. 2020;31(4):391–413. https://doi.org/10.1515/revneuro-2019-0089.
  • [8] Gamage R, Rossetti I, Niedermayer G, Münch G, Buskila Y, Gyengesi E. Chronic neuroinflammation during aging leads to cholinergic neurodegeneration in the mouse medial septum. J Neuroinflammation [Internet]. 2023;20(1):235. https://doi.org/10.1186/s12974-023-02897-5.
  • [9] Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Recent advances in therapeutics for the treatment of Alzheimer’s disease. Molecules. 2024;29(21):5131. https://doi.org/10.3390/molecules29215131.
  • [10] Pooladgar P, Sakhabakhsh M, Taghva A, Soleiman-Meigooni S. Donepezil beyond Alzheimer’s disease? A narrative review of therapeutic potentials of donepezil in different diseases. Iran J Pharm Res. 2022;21(1):e128408. https://doi.org/10.5812/ijpr-128408.
  • [11] Shin YB, Kim JH, Kwon MK, Myung JH, Lee DG, Jin SG, Kang MJ, Choi YS. Optimized method development and validation for determining donepezil in rat plasma: A liquid-liquid extraction, LC-MS/MS, and design of experiments approach. PLoS One. 2024;19(9):e0309802. https://doi.org/10.1371/journal.pone.0309802.
  • [12] Zheng J, Zhao G, Hu Z, Jia C, Li W, Peng Y, Zheng J. Metabolic activation and cytotoxicity of donepezil induced by CYP3A4. Chem Res Toxicol. 2024;37(12):2003–2012. https://doi.org/10.1021/acs.chemrestox.4c00357.
  • [13] Warren SL, Moustafa AA. The efficacy of donepezil for the treatment of Alzheimer’s disease. Alzheimer’s Disease: Understanding Biomarkers, Big Data, and Therapy [Internet]. Academic Press; 2021. p. 217–232. Available from: https://doi.org/10.1016/B978-0-12-821334-6.00001-6.
  • [14] Odenigbo N, Nkemjika S, Atolagbe A, Nwabueze C, Olwit C, Lawrence J, Olupona T. Donepezil-induced bradycardia in a schizophrenic patient with comorbid neurocognitive disorder: a case report and review of the literature. J Med Case Reports. 2024;18(1):129. https://doi.org/10.1186/s13256-024-04454-x.
  • [15] Gupta P, Tiwari S, Singh A, Pal A, Mishra A, Singh S. Rivastigmine attenuates the Alzheimer’s disease related protein degradation and apoptotic neuronal death signalling. Biochem J. 2021;478(7):1435–1451. https://doi.org/10.1042/BCJ20200754.
  • [16] Leuci R, Simic S, Carrieri A, Chaves S, La Spada G, Brunetti L, Tortorella P, Loiodice F, Laghezza A, Catto M, Santos MA, Tufarelli V, Wackerlig J, Piemontese L. Rivastigmine structure-based hybrids as potential multi-target anti-Alzheimer's drug candidates. Bioorg Chem. 2024;153:107895. https://doi.org/10.1016/j.bioorg.2024.107895.
  • [17] Abhilash K Desai, George G. Rivastigmine for Alzheimer’s disease. Expert Rev Neurother. 2005;5(5):563–580. https://doi.org/10.1586/14737175.5.5.563.
  • [18] Spencer CM, Noble S. Rivastigmine. Drugs Aging. 1998;13(5):391–411. https://doi.org/10.2165/00002512-199813050-00005.
  • [19] Pagliuca R, Papa MV, Ilaria PM, Papa VF, Varricchio G. Atypical presentation of acetylcholinesterase inhibitor-induced diarrhea in older adults with cognitive decline: An aspect not to be underestimated. Ann Geriatr Med Res. 2023;27(1):83–86. https://doi.org/10.4235/agmr.22.0116.
  • [20] Patel T. Rivastigmine therapeutic efficacy in Alzheimer’s disease and other conditions. 2023; https://doi.org/10.22541/au.168078588.84770672/v1.
  • [21] Nguyen K, Hoffman H, Binu C, Grossberg GT. Evaluation of rivastigmine in Alzheimer’s disease. Neurodegen Dis Manag. 2021;11(1):35–48. https://doi.org/10.2217/nmt-2020-0052.
  • [22] Glinz D, Gloy VL, Monsch AU, Kressig RW, Patel C, McCord KA, Ademi Z, Tomonaga Y, Schwenkglenks M, Bucher HC, Raatz H. Acetylcholinesterase inhibitors combined with memantine for moderate to severe Alzheimer's disease: a meta-analysis. Swiss Med Wkly. 2019;149:w20093. https://doi.org/10.4414/smw.2019.20093.
  • [23] Babashpour-Asl M, Kaboudi PS, Barez SR. Therapeutic and medicinal effects of snowdrop (Galanthus spp.) in Alzheimer’s disease: A review. J Educ Health Promot. 2023;12:128. https://doi.org/10.4103/jehp.jehp_451_22.
  • [24] Atrahimovich D, Harris R, Eitan R, Cohen M, Khatib S. Galantamine quantity and alkaloid profile in the bulbs of narcissus tazetta and daffodil cultivars (Amaryllidaceae) grown in Israel. Metabolites. 2021;11(3):185. https://doi.org/10.3390/metabo11030185.
  • [25] Ali R, Gupta GD, Chawla PA. Aducanumab: A new hope in Alzheimer’s disease. Health Sci Rev (Oxf). 2022;4:100039. https://doi.org/10.1016/j.hsr.2022.100039.
  • [26] Philipova I, Stavrakov G, Dimitrov V, Vassilev N. Galantamine derivatives: synthesis, NMR study, DFT calculations and application in asymmetric catalysis. J Mol Struct. 2020;1219:128568. https://doi.org/10.1016/j.molstruc.2020.128568.
  • [27] Kaur J, Melkani I, Singh AP, Singh AP, Bala K. Galantamine: A review update. J Drug Deliv Ther. 2022;12(4):167–173. http://dx.doi.org/10.22270/jddt.v12i4.5426.
  • [28] Aanandhi MV. Comprehensive review on method development of galantamine. JMPAS. 2022;11(5):5264–5267. https://doi.org/10.55522/jmpas.V11I5.3919.
  • [29] Koola MM, Looney SW, Hong H, Pillai A, Hou W. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: significant cognitive enhancement. Psychiatry Res. 2020;291:113285. https://doi.org/10.1016/j.psychres.2020.113285
  • [30] Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J Cent Nerv Syst Dis. 2021;13(1):11795735211029113. https://doi.org/10.1177/11795735211029113.
  • [31] Katib H, Shah A, Yousaf H. Galantamine-Induced Third-Degree Heart Block. Cureus. 2024;16(3):e55757. https://doi.org/10.7759/cureus.55757.
  • [32] Lim AWY, Schneider L, Loy C. Galantamine for dementia due to Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev. 2024;11. https://doi.org/10.1002/14651858.CD001747.pub4.
  • [33] Fan F, Liu H, Shi X, Ai Y, Liu Q, Cheng Y. The efficacy and safety of Alzheimer’s disease therapies: An updated umbrella review. J Alzheimers Dis. 2022;85(3):1195–1204. https://doi.org/10.3233/jad-215423.
  • [34] Herrmann N, Abby L, Krista L. Memantine in dementia: a review of the current evidence. Expert Opin Pharmacother. 2011;12(5):787–800. https://doi.org/10.1517/14656566.2011.558006.
  • [35] Tang B-C, Wang Y-T, Ren J. Basic information about memantine and its treatment of Alzheimer’s disease and other clinical applications. Ibrain. 2023;9(3):340–348. https://doi.org/10.1002/ibra.12098.
  • [36] Coelho JT, Timóteo S, Machado AS. The use of memantine for depressive symptomatology. Eur Psychiatry. 2024;67(S1):S531–S531. https://doi.org/10.1192/j.eurpsy.2024.1104.
  • [37] Al_hussaniy HA, Alkhafaje Z, Altamimi ZS, Oraibi AI, Abdalhassan AH, Abdulhamza HM, AL-Zobaidy MJ. Memantine and its role in parkinsonism, seizure, depression, migraine headache, and Alzheimer’s disease. PHAR. 2023;70(2):291–297. https://doi.org/10.3897/pharmacia.70.e99311.
  • [38] Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol. 2021;910(1):174455. https://doi.org/10.1016/j.ejphar.2021.174455.
  • [39] Guo J, Wang Z, Liu R, Huang Y, Zhang N, Zhang R. Memantine, donepezil, or combination therapy—what is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav. 2020;10(11):e01831. https://doi.org/10.1002/brb3.1831.
  • [40] Hoffman L, Bloemer J. Chapter 5 - side effects of drugs used in the treatment of Alzheimer’s disease. In: Ray SD, editor. Side Effects of Drugs Annual [Internet]. Elsevier; 2021 [cited 2025 May 19]. p. 71–77. Available from: https://www.sciencedirect.com/science/article/pii/S0378608021000349.
  • [41] Althobaiti YS. Development of memantine as a drug for Alzheimer’s disease: A review of preclinical and clinical studies. Trop J Pharm Res. 2020;19(7):1535–1540. https://doi.org/10.4314/tjpr.v19i7.28.
  • [42] Wu W, Ji Y, Wang Z, Wu X, Li J, Gu F, Chen Z, Wang Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Med Res. 2023;28(1):544. https://doi.org/10.1186/s40001-023-01512-w.
  • [43] Thussu S, Naidu A, Manivannan S, Grossberg GT. Profiling aducanumab as a treatment option for Alzheimer’s disease: an overview of efficacy, safety and tolerability. Expert Rev Neurother. 2024;24(11):1045–1053. https://doi.org/10.1080/14737175.2024.2402058. Cited: in: : PMID: 39291991.
  • [44] Beshir SA, Aadithsoorya AM, Parveen A, Goh SSL, Hussain N, Menon VB. Aducanumab therapy to treat Alzheimer’s disease: A narrative review. Int J Alzheimers Dis. 2022;2022(1):9343514. https://doi.org/10.1155/2022/9343514.
  • [45] Hao W, Lenhart S, Petrella JR. Optimal anti-amyloid-beta therapy for Alzheimer's disease via a personalized mathematical model. PLoS Comput Biol. 2022;18(9):e1010481. https://doi.org/10.1371/journal.pcbi.1010481.
  • [46] Tu S. Aducanumab: the controversial drug for Alzhiemer’s disease. Theor Nat Sci. 2024;35(1):14–19. https://doi.org/10.54254/2753-8818/35/20240832.
  • [47] Belloy ME, Andrews SJ, Guen YL, Napolioni V, Greicius MD. APOE and Alzheimer disease risk across age, sex, race, ethnicity, and ancestry: An overview from 68,756 individuals. Alzheimer’s Dement. 2023;19(S24):e082772. 10.1002/alz.082772.
  • [48] Heidebrink JL, Paulson HL. Lessons learned from approval of aducanumab for Alzheimer’s disease. Ann Rev Med. 2024;75:99–111. https://doi.org/10.1146/annurev-med-051022-043645.
  • [49] Withington CG, Turner RS. Amyloid-related imaging abnormalities with anti-amyloid antibodies for the treatment of dementia due to Alzheimer’s disease. Front Neurol. 2022;13:862369. https://doi.org/10.3389/fneur.2022.862369.
  • [50] Loomis SJ, Miller R, Castrillo-Viguera C, Umans K, Cheng W, Gorman JO, Hughes R, Haeberlein SB, Whelan CD. Genome-wide association studies of ARIA from the aducanumab phase 3 ENGAGE and EMERGE Studies. Neurology. 2024;102(3):e207919. https://doi.org/10.1212/WNL.0000000000207919.
  • [51] Zhu B, Abossi Y. Lecanemab for Alzheimer’s disease. Qapsule: Queen’s Undergraduate Health Sci J. 2024;1(2). https://doi.org/10.24908/qap.v1i2.18099.
  • [52] Jin M, Noble JM. What’s in It for me? contextualizing the potential clinical impacts of lecanemab, donanemab, and other anti-β-amyloid monoclonal antibodies in early Alzheimer’s disease. eNeuro. 2024;11(9). https://doi.org/10.1523/ENEURO.0088-24.2024.
  • [53] Willis BA, Penner N, Rawal S, Aluri J, Reyderman L. Subcutaneous (SC) lecanemab is predicted to achieve comparable efficacy and improved safety compared to lecanemab IV in early Alzheimer’s disease (AD). Alzheimers Dement. 2023;19(S24):e082852. https://doi.org/10.1002/alz.082852.
  • [54] Majid O, Cao Y, Willis BA, Hayato S, Takenaka O, Lalovic B, Sreerama Reddy SH, Penner N, Reyderman L, Yasuda S, Hussein Z. Population pharmacokinetics and exposure-response analyses of safety (ARIA-E and isolated ARIA-H) of lecanemab in subjects with early Alzheimer's disease. CPT Pharmacometrics Syst Pharmacol. 2024;13(12):2111-2123. https://doi.org/10.1002/psp4.13224.
  • [55] Rahman A, Hossen MA, Chowdhury MFI, Bari S, Tamanna N, Sultana SS, Haque SN, Al Masud A, Saif-Ur-Rahman KM. Aducanumab for the treatment of Alzheimer's disease: a systematic review. Psychogeriatrics. 2023;23(3):512-522. https://doi.org/10.1111/psyg.12944.
  • [56] Shane R, Kremen S, Tan ZS, Tran H, Tu TG, Sicotte NL. Lecanemab planning: blueprint for safe and effective management of complex therapies. Neurol Clin Pract. 2024;14(6):e200361. https://doi.org/10.1212/CPJ.0000000000200361.
  • [57] Reisa S, David L, Shobha D, Steven H, Larisa R, Michael I, Rob M, Michael W, Lynn K. Lecanemab in early Alzheimer’s disease: extended efficacy results from the CLARITY AD study. J Neurol Neurosurg Psychiatry. 2024;95(2). https://doi.org/10.1136/jnnp-2024-ABN.138.
  • [58] Smith EE, Phillips NA, Feldman HH, Borrie M, Ganesh A, Henri-Bhargava A, Desmarais P, Frank A, Badhwar A, Barlow L, Bartha R, Best S, Bethell J, Bhangu J, Black SE, Bocti C, Bronskill SE, Burhan AM, Calon F, Camicioli R, Campbell B, Collins DL, Dadar M, DeMarco ML, Ducharme S, Duchesne S, Einstein G, Fisk JD, Gawryluk JR, Grossman L, Ismail Z, Itzhak I, Joshi M, Harrison A, Kröger E, Kumar S, Laforce R, Lanctot KL, Lau M, Lee L, Masellis M, Massoud F, Mitchell SB, Montero-Odasso M, Myers Barnett K, Nygaard HB, Pasternak SH, Peters J, Rajah MN, Robillard JM, Rockwood K, Rosa-Neto P, Seitz DP, Soucy JP, Trenaman SC, Wellington CL, Zadem A, Chertkow H; Canadian Consortium on Neurodegeneration in Aging Investigators. Use of lecanemab and donanemab in the Canadian healthcare system: Evidence, challenges, and areas for future research. J Prev Alzheimers Dis. 2025;12(3):100068. https://doi.org/10.1016/j.tjpad.2025.100068.
  • [59] Eli Lilly. Lilly’s KisunlaTM (donanemab-azbt) Receives Marketing Authorization in Great Britain for the Treatment of Mild Cognitive Impairment and Mild Dementia Due to Alzheimer’s Disease in Adult Patients Who Are Apolipoprotein E Ε4 Heterozygotes or Non-Carriers | Eli Lilly and Company [Internet]. [cited 2025 May 19]. Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-kisunlatm-donanemab-azbt-receives-marketing-authorization.
  • [60] Donanemab licensed for early stages of Alzheimer’s disease in adult patients who have one or no copies of apolipoprotein E4 gene [Internet]. GOV.UK. [cited 2025 May 19]. Available from: https://www.gov.uk/government/news/donanemab-licensed-for-early-stages-of-alzheimers-disease-in-adult-patients-who-have-one-or-no-copies-of-apolipoprotein-e4-gene.
  • [61] Eli Lilly. Lilly’s KisunlaTM (donanemab-azbt) approved by the FDA for the treatment of Early symptomatic Alzheimer’s disease | Eli Lilly and Company [Internet]. [cited 2025 May 19]. Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-kisunlatm-donanemab-azbt-approved-fda-treatment-early.
  • [62] Song T, Wang Y, Silverglate BD, Grossberg GT. Pharmacokinetic evaluation of donanemab for the treatment of Alzheimer’s. Expert Opin Drug Metab Toxicol. 2024;20(6):411–417. https://doi.org/10.1080/17425255.2024.2357637.
  • [63] Reichard V. Benefits, pitfalls, and alternatives to amyloid targeting Alzheimer’s disease drugs. Research Archive of Rising Scholars. 2024; https://doi.org/10.58445/rars.1990.
  • [64] Ribeiro GF, Andrade IG de, Vasconcellos MAB de, Rodrigues RC, Márcia Bandeira B, Silva Cordeiro GCG da, Farias GA, Abreu Mendes SIL de, Wagner ACB, Nascimento JNF, de Olivera Batista D, de Souza Cruz GL, Fernandes de Paiva S, Ferreira Campos T, Andrade TF. Therapeutic analysis of donanemab in the treatment of patients with Alzheimer’s disease. Caderno Pedagógico. 2024;21(8):e7019. https://doi.org/10.54033/cadpedv21n8-207.
  • [65] Sato S, Hatakeyama N, Fujikoshi S, Katayama S, Katagiri H, Sims JR. Donanemab in Japanese patients with early Alzheimer’s disease: subpopulation analysis of the TRAILBLAZER-ALZ 2 randomized trial. Neurol Ther. 2024;13(3):677–695. https://doi.org/10.1007/s40120-024-00604-x.
  • [66] Mintun M, Ritchie CW, Solomon P, Sims JR, Salloway S, Hansson O, Apostolova LG, Zimmer JA, Evans CD, Lu M, et al. Donanemab in early symptomatic Alzheimer’s disease: efficacy and safety in TRAILBLAZER-ALZ 2, a phase 3 randomized clinical trial. Alzheimers Dement. 2023;19(S24):e082733. https://doi.org/10.1002/alz.082733.
  • [67] Atri A, Wessels A, Doty E, Atkins A, Chandler J, Lu M, Ye W, Dennehy E, Brooks D, Sims J. Clinical relevance of donanemab treatment (S1.004). Neurology. 2024;102(7):5454. https://doi.org/10.1093/ageing/afae139.089.
  • [68] Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, Wessels AM, Shcherbinin S, Wang H, Monkul Nery ES, Collins EC, Solomon P, Salloway S, Apostolova LG, Hansson O, Ritchie C, Brooks DA, Mintun M, Skovronsky DM; TRAILBLAZER-ALZ 2 Investigators. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512-527. https://doi.org/10.1001/jama.2023.13239.
  • [69] Terao I, Kodama W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis. Ageing Res Rev. 2024;94:102203. https://doi.org/10.1016/j.arr.2024.102203.
  • [70] Nguyen VTT, Sallbach J, dos Santos Guilherme M, Endres K. Influence of acetylcholine esterase inhibitors and memantine, clinically approved for Alzheimer’s dementia treatment, on intestinal properties of the mouse. Int J Mol Sci. 2021;22(3):1015. https://doi.org/10.3390/ijms22031015.

Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches

Year 2025, Volume: 29 Issue: 5, 2165 - 2179, 01.09.2025
https://doi.org/10.12991/jrespharm.1707084

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily affecting the elderly and the most common cause of dementia, characterized by neuronal loss, cognitive decline, and memory impairment. Several FDA-approved medications for AD fall into two main categories: symptomatic treatments and disease-modifying therapies. Symptomatic treatments include acetylcholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. These drugs help mitigate cognitive decline: cholinesterase inhibitors increase acetylcholine levels, whereas NMDA receptor antagonists regulate glutamate activity. Disease-modifying therapies treat the disease pathology by reducing the amyloid-beta plaque burden. These are monoclonal antibody therapies such as Aducanumab, Lecanemab, and Donanemab, the latter as a monthly intravenous infusion until the plaques can no longer be detected. This review provides a comparative analysis of symptomatic and disease-modifying therapies, focusing on their pharmacokinetics, characteristics, mechanisms of action, clinical efficacy, side effects, and recent trial findings.

References

  • [1] Tenchov R, Sasso JM, Zhou QA. Alzheimer’s disease: exploring the landscape of cognitive decline. ACS Chem Neurosci. 2024;15(21):3800–3827. https://doi.org/10.1021/acschemneuro.4c00339.
  • [2] Kumar S, Hasan M, Singhal S, Anupam A. Alzheimer’s disease: Pathological changes, recent treatment and future perspectives. Int J Health Sci. 2022;6(S8):1462–1475. https://doi.org/10.53730/ijhs.v6nS8.10006.
  • [3] Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain. 2024;17(1):44. https://doi.org/10.1186/s13041-024-01118-1.
  • [4] Zhang C. Etiology of Alzheimer’s disease. Discov Med. 2023;35(178):757–776. https://doi.org/10.24976/Discov.Med.202335178.71.
  • [5] Saragea PD. Alzheimer’s disease (AD): environmental modifiable risk factors. Int J Multidisc Res. (IJFMR). 2024;6(4). https://doi.org/10.36948/ijfmr.2024.v06i04.26759.
  • [6] Jiang A. Challenges in early diagnosis and treatment of Alzheimer’s disease. Highl Sci Eng Technol. 2023;74(1):713–718. https://doi.org/10.54097/3knv6p63.
  • [7] Majdi A, Sadigh-Eteghad S, Aghsan SR, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev Neurosci. 2020;31(4):391–413. https://doi.org/10.1515/revneuro-2019-0089.
  • [8] Gamage R, Rossetti I, Niedermayer G, Münch G, Buskila Y, Gyengesi E. Chronic neuroinflammation during aging leads to cholinergic neurodegeneration in the mouse medial septum. J Neuroinflammation [Internet]. 2023;20(1):235. https://doi.org/10.1186/s12974-023-02897-5.
  • [9] Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Recent advances in therapeutics for the treatment of Alzheimer’s disease. Molecules. 2024;29(21):5131. https://doi.org/10.3390/molecules29215131.
  • [10] Pooladgar P, Sakhabakhsh M, Taghva A, Soleiman-Meigooni S. Donepezil beyond Alzheimer’s disease? A narrative review of therapeutic potentials of donepezil in different diseases. Iran J Pharm Res. 2022;21(1):e128408. https://doi.org/10.5812/ijpr-128408.
  • [11] Shin YB, Kim JH, Kwon MK, Myung JH, Lee DG, Jin SG, Kang MJ, Choi YS. Optimized method development and validation for determining donepezil in rat plasma: A liquid-liquid extraction, LC-MS/MS, and design of experiments approach. PLoS One. 2024;19(9):e0309802. https://doi.org/10.1371/journal.pone.0309802.
  • [12] Zheng J, Zhao G, Hu Z, Jia C, Li W, Peng Y, Zheng J. Metabolic activation and cytotoxicity of donepezil induced by CYP3A4. Chem Res Toxicol. 2024;37(12):2003–2012. https://doi.org/10.1021/acs.chemrestox.4c00357.
  • [13] Warren SL, Moustafa AA. The efficacy of donepezil for the treatment of Alzheimer’s disease. Alzheimer’s Disease: Understanding Biomarkers, Big Data, and Therapy [Internet]. Academic Press; 2021. p. 217–232. Available from: https://doi.org/10.1016/B978-0-12-821334-6.00001-6.
  • [14] Odenigbo N, Nkemjika S, Atolagbe A, Nwabueze C, Olwit C, Lawrence J, Olupona T. Donepezil-induced bradycardia in a schizophrenic patient with comorbid neurocognitive disorder: a case report and review of the literature. J Med Case Reports. 2024;18(1):129. https://doi.org/10.1186/s13256-024-04454-x.
  • [15] Gupta P, Tiwari S, Singh A, Pal A, Mishra A, Singh S. Rivastigmine attenuates the Alzheimer’s disease related protein degradation and apoptotic neuronal death signalling. Biochem J. 2021;478(7):1435–1451. https://doi.org/10.1042/BCJ20200754.
  • [16] Leuci R, Simic S, Carrieri A, Chaves S, La Spada G, Brunetti L, Tortorella P, Loiodice F, Laghezza A, Catto M, Santos MA, Tufarelli V, Wackerlig J, Piemontese L. Rivastigmine structure-based hybrids as potential multi-target anti-Alzheimer's drug candidates. Bioorg Chem. 2024;153:107895. https://doi.org/10.1016/j.bioorg.2024.107895.
  • [17] Abhilash K Desai, George G. Rivastigmine for Alzheimer’s disease. Expert Rev Neurother. 2005;5(5):563–580. https://doi.org/10.1586/14737175.5.5.563.
  • [18] Spencer CM, Noble S. Rivastigmine. Drugs Aging. 1998;13(5):391–411. https://doi.org/10.2165/00002512-199813050-00005.
  • [19] Pagliuca R, Papa MV, Ilaria PM, Papa VF, Varricchio G. Atypical presentation of acetylcholinesterase inhibitor-induced diarrhea in older adults with cognitive decline: An aspect not to be underestimated. Ann Geriatr Med Res. 2023;27(1):83–86. https://doi.org/10.4235/agmr.22.0116.
  • [20] Patel T. Rivastigmine therapeutic efficacy in Alzheimer’s disease and other conditions. 2023; https://doi.org/10.22541/au.168078588.84770672/v1.
  • [21] Nguyen K, Hoffman H, Binu C, Grossberg GT. Evaluation of rivastigmine in Alzheimer’s disease. Neurodegen Dis Manag. 2021;11(1):35–48. https://doi.org/10.2217/nmt-2020-0052.
  • [22] Glinz D, Gloy VL, Monsch AU, Kressig RW, Patel C, McCord KA, Ademi Z, Tomonaga Y, Schwenkglenks M, Bucher HC, Raatz H. Acetylcholinesterase inhibitors combined with memantine for moderate to severe Alzheimer's disease: a meta-analysis. Swiss Med Wkly. 2019;149:w20093. https://doi.org/10.4414/smw.2019.20093.
  • [23] Babashpour-Asl M, Kaboudi PS, Barez SR. Therapeutic and medicinal effects of snowdrop (Galanthus spp.) in Alzheimer’s disease: A review. J Educ Health Promot. 2023;12:128. https://doi.org/10.4103/jehp.jehp_451_22.
  • [24] Atrahimovich D, Harris R, Eitan R, Cohen M, Khatib S. Galantamine quantity and alkaloid profile in the bulbs of narcissus tazetta and daffodil cultivars (Amaryllidaceae) grown in Israel. Metabolites. 2021;11(3):185. https://doi.org/10.3390/metabo11030185.
  • [25] Ali R, Gupta GD, Chawla PA. Aducanumab: A new hope in Alzheimer’s disease. Health Sci Rev (Oxf). 2022;4:100039. https://doi.org/10.1016/j.hsr.2022.100039.
  • [26] Philipova I, Stavrakov G, Dimitrov V, Vassilev N. Galantamine derivatives: synthesis, NMR study, DFT calculations and application in asymmetric catalysis. J Mol Struct. 2020;1219:128568. https://doi.org/10.1016/j.molstruc.2020.128568.
  • [27] Kaur J, Melkani I, Singh AP, Singh AP, Bala K. Galantamine: A review update. J Drug Deliv Ther. 2022;12(4):167–173. http://dx.doi.org/10.22270/jddt.v12i4.5426.
  • [28] Aanandhi MV. Comprehensive review on method development of galantamine. JMPAS. 2022;11(5):5264–5267. https://doi.org/10.55522/jmpas.V11I5.3919.
  • [29] Koola MM, Looney SW, Hong H, Pillai A, Hou W. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: significant cognitive enhancement. Psychiatry Res. 2020;291:113285. https://doi.org/10.1016/j.psychres.2020.113285
  • [30] Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J Cent Nerv Syst Dis. 2021;13(1):11795735211029113. https://doi.org/10.1177/11795735211029113.
  • [31] Katib H, Shah A, Yousaf H. Galantamine-Induced Third-Degree Heart Block. Cureus. 2024;16(3):e55757. https://doi.org/10.7759/cureus.55757.
  • [32] Lim AWY, Schneider L, Loy C. Galantamine for dementia due to Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev. 2024;11. https://doi.org/10.1002/14651858.CD001747.pub4.
  • [33] Fan F, Liu H, Shi X, Ai Y, Liu Q, Cheng Y. The efficacy and safety of Alzheimer’s disease therapies: An updated umbrella review. J Alzheimers Dis. 2022;85(3):1195–1204. https://doi.org/10.3233/jad-215423.
  • [34] Herrmann N, Abby L, Krista L. Memantine in dementia: a review of the current evidence. Expert Opin Pharmacother. 2011;12(5):787–800. https://doi.org/10.1517/14656566.2011.558006.
  • [35] Tang B-C, Wang Y-T, Ren J. Basic information about memantine and its treatment of Alzheimer’s disease and other clinical applications. Ibrain. 2023;9(3):340–348. https://doi.org/10.1002/ibra.12098.
  • [36] Coelho JT, Timóteo S, Machado AS. The use of memantine for depressive symptomatology. Eur Psychiatry. 2024;67(S1):S531–S531. https://doi.org/10.1192/j.eurpsy.2024.1104.
  • [37] Al_hussaniy HA, Alkhafaje Z, Altamimi ZS, Oraibi AI, Abdalhassan AH, Abdulhamza HM, AL-Zobaidy MJ. Memantine and its role in parkinsonism, seizure, depression, migraine headache, and Alzheimer’s disease. PHAR. 2023;70(2):291–297. https://doi.org/10.3897/pharmacia.70.e99311.
  • [38] Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol. 2021;910(1):174455. https://doi.org/10.1016/j.ejphar.2021.174455.
  • [39] Guo J, Wang Z, Liu R, Huang Y, Zhang N, Zhang R. Memantine, donepezil, or combination therapy—what is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav. 2020;10(11):e01831. https://doi.org/10.1002/brb3.1831.
  • [40] Hoffman L, Bloemer J. Chapter 5 - side effects of drugs used in the treatment of Alzheimer’s disease. In: Ray SD, editor. Side Effects of Drugs Annual [Internet]. Elsevier; 2021 [cited 2025 May 19]. p. 71–77. Available from: https://www.sciencedirect.com/science/article/pii/S0378608021000349.
  • [41] Althobaiti YS. Development of memantine as a drug for Alzheimer’s disease: A review of preclinical and clinical studies. Trop J Pharm Res. 2020;19(7):1535–1540. https://doi.org/10.4314/tjpr.v19i7.28.
  • [42] Wu W, Ji Y, Wang Z, Wu X, Li J, Gu F, Chen Z, Wang Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Med Res. 2023;28(1):544. https://doi.org/10.1186/s40001-023-01512-w.
  • [43] Thussu S, Naidu A, Manivannan S, Grossberg GT. Profiling aducanumab as a treatment option for Alzheimer’s disease: an overview of efficacy, safety and tolerability. Expert Rev Neurother. 2024;24(11):1045–1053. https://doi.org/10.1080/14737175.2024.2402058. Cited: in: : PMID: 39291991.
  • [44] Beshir SA, Aadithsoorya AM, Parveen A, Goh SSL, Hussain N, Menon VB. Aducanumab therapy to treat Alzheimer’s disease: A narrative review. Int J Alzheimers Dis. 2022;2022(1):9343514. https://doi.org/10.1155/2022/9343514.
  • [45] Hao W, Lenhart S, Petrella JR. Optimal anti-amyloid-beta therapy for Alzheimer's disease via a personalized mathematical model. PLoS Comput Biol. 2022;18(9):e1010481. https://doi.org/10.1371/journal.pcbi.1010481.
  • [46] Tu S. Aducanumab: the controversial drug for Alzhiemer’s disease. Theor Nat Sci. 2024;35(1):14–19. https://doi.org/10.54254/2753-8818/35/20240832.
  • [47] Belloy ME, Andrews SJ, Guen YL, Napolioni V, Greicius MD. APOE and Alzheimer disease risk across age, sex, race, ethnicity, and ancestry: An overview from 68,756 individuals. Alzheimer’s Dement. 2023;19(S24):e082772. 10.1002/alz.082772.
  • [48] Heidebrink JL, Paulson HL. Lessons learned from approval of aducanumab for Alzheimer’s disease. Ann Rev Med. 2024;75:99–111. https://doi.org/10.1146/annurev-med-051022-043645.
  • [49] Withington CG, Turner RS. Amyloid-related imaging abnormalities with anti-amyloid antibodies for the treatment of dementia due to Alzheimer’s disease. Front Neurol. 2022;13:862369. https://doi.org/10.3389/fneur.2022.862369.
  • [50] Loomis SJ, Miller R, Castrillo-Viguera C, Umans K, Cheng W, Gorman JO, Hughes R, Haeberlein SB, Whelan CD. Genome-wide association studies of ARIA from the aducanumab phase 3 ENGAGE and EMERGE Studies. Neurology. 2024;102(3):e207919. https://doi.org/10.1212/WNL.0000000000207919.
  • [51] Zhu B, Abossi Y. Lecanemab for Alzheimer’s disease. Qapsule: Queen’s Undergraduate Health Sci J. 2024;1(2). https://doi.org/10.24908/qap.v1i2.18099.
  • [52] Jin M, Noble JM. What’s in It for me? contextualizing the potential clinical impacts of lecanemab, donanemab, and other anti-β-amyloid monoclonal antibodies in early Alzheimer’s disease. eNeuro. 2024;11(9). https://doi.org/10.1523/ENEURO.0088-24.2024.
  • [53] Willis BA, Penner N, Rawal S, Aluri J, Reyderman L. Subcutaneous (SC) lecanemab is predicted to achieve comparable efficacy and improved safety compared to lecanemab IV in early Alzheimer’s disease (AD). Alzheimers Dement. 2023;19(S24):e082852. https://doi.org/10.1002/alz.082852.
  • [54] Majid O, Cao Y, Willis BA, Hayato S, Takenaka O, Lalovic B, Sreerama Reddy SH, Penner N, Reyderman L, Yasuda S, Hussein Z. Population pharmacokinetics and exposure-response analyses of safety (ARIA-E and isolated ARIA-H) of lecanemab in subjects with early Alzheimer's disease. CPT Pharmacometrics Syst Pharmacol. 2024;13(12):2111-2123. https://doi.org/10.1002/psp4.13224.
  • [55] Rahman A, Hossen MA, Chowdhury MFI, Bari S, Tamanna N, Sultana SS, Haque SN, Al Masud A, Saif-Ur-Rahman KM. Aducanumab for the treatment of Alzheimer's disease: a systematic review. Psychogeriatrics. 2023;23(3):512-522. https://doi.org/10.1111/psyg.12944.
  • [56] Shane R, Kremen S, Tan ZS, Tran H, Tu TG, Sicotte NL. Lecanemab planning: blueprint for safe and effective management of complex therapies. Neurol Clin Pract. 2024;14(6):e200361. https://doi.org/10.1212/CPJ.0000000000200361.
  • [57] Reisa S, David L, Shobha D, Steven H, Larisa R, Michael I, Rob M, Michael W, Lynn K. Lecanemab in early Alzheimer’s disease: extended efficacy results from the CLARITY AD study. J Neurol Neurosurg Psychiatry. 2024;95(2). https://doi.org/10.1136/jnnp-2024-ABN.138.
  • [58] Smith EE, Phillips NA, Feldman HH, Borrie M, Ganesh A, Henri-Bhargava A, Desmarais P, Frank A, Badhwar A, Barlow L, Bartha R, Best S, Bethell J, Bhangu J, Black SE, Bocti C, Bronskill SE, Burhan AM, Calon F, Camicioli R, Campbell B, Collins DL, Dadar M, DeMarco ML, Ducharme S, Duchesne S, Einstein G, Fisk JD, Gawryluk JR, Grossman L, Ismail Z, Itzhak I, Joshi M, Harrison A, Kröger E, Kumar S, Laforce R, Lanctot KL, Lau M, Lee L, Masellis M, Massoud F, Mitchell SB, Montero-Odasso M, Myers Barnett K, Nygaard HB, Pasternak SH, Peters J, Rajah MN, Robillard JM, Rockwood K, Rosa-Neto P, Seitz DP, Soucy JP, Trenaman SC, Wellington CL, Zadem A, Chertkow H; Canadian Consortium on Neurodegeneration in Aging Investigators. Use of lecanemab and donanemab in the Canadian healthcare system: Evidence, challenges, and areas for future research. J Prev Alzheimers Dis. 2025;12(3):100068. https://doi.org/10.1016/j.tjpad.2025.100068.
  • [59] Eli Lilly. Lilly’s KisunlaTM (donanemab-azbt) Receives Marketing Authorization in Great Britain for the Treatment of Mild Cognitive Impairment and Mild Dementia Due to Alzheimer’s Disease in Adult Patients Who Are Apolipoprotein E Ε4 Heterozygotes or Non-Carriers | Eli Lilly and Company [Internet]. [cited 2025 May 19]. Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-kisunlatm-donanemab-azbt-receives-marketing-authorization.
  • [60] Donanemab licensed for early stages of Alzheimer’s disease in adult patients who have one or no copies of apolipoprotein E4 gene [Internet]. GOV.UK. [cited 2025 May 19]. Available from: https://www.gov.uk/government/news/donanemab-licensed-for-early-stages-of-alzheimers-disease-in-adult-patients-who-have-one-or-no-copies-of-apolipoprotein-e4-gene.
  • [61] Eli Lilly. Lilly’s KisunlaTM (donanemab-azbt) approved by the FDA for the treatment of Early symptomatic Alzheimer’s disease | Eli Lilly and Company [Internet]. [cited 2025 May 19]. Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-kisunlatm-donanemab-azbt-approved-fda-treatment-early.
  • [62] Song T, Wang Y, Silverglate BD, Grossberg GT. Pharmacokinetic evaluation of donanemab for the treatment of Alzheimer’s. Expert Opin Drug Metab Toxicol. 2024;20(6):411–417. https://doi.org/10.1080/17425255.2024.2357637.
  • [63] Reichard V. Benefits, pitfalls, and alternatives to amyloid targeting Alzheimer’s disease drugs. Research Archive of Rising Scholars. 2024; https://doi.org/10.58445/rars.1990.
  • [64] Ribeiro GF, Andrade IG de, Vasconcellos MAB de, Rodrigues RC, Márcia Bandeira B, Silva Cordeiro GCG da, Farias GA, Abreu Mendes SIL de, Wagner ACB, Nascimento JNF, de Olivera Batista D, de Souza Cruz GL, Fernandes de Paiva S, Ferreira Campos T, Andrade TF. Therapeutic analysis of donanemab in the treatment of patients with Alzheimer’s disease. Caderno Pedagógico. 2024;21(8):e7019. https://doi.org/10.54033/cadpedv21n8-207.
  • [65] Sato S, Hatakeyama N, Fujikoshi S, Katayama S, Katagiri H, Sims JR. Donanemab in Japanese patients with early Alzheimer’s disease: subpopulation analysis of the TRAILBLAZER-ALZ 2 randomized trial. Neurol Ther. 2024;13(3):677–695. https://doi.org/10.1007/s40120-024-00604-x.
  • [66] Mintun M, Ritchie CW, Solomon P, Sims JR, Salloway S, Hansson O, Apostolova LG, Zimmer JA, Evans CD, Lu M, et al. Donanemab in early symptomatic Alzheimer’s disease: efficacy and safety in TRAILBLAZER-ALZ 2, a phase 3 randomized clinical trial. Alzheimers Dement. 2023;19(S24):e082733. https://doi.org/10.1002/alz.082733.
  • [67] Atri A, Wessels A, Doty E, Atkins A, Chandler J, Lu M, Ye W, Dennehy E, Brooks D, Sims J. Clinical relevance of donanemab treatment (S1.004). Neurology. 2024;102(7):5454. https://doi.org/10.1093/ageing/afae139.089.
  • [68] Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, Wessels AM, Shcherbinin S, Wang H, Monkul Nery ES, Collins EC, Solomon P, Salloway S, Apostolova LG, Hansson O, Ritchie C, Brooks DA, Mintun M, Skovronsky DM; TRAILBLAZER-ALZ 2 Investigators. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512-527. https://doi.org/10.1001/jama.2023.13239.
  • [69] Terao I, Kodama W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis. Ageing Res Rev. 2024;94:102203. https://doi.org/10.1016/j.arr.2024.102203.
  • [70] Nguyen VTT, Sallbach J, dos Santos Guilherme M, Endres K. Influence of acetylcholine esterase inhibitors and memantine, clinically approved for Alzheimer’s dementia treatment, on intestinal properties of the mouse. Int J Mol Sci. 2021;22(3):1015. https://doi.org/10.3390/ijms22031015.
There are 70 citations in total.

Details

Primary Language English
Subjects Clinical Pharmacology and Therapeutics, Medical Pharmacology
Journal Section Reviews
Authors

Mohammed Abdo Qasem Radman Khaled This is me 0009-0008-4339-8350

Ayşe Nur Hazar-yavuz 0000-0003-0784-8779

Publication Date September 1, 2025
Submission Date May 27, 2025
Acceptance Date June 9, 2025
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Khaled, M. A. Q. R., & Hazar-yavuz, A. N. (2025). Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches. Journal of Research in Pharmacy, 29(5), 2165-2179. https://doi.org/10.12991/jrespharm.1707084
AMA Khaled MAQR, Hazar-yavuz AN. Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches. J. Res. Pharm. September 2025;29(5):2165-2179. doi:10.12991/jrespharm.1707084
Chicago Khaled, Mohammed Abdo Qasem Radman, and Ayşe Nur Hazar-yavuz. “Comparative Analysis of FDA-Approved Alzheimer’s Therapies: Symptomatic and Disease-Modifying Approaches”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 2165-79. https://doi.org/10.12991/jrespharm.1707084.
EndNote Khaled MAQR, Hazar-yavuz AN (September 1, 2025) Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches. Journal of Research in Pharmacy 29 5 2165–2179.
IEEE M. A. Q. R. Khaled and A. N. Hazar-yavuz, “Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches”, J. Res. Pharm., vol. 29, no. 5, pp. 2165–2179, 2025, doi: 10.12991/jrespharm.1707084.
ISNAD Khaled, Mohammed Abdo Qasem Radman - Hazar-yavuz, Ayşe Nur. “Comparative Analysis of FDA-Approved Alzheimer’s Therapies: Symptomatic and Disease-Modifying Approaches”. Journal of Research in Pharmacy 29/5 (September2025), 2165-2179. https://doi.org/10.12991/jrespharm.1707084.
JAMA Khaled MAQR, Hazar-yavuz AN. Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches. J. Res. Pharm. 2025;29:2165–2179.
MLA Khaled, Mohammed Abdo Qasem Radman and Ayşe Nur Hazar-yavuz. “Comparative Analysis of FDA-Approved Alzheimer’s Therapies: Symptomatic and Disease-Modifying Approaches”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 2165-79, doi:10.12991/jrespharm.1707084.
Vancouver Khaled MAQR, Hazar-yavuz AN. Comparative analysis of FDA-approved Alzheimer’s therapies: symptomatic and disease-modifying approaches. J. Res. Pharm. 2025;29(5):2165-79.