Review
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 1811 - 1822, 01.09.2025
https://doi.org/10.12991/jrespharm.1763424

Abstract

References

  • Young P. Treatment to cure: Advancing AAV gene therapy manufacture. Drug Discov Today. 2023; 28(7): 103610. https://doi.org/10.1016/j.drudis.2023.103610
  • Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics. 2023; 30: 193-215. https://doi.org/10.1016/j.omto.2023.08.007
  • Bhatt B, García-Díaz, Foight GW. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol. 2024; 42(4): 449-463. https://doi.org/10.1016/j.tibtech.2023.09.010
  • Mücke MM, Fong S, Foster GR, Lillicrap D, Miesbach W. Adeno-associated viruses for gene therapy – clinical implications and liver-related complications, a guide for hepatologists. J Hepatol. 2024; 80(2): 352-361. https://doi.org/10.1016/j.jhep.2023.10.029
  • Zhang Y, Wu ZY. Gene therapy for monogenic disorders: challenges, strategies, and perspectives. J Genet Genomics. 2024;51(2):133-143. https://doi.org/10.1016/j.jgg.2023.08.001
  • Kell P, Sidhu R, Qian M, Mishra S, Nicoli ER, D'Souza P. A pentasaccharide for monitoring pharmacodynamic response to gene therapy in GM1 gangliosidosis. eBioMedicine. 2023; 92: 104627. https://doi.org/10.1016/j.ebiom.2023.104627
  • Liu F. The science and practice of current environmental risk assessment for gene therapy: a review. Cytotherapy. 2024; 26(7): 686-699. https://doi.org/10.1016/j.jcyt.2024.04.067
  • Saravanan CR, Eisa RFH, Gaviria E, Algubari A, Chandrasekar KK, Inban P, Prajjwal P, Bamba H. The efficacy and safety of gene therapy approaches in Parkinson's disease: A systematic review. Dis Mon. 2024; 70(7): 101754. https://doi.org/10.1016/j.disamonth.2024.101754
  • Querin G, Colella M. Gene therapy for primary myopathies: literature review and prospects. Arch Pediatr. 2023; 30(8- 1): 8S18-8S23. https://doi.org/10.1016/s0929-693x(23)00223-3
  • Goraltchouk A, Lourie J, Hollander JM, Rosen G, Fujishiro AA, Luppino F. Development and characterization of a first-in-class adjustable-dose gene therapy system. Gene. 2024; 919: 148500. https://doi.org/10.1016/j.gene.2024.148500
  • Yeung J, Liao A, Shaw M, Silva S, Vetharoy W, Rico DL. Anti-CD45 PBD-based antibody-drug conjugates are effective targeted conditioning agents for gene therapy and stem cell transplant. Mol Ther. 2024; 32(6): 1672-1686. https://doi.org/10.1016/j.ymthe.2024.03.032
  • Butterfield JSS, Li X, Arisa S, Kwon K, Daniell H. Potential role for oral tolerance in gene therapy. Cell Immunol. 2023; 391-392: 104742. https://doi.org/10.1016/j.cellimm.2023.104742
  • Ferrari S, Valeri E, Anastasia C, Scala S, Aprile A, Micco RD. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell. 2023; 30(5): 549-570. https://doi.org/10.1016/j.stem.2023.04.014
  • Blay E, Hardyman E, Morovic W. PCR-based analytics of gene therapies using adeno-associated virus vectors: Considerations for cGMP method development. Mol Ther Methods Clin Dev. 2023;31:101132. https://doi.org/10.1016/j.omtm.2023.101132
  • Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant. 2024; 43(5): 839-848. https://doi.org/10.1016/j.healun.2024.01.016
  • Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant. 2024; 43(5): 839-848. https://doi.org/10.1016/j.healun.2024.01.016
  • Silver E, Argiro A, Hong K, Adler E. Gene therapy vector-related myocarditis. Int J Cardiol. 2024; 398: 131617. https://doi.org/10.1016/j.ijcard.2023.131617
  • Sasaki N, Kok CY, Westhaus A, Alexander IE, Lisowski L, Kizana E. In search of adeno-associated virus vectors with enhanced cardiac tropism for Gene Therapy. Heart Lung Circ. 2023; 32(7): 816-824. https://doi.org/10.1016/j.hlc.2023.06.704
  • Rubanyi GM. The future of human gene therapy. Mol Aspects Med. 2001; 22(3): 113-42. https://doi.org/10.1016/s0098-2997(01)00004-8
  • Kunze-Küllmer M, Goonewardene A, Kili S, Theoharis S, Rivers P. Cell and gene therapy investment: evolution and future outlook on investor perspectives. Cytotherapy. 2024; 26(7): 672-680. https://doi.org/10.1016/j.jcyt.2024.02.017
  • Gonçalves GA, Paiva RD. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017; 15(3): 369- 75. https://doi.org/10.1590/S1679-45082017RB4024
  • Feuerbach FJ, Crystal RG. Progress in human gene therapy. Kidney Int. 1996; 49(6): 1791-1794. https://doi.org/10.1038/ki.1996.269
  • Ikonomou L, Cuende N, Forte M, Grilley BJ, Levine AD, Munsie M. International Society for Cell & Gene Therapy Position Paper: Key considerations to support evidence-based cell and gene therapies and oppose marketing of unproven products. Cytotherapy. 2023; 25(9): 920-929. https://doi.org/10.1016/j.jcyt.2023.03.002
  • Shoti J, Qing K, Keeler GD, Duan D, Byrne BJ, Srivastava A. Development of capsid- and genome-modified optimized AAVrh74 vectors for muscle gene therapy. Mol Ther Methods Clin Dev. 2023; 31: 101147. https://doi.org/10.1016/j.omtm.2023.101147
  • Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biol Targets Ther. 2021; 15: 353-361. https://doi.org/10.2147/BTT.S326422
  • Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018; 200(7): 10-128. https://doi.org/10.1128/JB.00580-17
  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8(11): 2281-2308. https://doi.org/10.1038/nprot.2013.143
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096. https://doi.org/10.1126/science.1258096
  • Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005; 23(8): 967-973. https://doi.org/10.1038/nbt1125
  • Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773-782. https://doi.org/10.1534/genetics.111.131433
  • Harmatz P, Prada CE, Burton BK, Lau H, Kessler CM, Cao L, Falaleeva M, Villegas AG, Zeitler J, Meyer K, Miller W. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther. 2022; 30(12): 3587-3600. https://doi.org/10.1016/j.ymthe.2022.10.010
  • Ragni MV, Mead H, Jong YPD, Kaczmarek R, Leavitt AD. Optimizing Liver Health Before and After Gene Therapy for Hemophilia A. Blood Adv. 2024; 8(19): 5203-5212. https://doi.org/10.1182/bloodadvances.2024013059
  • Kashiwakura Y, Endo K, Ugajin A, Kikuchi T, Hishikawa S, Nakamura H. Efficient gene transduction in pigs and macaques with the engineered AAV vector AAV.GT5 for hemophilia B gene therapy. Mol Ther Methods Clin Dev. 2023; 30: 502-514. https://doi.org/10.1016/j.omtm.2023.08.016
  • Kumar S, Schroeder JA, Shi Q. Platelet-targeted gene therapy induces immune tolerance in hemophilia and beyond. J Thromb Haemost. 2024; 22(1): 23-34. https://doi.org/10.1016/j.jtha.2023.07.025
  • Cathomen T, Joung JK. Zinc-finger nucleases: the next generation emerges. Mol Ther. 2008; 16(7): 1200-1207. https://doi.org/10.1038/mt.2008.114
  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9): 636-646. https://doi.org/10.1038/nrg2842
  • Schwotzer N, Sissy CE, Desguerre I, Frémeaux-Bacchi V, Servais L and Fakhouri F. Thrombotic Microangiopathy as an Emerging Complication of Viral Vector–Based. Kidney Int Rep. 2024; 9(7): 1995-2005. https://doi.org/10.1016/j.ekir.2024.04.024
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1): 49-55. https://doi.org/10.1038/nrm3486
  • Bhardwaj A, Nain V. TALENs—an indispensable tool in the era of CRISPR: a mini review. J Genet Eng Biotechnol. 2021;19(1):125. https://doi.org/10.1186/s43141-021-00225-z
  • Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021; 2: 100007. https://doi.org/10.1016/j.ggedit.2021.100007
  • Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells. 2013;18(4):315-326. https://doi.org/10.1111/gtc.12037.
  • Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr. 2023; 30(8-1): 8S24-8S31. https://doi.org/10.1016/s0929-693x(23)00224-5
  • Bougioukli S, Evans CH, Alluri RK, Ghivizzani SC, Lieberman JR. Gene therapy to enhance bone and cartilage repair in orthopaedic surgery. Curr Gene Ther. 2018; 18(3): 154-170. https://doi.org/10.2174/1566523218666180410152842
  • Longo UG, Petrillo S, Franceschetti E, Berton A, Maffulli N, Denaro V. Stem cells and gene therapy for cartilage repair. Stem Cells Int. 2012;2012:168385. https://doi.org/10.1155/2012/168385
  • Cucchiarini M, Madry H. Gene therapy for cartilage defects. J Gene Med. 2005; 7(12): 1495-1509. https://doi.org/10.1002/jgm.824
  • Defois A, Bon N, Mével M, Deniaud D, Maugars Y, Guicheux J. Gene therapies for osteoarthritis: progress and prospects. JCJP. 2024; 4(2): 100186. https://doi.org/10.1016/j.jcjp.2024.100186
  • Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor–producing mesenchymal cells. Arthritis Rheum. 2003; 48(2): 430-441. https://doi.org/10.1002/art.10759
  • El-Aneed A. Current strategies in cancer gene therapy. Eur J Pharmacol. 2004; 498(1-3): 1-8. https://doi.org/10.1016/j.ejphar.2004.06.054
  • Słyk Z, Wrzesień R, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother. 2024; 170: 116061. https://doi.org/10.1016/j.biopha.2023.116061
  • Qi L, Li G, Li P, Wang H, Fang X, He T. Twenty years of Gendicine® rAd-p53 cancer gene therapy: The first-in-class human cancer gene therapy in the era of personalized oncology. Genes Dis. 2024; 11(4): 101155. https://doi.org/10.1016/j.gendis.2023.101155
  • Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol. 2023; 14: 1148412. https://doi.org/10.3389/fendo.2023.1148412
  • Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer. Heliyon. 2024; 10(5): e27087. https://doi.org/10.1016/j.heliyon.2024.e27087
  • Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014; 2: 27. https://doi.org/10.1186/2052-8426-2-27
  • Ma Y, Liao J, Cheng H, Yang Q, Yang H. Advanced gene therapy system for the treatment of solid tumour: A review. Mater Today Bio. 2024; 27: 101138. https://doi.org/10.1016/j.mtbio.2024.101138
  • Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther. 2015; 15(12): 1699-1712. https://doi.org/10.1517/14712598.2015.1084282
  • Lehrke M, Lebherz C. AAV-mediated gene therapy for Atherosclerosis. Curr. Atheroscler. Rep. 2014; 16(9): 1-7. https://doi.org/10.1007/s11883-014-0434-0
  • Argiro A, Bui Q, Hong KN, Ammirati E, Olivotto I. Applications of Gene Therapy in Cardiomyopathies. JACC Heart Fail. 2024; 12(2): 248-260. https://doi.org/10.1016/j.jchf.2023.09.015
  • Tenkumo T, Sáenz JR, Nakamura K, Shimizu Y, Sokolova V, Epple M, Kamano Y, Egusa H, Sugaya T, Sasaki K. Prolonged release of bone morphogenetic protein-2 in vivo by gene transfection with DNA-functionalized calcium phosphate nanoparticle-loaded collagen scaffolds. Mater Sci Eng C. 2018; 92: 172-83. https://doi.org/10.1016/j.msec.2018.06.047
  • Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage. 2011; 2(3): 201-225. https://doi.org/10.1177/1947603510392914
  • Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self/nonself. 2010; 1(3): 165-175. https://doi.org/10.4161/self.1.3.12643
  • Xu R, Li H, Lai-yin T, Hsiang-fu K, Lu H, Lam KS. Diabetes gene therapy: potential and challenges. Curr Gene Ther. 2003; 3(1): 65-82. https://doi.org/10.2174/1566523033347444
  • Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res. 2023; 432: 108735. https://doi.org/10.1016/j.heares.2023.108735
  • Callejas D, Mann CJ, Ayuso E, Lage R, Grifoll I, Roca C, Andaluz A, Ruiz-de Gopegui R, Montané J, Muñoz S, Ferre T. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes. 2013; 62(5): 1718-1729. https://doi.org/10.2337/db12-1113
  • Yechoor V, Chan L. Gene therapy progress and prospects: gene therapy for diabetes mellitus. Gene Ther. 2005; 12(2): 101-7. https://doi.org/10.1038/sj.gt.3302412
  • Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther. 2024; 256: 108596. https://doi.org/10.1016/j.pharmthera.2024.108596
  • Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 2006; 4(3): 218- 227. https://doi.org/10.3121/cmr.4.3.218
  • Newgard CB. Cellular engineering and gene therapy strategies for insulin replacement in diabetes. Diabetes. 1994; 43(3): 341-350. https://doi.org/10.2337/diab.43.3.341
  • Amariutei AE, Jeng JY, Safieddine S, Marcotti W. Recent advances and future challenges in gene therapy for hearing loss. R Soc Open Sci. 2023; 10(6): 230644. https://doi.org/10.1098/rsos.230644
  • Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther. 2023; 31(4): 934-950. https://doi.org/10.1016/j.ymthe.2023.02.001
  • Omichi R, Shibata SB, Morton CC, Smith RJ. Gene therapy for hearing loss. Hum Mol Genet. 2019; 28(R1): R65-79. https://doi.org/10.1093/hmg/ddz129
  • Chien WW, Monzack EL, McDougald DS, Cunningham LL. Gene therapy for sensorineural hearing loss. Ear Hear. 2015; 36(1): 1-7. https://doi.org/10.1097/aud.0000000000000088
  • Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev. 2024;98:102321. https://doi.org/10.1016/j.arr.2024.102321
  • Carpena NT, Lee MY. Genetic hearing loss and gene therapy. Genomics Inform. 2018;16(4):e20. https://doi.org/10.5808/GI.2018.16.4.e20
  • Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem cells and gene therapy in progressive hearing loss: the state of the art. J Assoc Res Otolaryngol. 2021; 22: 95-105. https://doi.org/10.1007/s10162-020-00781-0
  • Vlekkert DVD, Hu H, Weesner JA, Fremuth LE, Brown SA, Lu M. AAV-mediated gene therapy for sialidosis. Mol Ther. 2024; 32(7): 2094-2112. https://doi.org/10.1101/2023.11.10.566667
  • Doshi BS, Samelson-Jones BJ, Nichols TC, Merricks EP, Siner JL. AAV gene therapy in companion dogs with severe hemophilia: Real-world long-term data on immunogenicity, efficacy, and quality of life. Mol Ther Methods Clin Dev. 2024; 32(1): 101205. https://doi.org/10.1016/j.omtm.2024.101205
  • Muczynski V, Nathwani AC. AAV mediated gene therapy for haemophilia B: From the early attempts to modern trials. Thromb Res. 2024; 236: 242-249. https://doi.org/10.1016/j.thromres.2020.12.033
  • Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch Pediatr. 2023; 30(8-1): 8S46-8S52. https://doi.org/10.1016/s0929-693x(23)00227- 0
  • Duan M, Venail F, Spencer N, Mezzina M. Treatment of peripheral sensorineural hearing loss: gene therapy. Gene Ther. 2004; 11(1): S51-56. https://doi.org/10.1016/s0929-693x(23)00227-0
  • Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear gene therapy for sensorineural hearing loss: current status and major remaining hurdles for translational success. Front Mol Neurosci. 2018; 11: 221. https://doi.org/10.3389/fnmol.2018.00221
  • Gallo V, Aiuti A. Gene therapy for rare haematological and neurometabolic paediatric diseases. Glob Pediatr. 2024; 9(4): 100196. http://dx.doi.org/10.1016/j.gpeds.2024.100196
  • Rossi A, Malvagia S, Marca GL, Parenti G, Brunetti-Pierri N. Biomarkers for gene therapy clinical trials of lysosomal storage disorders. Mol Ther. 2024; 32(9): 2930-2938. https://doi.org/10.1016/j.ymthe.2024.06.003
  • Bremond-Gignac D, Robert MP, Daruich A. Update on gene therapies in pediatric ophthalmology. Arch Pediatr. 2023; 30(8): 8S41-8S45. https://doi.org/10.1016/s0929-693x(23)00226-9 Li B, Tan W, Wang Z, Zhou H, Zou J, Li Y. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: A bibliometric analysis. Heliyon. 2023; 9(7): e18228. https://doi.org/10.1016/j.heliyon.2023.e18228
  • Li S, Ling S, Wang D, Wang X, Hao F. Modified lentiviral globin gene therapy for pediatric β0/β0 transfusion- dependent β-thalassemia: A single-center, single-arm pilot trial. Cell Stem Cell. 2024; 31(7): 961-973.e8.
  • Sangster ML, Bishop MM, Yao Y, Feitor JF, Shahriar S, Miller ME. A blood-brain barrier-penetrant AAV gene therapy improves neurological function in symptomatic mucolipidosis IV mice. Mol Ther Methods Clin Dev. 2024; 32(2): 101269. https://doi.org/10.1016/j.omtm.2024.101269
  • Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther. 2005; 12(2): 189-211. https://doi.org/10.1016/j.ymthe.2005.03.022
  • Mével M, Pichard V, Bouzelha M, Dorta DA, Lalys P, Provost N. Mannose-coupled AAV2: A second-generation AAV vector for increased retinal gene therapy efficiency. Mol Ther Methods Clin Dev. 2024; 32(2): 101261. https://doi.org/10.1016/j.omtm.2024.101187
  • Graves LE, Dijk EBV, Zhu E, Koyyalamudi S, Wotton T, Sung D. AAV-delivered hepato-adrenal cooperativity in steroidogenesis: Implications for gene therapy for congenital adrenal hyperplasia. Mol Ther Methods Clin Dev. 2024; 32(2): 101232. https://doi.org/10.1016/j.omtm.2024.101232
  • Broeders M, Herrero-Hernandez P, Ernst MP, van der Ploeg AT, Pijnappel WP. Sharpening the molecular scissors: advances in gene-editing technology. Science. 2020; 23(1): 100789. https://doi.org/10.1016/j.isci.2019.100789
  • Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. Mutat Res Genet Toxicol Environ Mutagen. 2024; 869: 503767. https://doi.org/10.1016/j.mrgentox.2024.503767
  • Gonçalves GA, Paiva RD. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017; 15: 369- 375. https://doi.org/10.1590/S1679-45082017RB4024
  • Xu C, Zhang X, Yang W, Gao S, Zhao N, Li P, Du J, Li Y, Xu FJ. Effective prevention of atherosclerosis by non-viral delivery of CRISPR/Cas9. Nano Today. 2024; 54: 102097. http://dx.doi.org/10.1016/j.nantod.2023.102097
  • Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol. 2023; 14: 1148412. https://doi.org/10.3389/fendo.2023.1148412
  • Evangelidis N, Evangelidis P. Gene Therapy for Hypertension, Atherosclerosis, and Familial Hypercholesterolemia: The Old Concepts and the New Era. Biologics. 2024; 4(2): 143-160. https://doi.org/10.3390/biologics4020010
  • Bevacqua RJ, Zhao W, Merheb E, Kim SH, Marson A, Gloyn AL, Kim SK. Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. iScience. 2023;27(1):108693. https://doi.org/10.1101/2023.09.16.558090
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6): 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  • Giannoukakis N, Rudert WA, Robbins PD, Trucco M. Targeting autoimmune diabetes with gene therapy. Diabetes. 1999; 48(11): 2107-2121. https://doi.org/10.2337/diabetes.48.11.2107
  • Bhatia R, Singh A, Singh S, Rawal RK. Emerging trends in nano-carrier based gene delivery systems for targeted cancer therapy. J Drug Deliv Technol. 2024; 95: 105546. http://dx.doi.org/10.1016/j.jddst.2024.105546
  • Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm. 2024; 653: 123864. https://doi.org/10.1016/j.ijpharm.2024.123864
  • Tanguy OB, Sevin C, Piguet F. Gene therapy for neurodegenerative disorders in children: dreams and realities. Arch Pediatr. 2023; 30(8-1): 8S32-8S40. https://doi.org/10.1016/s0929-693x(23)00225-7

Genetic scissors: A new era in gene therapy

Year 2025, Volume: 29 Issue: 5, 1811 - 1822, 01.09.2025
https://doi.org/10.12991/jrespharm.1763424

Abstract

The article gives a brief description of gene therapy, a new technology for treating genetic disorders, and
the revolutionary effect of gene editing techniques which include CRISPR-Cas9. The introduction serves as a basis by
covering the basics of gene therapy and the revolutionary aspect of genetic scissors as surgical instruments for genetic
editing. In a brief overview, gene therapy is explained, which is meant to correct hereditary failing at their source, and
subsequently ZFNs (zinc finger nucleases), CRISPR-Cas9 and TALENs are explored. The diverse applications are
emphasized in the review, and the paper explores how genetic scissors are utilized in gene repair (correction of
mutations which are responsible for diseases such as atherosclerosis, cancer, bone and cartilage repair etc.). It highlights
the potential of genetic scissors in changing the therapeutic landscape. The future scope section provides a detailed
illustration of the ever-changing capabilities and possibilities of the technology, thereby offering a glimpse of what may
be around the next corner. To sum up, the review discusses the ground-breaking role of genetic scissors in gene therapy
and stress the necessity of continuous research, ethical standards and collaboration to successfully apply these methods
in personalized medicine and healthcare.

References

  • Young P. Treatment to cure: Advancing AAV gene therapy manufacture. Drug Discov Today. 2023; 28(7): 103610. https://doi.org/10.1016/j.drudis.2023.103610
  • Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics. 2023; 30: 193-215. https://doi.org/10.1016/j.omto.2023.08.007
  • Bhatt B, García-Díaz, Foight GW. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol. 2024; 42(4): 449-463. https://doi.org/10.1016/j.tibtech.2023.09.010
  • Mücke MM, Fong S, Foster GR, Lillicrap D, Miesbach W. Adeno-associated viruses for gene therapy – clinical implications and liver-related complications, a guide for hepatologists. J Hepatol. 2024; 80(2): 352-361. https://doi.org/10.1016/j.jhep.2023.10.029
  • Zhang Y, Wu ZY. Gene therapy for monogenic disorders: challenges, strategies, and perspectives. J Genet Genomics. 2024;51(2):133-143. https://doi.org/10.1016/j.jgg.2023.08.001
  • Kell P, Sidhu R, Qian M, Mishra S, Nicoli ER, D'Souza P. A pentasaccharide for monitoring pharmacodynamic response to gene therapy in GM1 gangliosidosis. eBioMedicine. 2023; 92: 104627. https://doi.org/10.1016/j.ebiom.2023.104627
  • Liu F. The science and practice of current environmental risk assessment for gene therapy: a review. Cytotherapy. 2024; 26(7): 686-699. https://doi.org/10.1016/j.jcyt.2024.04.067
  • Saravanan CR, Eisa RFH, Gaviria E, Algubari A, Chandrasekar KK, Inban P, Prajjwal P, Bamba H. The efficacy and safety of gene therapy approaches in Parkinson's disease: A systematic review. Dis Mon. 2024; 70(7): 101754. https://doi.org/10.1016/j.disamonth.2024.101754
  • Querin G, Colella M. Gene therapy for primary myopathies: literature review and prospects. Arch Pediatr. 2023; 30(8- 1): 8S18-8S23. https://doi.org/10.1016/s0929-693x(23)00223-3
  • Goraltchouk A, Lourie J, Hollander JM, Rosen G, Fujishiro AA, Luppino F. Development and characterization of a first-in-class adjustable-dose gene therapy system. Gene. 2024; 919: 148500. https://doi.org/10.1016/j.gene.2024.148500
  • Yeung J, Liao A, Shaw M, Silva S, Vetharoy W, Rico DL. Anti-CD45 PBD-based antibody-drug conjugates are effective targeted conditioning agents for gene therapy and stem cell transplant. Mol Ther. 2024; 32(6): 1672-1686. https://doi.org/10.1016/j.ymthe.2024.03.032
  • Butterfield JSS, Li X, Arisa S, Kwon K, Daniell H. Potential role for oral tolerance in gene therapy. Cell Immunol. 2023; 391-392: 104742. https://doi.org/10.1016/j.cellimm.2023.104742
  • Ferrari S, Valeri E, Anastasia C, Scala S, Aprile A, Micco RD. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell. 2023; 30(5): 549-570. https://doi.org/10.1016/j.stem.2023.04.014
  • Blay E, Hardyman E, Morovic W. PCR-based analytics of gene therapies using adeno-associated virus vectors: Considerations for cGMP method development. Mol Ther Methods Clin Dev. 2023;31:101132. https://doi.org/10.1016/j.omtm.2023.101132
  • Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant. 2024; 43(5): 839-848. https://doi.org/10.1016/j.healun.2024.01.016
  • Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant. 2024; 43(5): 839-848. https://doi.org/10.1016/j.healun.2024.01.016
  • Silver E, Argiro A, Hong K, Adler E. Gene therapy vector-related myocarditis. Int J Cardiol. 2024; 398: 131617. https://doi.org/10.1016/j.ijcard.2023.131617
  • Sasaki N, Kok CY, Westhaus A, Alexander IE, Lisowski L, Kizana E. In search of adeno-associated virus vectors with enhanced cardiac tropism for Gene Therapy. Heart Lung Circ. 2023; 32(7): 816-824. https://doi.org/10.1016/j.hlc.2023.06.704
  • Rubanyi GM. The future of human gene therapy. Mol Aspects Med. 2001; 22(3): 113-42. https://doi.org/10.1016/s0098-2997(01)00004-8
  • Kunze-Küllmer M, Goonewardene A, Kili S, Theoharis S, Rivers P. Cell and gene therapy investment: evolution and future outlook on investor perspectives. Cytotherapy. 2024; 26(7): 672-680. https://doi.org/10.1016/j.jcyt.2024.02.017
  • Gonçalves GA, Paiva RD. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017; 15(3): 369- 75. https://doi.org/10.1590/S1679-45082017RB4024
  • Feuerbach FJ, Crystal RG. Progress in human gene therapy. Kidney Int. 1996; 49(6): 1791-1794. https://doi.org/10.1038/ki.1996.269
  • Ikonomou L, Cuende N, Forte M, Grilley BJ, Levine AD, Munsie M. International Society for Cell & Gene Therapy Position Paper: Key considerations to support evidence-based cell and gene therapies and oppose marketing of unproven products. Cytotherapy. 2023; 25(9): 920-929. https://doi.org/10.1016/j.jcyt.2023.03.002
  • Shoti J, Qing K, Keeler GD, Duan D, Byrne BJ, Srivastava A. Development of capsid- and genome-modified optimized AAVrh74 vectors for muscle gene therapy. Mol Ther Methods Clin Dev. 2023; 31: 101147. https://doi.org/10.1016/j.omtm.2023.101147
  • Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biol Targets Ther. 2021; 15: 353-361. https://doi.org/10.2147/BTT.S326422
  • Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018; 200(7): 10-128. https://doi.org/10.1128/JB.00580-17
  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8(11): 2281-2308. https://doi.org/10.1038/nprot.2013.143
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096. https://doi.org/10.1126/science.1258096
  • Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005; 23(8): 967-973. https://doi.org/10.1038/nbt1125
  • Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773-782. https://doi.org/10.1534/genetics.111.131433
  • Harmatz P, Prada CE, Burton BK, Lau H, Kessler CM, Cao L, Falaleeva M, Villegas AG, Zeitler J, Meyer K, Miller W. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther. 2022; 30(12): 3587-3600. https://doi.org/10.1016/j.ymthe.2022.10.010
  • Ragni MV, Mead H, Jong YPD, Kaczmarek R, Leavitt AD. Optimizing Liver Health Before and After Gene Therapy for Hemophilia A. Blood Adv. 2024; 8(19): 5203-5212. https://doi.org/10.1182/bloodadvances.2024013059
  • Kashiwakura Y, Endo K, Ugajin A, Kikuchi T, Hishikawa S, Nakamura H. Efficient gene transduction in pigs and macaques with the engineered AAV vector AAV.GT5 for hemophilia B gene therapy. Mol Ther Methods Clin Dev. 2023; 30: 502-514. https://doi.org/10.1016/j.omtm.2023.08.016
  • Kumar S, Schroeder JA, Shi Q. Platelet-targeted gene therapy induces immune tolerance in hemophilia and beyond. J Thromb Haemost. 2024; 22(1): 23-34. https://doi.org/10.1016/j.jtha.2023.07.025
  • Cathomen T, Joung JK. Zinc-finger nucleases: the next generation emerges. Mol Ther. 2008; 16(7): 1200-1207. https://doi.org/10.1038/mt.2008.114
  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9): 636-646. https://doi.org/10.1038/nrg2842
  • Schwotzer N, Sissy CE, Desguerre I, Frémeaux-Bacchi V, Servais L and Fakhouri F. Thrombotic Microangiopathy as an Emerging Complication of Viral Vector–Based. Kidney Int Rep. 2024; 9(7): 1995-2005. https://doi.org/10.1016/j.ekir.2024.04.024
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14(1): 49-55. https://doi.org/10.1038/nrm3486
  • Bhardwaj A, Nain V. TALENs—an indispensable tool in the era of CRISPR: a mini review. J Genet Eng Biotechnol. 2021;19(1):125. https://doi.org/10.1186/s43141-021-00225-z
  • Becker S, Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021; 2: 100007. https://doi.org/10.1016/j.ggedit.2021.100007
  • Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells. 2013;18(4):315-326. https://doi.org/10.1111/gtc.12037.
  • Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr. 2023; 30(8-1): 8S24-8S31. https://doi.org/10.1016/s0929-693x(23)00224-5
  • Bougioukli S, Evans CH, Alluri RK, Ghivizzani SC, Lieberman JR. Gene therapy to enhance bone and cartilage repair in orthopaedic surgery. Curr Gene Ther. 2018; 18(3): 154-170. https://doi.org/10.2174/1566523218666180410152842
  • Longo UG, Petrillo S, Franceschetti E, Berton A, Maffulli N, Denaro V. Stem cells and gene therapy for cartilage repair. Stem Cells Int. 2012;2012:168385. https://doi.org/10.1155/2012/168385
  • Cucchiarini M, Madry H. Gene therapy for cartilage defects. J Gene Med. 2005; 7(12): 1495-1509. https://doi.org/10.1002/jgm.824
  • Defois A, Bon N, Mével M, Deniaud D, Maugars Y, Guicheux J. Gene therapies for osteoarthritis: progress and prospects. JCJP. 2024; 4(2): 100186. https://doi.org/10.1016/j.jcjp.2024.100186
  • Gelse K, von der Mark K, Aigner T, Park J, Schneider H. Articular cartilage repair by gene therapy using growth factor–producing mesenchymal cells. Arthritis Rheum. 2003; 48(2): 430-441. https://doi.org/10.1002/art.10759
  • El-Aneed A. Current strategies in cancer gene therapy. Eur J Pharmacol. 2004; 498(1-3): 1-8. https://doi.org/10.1016/j.ejphar.2004.06.054
  • Słyk Z, Wrzesień R, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother. 2024; 170: 116061. https://doi.org/10.1016/j.biopha.2023.116061
  • Qi L, Li G, Li P, Wang H, Fang X, He T. Twenty years of Gendicine® rAd-p53 cancer gene therapy: The first-in-class human cancer gene therapy in the era of personalized oncology. Genes Dis. 2024; 11(4): 101155. https://doi.org/10.1016/j.gendis.2023.101155
  • Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol. 2023; 14: 1148412. https://doi.org/10.3389/fendo.2023.1148412
  • Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer. Heliyon. 2024; 10(5): e27087. https://doi.org/10.1016/j.heliyon.2024.e27087
  • Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014; 2: 27. https://doi.org/10.1186/2052-8426-2-27
  • Ma Y, Liao J, Cheng H, Yang Q, Yang H. Advanced gene therapy system for the treatment of solid tumour: A review. Mater Today Bio. 2024; 27: 101138. https://doi.org/10.1016/j.mtbio.2024.101138
  • Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther. 2015; 15(12): 1699-1712. https://doi.org/10.1517/14712598.2015.1084282
  • Lehrke M, Lebherz C. AAV-mediated gene therapy for Atherosclerosis. Curr. Atheroscler. Rep. 2014; 16(9): 1-7. https://doi.org/10.1007/s11883-014-0434-0
  • Argiro A, Bui Q, Hong KN, Ammirati E, Olivotto I. Applications of Gene Therapy in Cardiomyopathies. JACC Heart Fail. 2024; 12(2): 248-260. https://doi.org/10.1016/j.jchf.2023.09.015
  • Tenkumo T, Sáenz JR, Nakamura K, Shimizu Y, Sokolova V, Epple M, Kamano Y, Egusa H, Sugaya T, Sasaki K. Prolonged release of bone morphogenetic protein-2 in vivo by gene transfection with DNA-functionalized calcium phosphate nanoparticle-loaded collagen scaffolds. Mater Sci Eng C. 2018; 92: 172-83. https://doi.org/10.1016/j.msec.2018.06.047
  • Madry H, Orth P, Cucchiarini M. Gene therapy for cartilage repair. Cartilage. 2011; 2(3): 201-225. https://doi.org/10.1177/1947603510392914
  • Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self/nonself. 2010; 1(3): 165-175. https://doi.org/10.4161/self.1.3.12643
  • Xu R, Li H, Lai-yin T, Hsiang-fu K, Lu H, Lam KS. Diabetes gene therapy: potential and challenges. Curr Gene Ther. 2003; 3(1): 65-82. https://doi.org/10.2174/1566523033347444
  • Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res. 2023; 432: 108735. https://doi.org/10.1016/j.heares.2023.108735
  • Callejas D, Mann CJ, Ayuso E, Lage R, Grifoll I, Roca C, Andaluz A, Ruiz-de Gopegui R, Montané J, Muñoz S, Ferre T. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes. 2013; 62(5): 1718-1729. https://doi.org/10.2337/db12-1113
  • Yechoor V, Chan L. Gene therapy progress and prospects: gene therapy for diabetes mellitus. Gene Ther. 2005; 12(2): 101-7. https://doi.org/10.1038/sj.gt.3302412
  • Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther. 2024; 256: 108596. https://doi.org/10.1016/j.pharmthera.2024.108596
  • Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 2006; 4(3): 218- 227. https://doi.org/10.3121/cmr.4.3.218
  • Newgard CB. Cellular engineering and gene therapy strategies for insulin replacement in diabetes. Diabetes. 1994; 43(3): 341-350. https://doi.org/10.2337/diab.43.3.341
  • Amariutei AE, Jeng JY, Safieddine S, Marcotti W. Recent advances and future challenges in gene therapy for hearing loss. R Soc Open Sci. 2023; 10(6): 230644. https://doi.org/10.1098/rsos.230644
  • Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther. 2023; 31(4): 934-950. https://doi.org/10.1016/j.ymthe.2023.02.001
  • Omichi R, Shibata SB, Morton CC, Smith RJ. Gene therapy for hearing loss. Hum Mol Genet. 2019; 28(R1): R65-79. https://doi.org/10.1093/hmg/ddz129
  • Chien WW, Monzack EL, McDougald DS, Cunningham LL. Gene therapy for sensorineural hearing loss. Ear Hear. 2015; 36(1): 1-7. https://doi.org/10.1097/aud.0000000000000088
  • Singh K, Sethi P, Datta S, Chaudhary JS, Kumar S, Jain D, Gupta JK, Kumar S, Guru A, Panda SP. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res Rev. 2024;98:102321. https://doi.org/10.1016/j.arr.2024.102321
  • Carpena NT, Lee MY. Genetic hearing loss and gene therapy. Genomics Inform. 2018;16(4):e20. https://doi.org/10.5808/GI.2018.16.4.e20
  • Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem cells and gene therapy in progressive hearing loss: the state of the art. J Assoc Res Otolaryngol. 2021; 22: 95-105. https://doi.org/10.1007/s10162-020-00781-0
  • Vlekkert DVD, Hu H, Weesner JA, Fremuth LE, Brown SA, Lu M. AAV-mediated gene therapy for sialidosis. Mol Ther. 2024; 32(7): 2094-2112. https://doi.org/10.1101/2023.11.10.566667
  • Doshi BS, Samelson-Jones BJ, Nichols TC, Merricks EP, Siner JL. AAV gene therapy in companion dogs with severe hemophilia: Real-world long-term data on immunogenicity, efficacy, and quality of life. Mol Ther Methods Clin Dev. 2024; 32(1): 101205. https://doi.org/10.1016/j.omtm.2024.101205
  • Muczynski V, Nathwani AC. AAV mediated gene therapy for haemophilia B: From the early attempts to modern trials. Thromb Res. 2024; 236: 242-249. https://doi.org/10.1016/j.thromres.2020.12.033
  • Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch Pediatr. 2023; 30(8-1): 8S46-8S52. https://doi.org/10.1016/s0929-693x(23)00227- 0
  • Duan M, Venail F, Spencer N, Mezzina M. Treatment of peripheral sensorineural hearing loss: gene therapy. Gene Ther. 2004; 11(1): S51-56. https://doi.org/10.1016/s0929-693x(23)00227-0
  • Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear gene therapy for sensorineural hearing loss: current status and major remaining hurdles for translational success. Front Mol Neurosci. 2018; 11: 221. https://doi.org/10.3389/fnmol.2018.00221
  • Gallo V, Aiuti A. Gene therapy for rare haematological and neurometabolic paediatric diseases. Glob Pediatr. 2024; 9(4): 100196. http://dx.doi.org/10.1016/j.gpeds.2024.100196
  • Rossi A, Malvagia S, Marca GL, Parenti G, Brunetti-Pierri N. Biomarkers for gene therapy clinical trials of lysosomal storage disorders. Mol Ther. 2024; 32(9): 2930-2938. https://doi.org/10.1016/j.ymthe.2024.06.003
  • Bremond-Gignac D, Robert MP, Daruich A. Update on gene therapies in pediatric ophthalmology. Arch Pediatr. 2023; 30(8): 8S41-8S45. https://doi.org/10.1016/s0929-693x(23)00226-9 Li B, Tan W, Wang Z, Zhou H, Zou J, Li Y. Progress and prospects of gene therapy in ophthalmology from 2000 to 2022: A bibliometric analysis. Heliyon. 2023; 9(7): e18228. https://doi.org/10.1016/j.heliyon.2023.e18228
  • Li S, Ling S, Wang D, Wang X, Hao F. Modified lentiviral globin gene therapy for pediatric β0/β0 transfusion- dependent β-thalassemia: A single-center, single-arm pilot trial. Cell Stem Cell. 2024; 31(7): 961-973.e8.
  • Sangster ML, Bishop MM, Yao Y, Feitor JF, Shahriar S, Miller ME. A blood-brain barrier-penetrant AAV gene therapy improves neurological function in symptomatic mucolipidosis IV mice. Mol Ther Methods Clin Dev. 2024; 32(2): 101269. https://doi.org/10.1016/j.omtm.2024.101269
  • Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther. 2005; 12(2): 189-211. https://doi.org/10.1016/j.ymthe.2005.03.022
  • Mével M, Pichard V, Bouzelha M, Dorta DA, Lalys P, Provost N. Mannose-coupled AAV2: A second-generation AAV vector for increased retinal gene therapy efficiency. Mol Ther Methods Clin Dev. 2024; 32(2): 101261. https://doi.org/10.1016/j.omtm.2024.101187
  • Graves LE, Dijk EBV, Zhu E, Koyyalamudi S, Wotton T, Sung D. AAV-delivered hepato-adrenal cooperativity in steroidogenesis: Implications for gene therapy for congenital adrenal hyperplasia. Mol Ther Methods Clin Dev. 2024; 32(2): 101232. https://doi.org/10.1016/j.omtm.2024.101232
  • Broeders M, Herrero-Hernandez P, Ernst MP, van der Ploeg AT, Pijnappel WP. Sharpening the molecular scissors: advances in gene-editing technology. Science. 2020; 23(1): 100789. https://doi.org/10.1016/j.isci.2019.100789
  • Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. Mutat Res Genet Toxicol Environ Mutagen. 2024; 869: 503767. https://doi.org/10.1016/j.mrgentox.2024.503767
  • Gonçalves GA, Paiva RD. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017; 15: 369- 375. https://doi.org/10.1590/S1679-45082017RB4024
  • Xu C, Zhang X, Yang W, Gao S, Zhao N, Li P, Du J, Li Y, Xu FJ. Effective prevention of atherosclerosis by non-viral delivery of CRISPR/Cas9. Nano Today. 2024; 54: 102097. http://dx.doi.org/10.1016/j.nantod.2023.102097
  • Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol. 2023; 14: 1148412. https://doi.org/10.3389/fendo.2023.1148412
  • Evangelidis N, Evangelidis P. Gene Therapy for Hypertension, Atherosclerosis, and Familial Hypercholesterolemia: The Old Concepts and the New Era. Biologics. 2024; 4(2): 143-160. https://doi.org/10.3390/biologics4020010
  • Bevacqua RJ, Zhao W, Merheb E, Kim SH, Marson A, Gloyn AL, Kim SK. Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. iScience. 2023;27(1):108693. https://doi.org/10.1101/2023.09.16.558090
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6): 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  • Giannoukakis N, Rudert WA, Robbins PD, Trucco M. Targeting autoimmune diabetes with gene therapy. Diabetes. 1999; 48(11): 2107-2121. https://doi.org/10.2337/diabetes.48.11.2107
  • Bhatia R, Singh A, Singh S, Rawal RK. Emerging trends in nano-carrier based gene delivery systems for targeted cancer therapy. J Drug Deliv Technol. 2024; 95: 105546. http://dx.doi.org/10.1016/j.jddst.2024.105546
  • Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm. 2024; 653: 123864. https://doi.org/10.1016/j.ijpharm.2024.123864
  • Tanguy OB, Sevin C, Piguet F. Gene therapy for neurodegenerative disorders in children: dreams and realities. Arch Pediatr. 2023; 30(8-1): 8S32-8S40. https://doi.org/10.1016/s0929-693x(23)00225-7
There are 100 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Reviews
Authors

Dhanashree Sanap 0000-0002-4794-7598

Publication Date September 1, 2025
Submission Date August 8, 2024
Acceptance Date October 29, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Sanap, D. (2025). Genetic scissors: A new era in gene therapy. Journal of Research in Pharmacy, 29(5), 1811-1822. https://doi.org/10.12991/jrespharm.1763424
AMA Sanap D. Genetic scissors: A new era in gene therapy. J. Res. Pharm. September 2025;29(5):1811-1822. doi:10.12991/jrespharm.1763424
Chicago Sanap, Dhanashree. “Genetic Scissors: A New Era in Gene Therapy”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 1811-22. https://doi.org/10.12991/jrespharm.1763424.
EndNote Sanap D (September 1, 2025) Genetic scissors: A new era in gene therapy. Journal of Research in Pharmacy 29 5 1811–1822.
IEEE D. Sanap, “Genetic scissors: A new era in gene therapy”, J. Res. Pharm., vol. 29, no. 5, pp. 1811–1822, 2025, doi: 10.12991/jrespharm.1763424.
ISNAD Sanap, Dhanashree. “Genetic Scissors: A New Era in Gene Therapy”. Journal of Research in Pharmacy 29/5 (September2025), 1811-1822. https://doi.org/10.12991/jrespharm.1763424.
JAMA Sanap D. Genetic scissors: A new era in gene therapy. J. Res. Pharm. 2025;29:1811–1822.
MLA Sanap, Dhanashree. “Genetic Scissors: A New Era in Gene Therapy”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 1811-22, doi:10.12991/jrespharm.1763424.
Vancouver Sanap D. Genetic scissors: A new era in gene therapy. J. Res. Pharm. 2025;29(5):1811-22.