Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 1878 - 1889, 01.09.2025
https://doi.org/10.12991/jrespharm.1763513

Abstract

References

  • Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, Sumaya-Martínez MT, Gutiérrez-Salinas J, Bautista M, Morales-González Á, García-Luna y González-Rubio M, Aguilar-Faisal JL, Morales-González JA. Review of natural products with hepatoprotective effects. World J Gastroenterol. 2014 Oct 28;20(40):14787-804. https://doi.org/10.3748/wjg.v20.i40.14787
  • Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Current medicinal chemistry. 2009 Aug 1; 16(23):3041-53. https://doi.org/10.2174/092986709788803097
  • Zimmerman H. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Philadelphia (PA): Lippincott Williams & Wilkins, 1999. https://doi.org/10.1016/S0016-5085(00)70192-2
  • Tetnple RJ, Himmel MH. Safety of newly approved drugs: implications for prescribing. JAMA 2002; 287: 2273-5. https://doi.org/10.1001/jama.287.17.2273
  • B.H. Ali, Gentamicin nephrotoxicity in humans and animals: some recent research, Gen. Pharmacol. 26 (7) (1995) 1477–1487. https://doi.org/10.1016/0306-3623(95)00049-6
  • Noorani AA, Gupta K, Bhadada K, Kale MK. Protective effect of methanolic leaf extract of Caesalpinia Bonduc on gentamicin-induced hepatotoxicity and nephrotoxicity in rats. Iran J Pharmacol Ther 2011; 10: 21-5. https://www.researchgate.net/publication/233902416
  • J.M. Lopez-Novoa, et al., New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view, Kidney Int. 79 (1) (2011) 33–45. https://doi.org/10.1038/ki.2010.337
  • Phatchawan Arjinajarn, Nuttawud Chueakula, Anchalee Pongchaidecha, Krit Jaikumkao, Varanuj Chatsudthipong, Sugunya Mahatheeranont, Orranuch Norkaew, Nipon Chattipakorn, Anusorn Lungkaphin, Anthocyanin-rich Riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats, Biomedicine & Pharmacotherapy, Volume 92,2017, Pages 412-420, ISSN 0753-3322, https://doi.org/10.1016/j.biopha.2017.05.100.
  • Khaksari M, Esmaili S, Abedloo R, Khastar H. Palmatine ameliorates nephrotoxicity and hepatotoxicity induced by gentamicin in rats. Arch Physiol Biochem 2019; 26: 1-6. https://doi.org/10.1080/13813455.2019.1633354
  • Chattopadhyay RR. Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract: part II. J Ethnopharmacol 2003; 89: 217-219. https://doi.org/10.1016/j.jep.2003.08.006
  • Alcaraz-Contreras Y, Mendoza-Lozano RP, Martínez-Alcaraz ER, Martínez-Alfaro M, Gallegos-Corona MA, Ramírez-Morales MA, Vázquez-Guevara MA. Silymarin and dimercaptosuccinic acid ameliorate lead-induced nephrotoxicity and genotoxicity in rats. Hum Exp Toxicol 2015; Epub ahead of print. https://doi.org/10.1177/0960327115591373
  • Salama S, Kue CS, Mohamad H, Omer F, Ibrahim MY, Abdulla M, Ali H, Mariod A and Jayash SN, “Hepatoprotective potential of a novel quinazoline derivative in thioacetamide-induced liver toxicity”. Front. Pharmacol. 13:943340, 2022. https://doi.org/10.3389/fphar.2022.943340
  • Z. Cimerman, S. Miljani´, and N. Gali´, “Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents,” Croatica Chemica Acta, vol. 73, no. 1, pp. 81–95, 2000. https://doi.org/10.1002/CHIN.200019025
  • Ahmad N, Alam M, Wahab R,Ahmed M, Ahmad A. Synthesis, spectraland thermo-kinetics explorations ofSchiff base derived metal complexes.Open Chemistry. 2020;18(1):1304-1315. https: //doi.org/10.1515/chem-2020-0168
  • Ibrahim, Hussaina A., et al. "Synthesis, Characterization and Antimicrobial Studies on Mn(II), Fe(II), Co(II) Complexes of Schiff Base Derived From 3-Formylchromone and Benzohydrazide." Algerian Journal of Engineering and Technology, vol. 4, Jun. 2021, pp. 81-89. https://doi.org/10.5281/zenodo.4636930
  • B. S. Sathe, E. Jaychandran, V. A. Jagtap, and G. M. Sreenivasa, “Synthesis characterization and anti-inflammatory evaluation of new fluorobenzothiazole schiff ’s bases,” International Journal of Pharmaceutical Research and Development, vol. 3, no. 3, pp. 164–169, 2011. https://doi.org/10.1155/2011%2F581429
  • S. M. Sondhi, N. Singh, A. Kumar, O. Lozach, and L. Meijer, “Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff ’s bases,” Bioorganic and Medicinal Chemistry, vol. 14, no. 11, pp. 3758– 3765, 2006. https://doi.org/10.1016/j.bmc.2006.01.054
  • K. Mounika, B. Anupama, J. Pragathi, and C. Gyanakumari, “Synthesis, characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes,” Journal of Scientific Research, vol. 2, no. 3, pp. 513–524, 2010. https://doi.org/10.3329/jsr.v2i3.4899
  • A. K. Chaubey and S. N. Pandeya, “Synthesis & anticonvulsant activity (Chemo Shock) of Schiff and Mannich bases of Isatin derivatives with 2-Amino pyridine (mechanism of action),” international Journal of PharmTech Research, vol. 4, no. 4, pp. 590–598, 2012. https://www.researchgate.net/publication/287306522
  • T. Aboul-Fadl, F. A. Mohammed, and E. A. Hassan, “Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (INH),” Archives of Pharmacal Research, vol. 26, no. 10, pp. 778–784, 2003. https://doi.org/10.1007/bf02980020
  • R. Miri, N. Razzaghi-asl, and M. K. Mohammadi, “QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent,” Journal of Molecular Modeling, vol. 19, no. 2, pp. 727–735, 2013. https://doi.org/10.1007/s00894-012-1586-x
  • D. Wei, N. Li, G. Lu, and K. Yao, “Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base,” Science in China B, vol. 49, no. 3, pp. 225–229, 2006. https://link.springer.com/article/10.1007/s11426-006-0225-8
  • P. G. Avaji, C. H. Vinod Kumar, S. A. Patil, K. N. Shivananda, and C. Nagaraju, “Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone,” European Journal of Medicinal Chemistry, vol. 44, no. 9, pp. 3552–3559, 2009. https://doi.org/10.1016/j.ejmech.2009.03.032
  • S. Ershad, L. Sagathforoush, G. Karim-Nezhad, and S. Kangari, “Electrochemical behavior of N2 SO Schiff-base Co(II) complexes in non-aqueous media at the surface of solid electrodes,” International Journal of Electrochemical Science, vol. 4, no. 6, pp. 846–854, 2009. https://doi.org/10.1016/S1452-3981(23)15188-1
  • S. Li, S. Chen, S. Lei, H. Ma, R. Yu, D. Liu “Investigation on some Schiff’s bases as HCl corrosion inhibitors for copper” Corros. Sci, 41(7), 1273-1287 (1999). https://doi.org/10.1016/S0010-938X(98)00183-8
  • Rosen HR, Keefe EB. Evaluation of abnormal liver enzymes, use of liver tests and the serology of viral hepatitis: Liver disease, diagnosis and management. 1st ed. New York; Churchill livingstone publishers, 2000; 24-35.
  • Rosalki SB, Mcintyre N. Biochemical investigations in the management of liver disease. Oxford textbook of clinical hepatology, 2nd ed. New York; Oxford university press, 1999; 503-521. https://doi.org/10.1007/978-3-642-76802- 6_2
  • Hagerstrand I : distribution of alkaline phosphatase activity in healthy and diseased human liver tissue. Acta Pathol Microbiol Scand 1975; 83: 519-524. https://doi.org/10.1111/j.1699- 0463.1975.tb00163.x
  • Daniel SP, Marshall MK. Evaluation of the liver: laboratory tests. Schiff’s diseases of the liver, 8 th edn. USA; JB Lippincott publications, 1999; 205-239. https://doi.org/10.1007/s12098-007-0118-7
  • Cappellini MD, Lo SF, Swinkels DW. 38 – Hemoglobin, iron, bilirubin. In: Tietz textbook of clinical chemistry and molecular diagnostics, 6th ed. St. Louis, MO, USA: Elsevier Inc.; 2017. https://doi.org/10.1016/B978-0-323-35921- 4.00038-7.
  • Dufour DR, Lott JA, Nolte FS, Gretch DR, Koff RS, Seeff LB. Diagnosis and monitoring of hepatic injury. II. Recommendations for use of laboratory tests in screening, diagnosis, and monitoring. Clin Chem 2000;46:2050–68. https://doi.org/10.1093/clinchem/46.12.2050
  • Kamisako T, Kobayashi Y, Takeuchi K, Ishihara T, Higuchi K, Tanaka Y, et al. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol 2000; 35: 659–64. https://doi.org/10.1007/s005350070044
  • Mabuza LP, Gamede MW, Maikoo S, Booysen IN, Nguban PS, Khathi A. Hepatoprotective Effects of a Ruthenium(II) Schiff Base Complex in Rats with Diet-Induced Prediabetes. Curr Ther Res Clin Exp. 2019 Nov 13;91:66-72. https://doi.org/10.1016%2Fj.curtheres.2019.100570
  • Taguchi K, Westheimer FH. Catalysis by molecular sieves in the preparation of ketimines and enamines. The Journal of Organic Chemistry. 1971; 36:5556-5557. https://doi.org/10.1021/jo00810a033
  • Özkan, N., Şalva, E., Çakalağaoğlu, F., & Tüzüner, B. (2012). Honey as a substitute for formalin?. Biotechnic & Histochemistry, 87(2), 148-153. https://doi.org/10.3109/10520295.2011.590155
  • Bektur NE, Sahin E, Baycu C, Unver G. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice. Toxicol Ind Health. 2016 Apr;32(4):589-600. https://doi.org/10.1177/0748233713502841
  • Bergmeyer HU and Bernt E. 1963, In: Methods of enzymatic analysis, edited by HU Bergmeyer, Academic Press, Weimheim, NY and London, 837.
  • Aamir, K., Sugumar, V., Khan, H. U., Looi, C. Y., Juneja, R., Waqas, M., & Arya, A. (2022). Non-toxic nature of chebulinic acid on biochemical, hematological and histopathological analysis in normal Sprague Dawley rats. Toxicological Research, 38(2), 159-174. https://doi.org/10.1007/s43188-021-00092-3
  • Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949 June 1:99-114. https://doi.org/10.2307/3001913

Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity

Year 2025, Volume: 29 Issue: 5, 1878 - 1889, 01.09.2025
https://doi.org/10.12991/jrespharm.1763513

Abstract

Drug-induced hepatotoxicity is a usual way that the liver can suffer harm regardless of the advantageous
roles of liver. Gentamicin-induced hepatotoxicity is a significant clinical disadvantage. It is believed that gentamicin-
induced hepatotoxicity is due to formation of free radicals. Like other synthetic antioxidant compounds, Schiff bases also
have the ability to scavenge free radicals. This study emphasizes the hepatoprotective potential of Schiff bases
(Designated as compound A and compound B) in a gentamicin-induced hepatotoxicity animal model. Thirty mices were
randomly divided into six groups of five each. Group 1 was injected with 0.9% normal saline intraperitoneally (I.P.) per
day and served as control while group 2 received gentamicin I.P. at a dose level of 100mg/kg/day. Group 3 received
gentamicin 100mg/kg/day I.P. and compound SW8/SB at a dose level of 25mg/kg/day orally. Group 4 was injected
with gentamicin 100mg/kg/day I.P. and SW8/SB at a dose level of 50mg/kg/day orally. Similarly group 5 received
gentamicin 100mg/kg/day I.P. and SW10/SB at a dose level of 25mg/kg/day orally. Group 6 received 100mg/kg/day
of gentamicin I.P. and 50mg/kg/day of SW10/SB orally. The said procedure lasted for eight days. Then liver function
was evaluated by measurement of biomarkers of the liver, including total bilirubin, alkaline phosphatase, and alanine
aminotransferase. İn addition to this, histological studies were performed to point out pathological changes in liver.
Gentamicin administration elevated serum level of alanine aminotransferase, alkaline phosphatase and total bilirubin as
well as gentamicin treatment also caused histopathological alterations. However, administration of Schiff bases reduced
both serum level of hepatic biomarkers and histopathological changes. The 50mg/kg of compound SW10/SB showed
almost normal histoarchitecture. It is concluded that Schiff bases have the ability to reduce gentamicin-induced
hepatotoxicity in mice. However, further studies are still required to further determine the safety and physiological
mechanisms behind this effect.

References

  • Madrigal-Santillán E, Madrigal-Bujaidar E, Álvarez-González I, Sumaya-Martínez MT, Gutiérrez-Salinas J, Bautista M, Morales-González Á, García-Luna y González-Rubio M, Aguilar-Faisal JL, Morales-González JA. Review of natural products with hepatoprotective effects. World J Gastroenterol. 2014 Oct 28;20(40):14787-804. https://doi.org/10.3748/wjg.v20.i40.14787
  • Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Current medicinal chemistry. 2009 Aug 1; 16(23):3041-53. https://doi.org/10.2174/092986709788803097
  • Zimmerman H. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Philadelphia (PA): Lippincott Williams & Wilkins, 1999. https://doi.org/10.1016/S0016-5085(00)70192-2
  • Tetnple RJ, Himmel MH. Safety of newly approved drugs: implications for prescribing. JAMA 2002; 287: 2273-5. https://doi.org/10.1001/jama.287.17.2273
  • B.H. Ali, Gentamicin nephrotoxicity in humans and animals: some recent research, Gen. Pharmacol. 26 (7) (1995) 1477–1487. https://doi.org/10.1016/0306-3623(95)00049-6
  • Noorani AA, Gupta K, Bhadada K, Kale MK. Protective effect of methanolic leaf extract of Caesalpinia Bonduc on gentamicin-induced hepatotoxicity and nephrotoxicity in rats. Iran J Pharmacol Ther 2011; 10: 21-5. https://www.researchgate.net/publication/233902416
  • J.M. Lopez-Novoa, et al., New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view, Kidney Int. 79 (1) (2011) 33–45. https://doi.org/10.1038/ki.2010.337
  • Phatchawan Arjinajarn, Nuttawud Chueakula, Anchalee Pongchaidecha, Krit Jaikumkao, Varanuj Chatsudthipong, Sugunya Mahatheeranont, Orranuch Norkaew, Nipon Chattipakorn, Anusorn Lungkaphin, Anthocyanin-rich Riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats, Biomedicine & Pharmacotherapy, Volume 92,2017, Pages 412-420, ISSN 0753-3322, https://doi.org/10.1016/j.biopha.2017.05.100.
  • Khaksari M, Esmaili S, Abedloo R, Khastar H. Palmatine ameliorates nephrotoxicity and hepatotoxicity induced by gentamicin in rats. Arch Physiol Biochem 2019; 26: 1-6. https://doi.org/10.1080/13813455.2019.1633354
  • Chattopadhyay RR. Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract: part II. J Ethnopharmacol 2003; 89: 217-219. https://doi.org/10.1016/j.jep.2003.08.006
  • Alcaraz-Contreras Y, Mendoza-Lozano RP, Martínez-Alcaraz ER, Martínez-Alfaro M, Gallegos-Corona MA, Ramírez-Morales MA, Vázquez-Guevara MA. Silymarin and dimercaptosuccinic acid ameliorate lead-induced nephrotoxicity and genotoxicity in rats. Hum Exp Toxicol 2015; Epub ahead of print. https://doi.org/10.1177/0960327115591373
  • Salama S, Kue CS, Mohamad H, Omer F, Ibrahim MY, Abdulla M, Ali H, Mariod A and Jayash SN, “Hepatoprotective potential of a novel quinazoline derivative in thioacetamide-induced liver toxicity”. Front. Pharmacol. 13:943340, 2022. https://doi.org/10.3389/fphar.2022.943340
  • Z. Cimerman, S. Miljani´, and N. Gali´, “Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents,” Croatica Chemica Acta, vol. 73, no. 1, pp. 81–95, 2000. https://doi.org/10.1002/CHIN.200019025
  • Ahmad N, Alam M, Wahab R,Ahmed M, Ahmad A. Synthesis, spectraland thermo-kinetics explorations ofSchiff base derived metal complexes.Open Chemistry. 2020;18(1):1304-1315. https: //doi.org/10.1515/chem-2020-0168
  • Ibrahim, Hussaina A., et al. "Synthesis, Characterization and Antimicrobial Studies on Mn(II), Fe(II), Co(II) Complexes of Schiff Base Derived From 3-Formylchromone and Benzohydrazide." Algerian Journal of Engineering and Technology, vol. 4, Jun. 2021, pp. 81-89. https://doi.org/10.5281/zenodo.4636930
  • B. S. Sathe, E. Jaychandran, V. A. Jagtap, and G. M. Sreenivasa, “Synthesis characterization and anti-inflammatory evaluation of new fluorobenzothiazole schiff ’s bases,” International Journal of Pharmaceutical Research and Development, vol. 3, no. 3, pp. 164–169, 2011. https://doi.org/10.1155/2011%2F581429
  • S. M. Sondhi, N. Singh, A. Kumar, O. Lozach, and L. Meijer, “Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff ’s bases,” Bioorganic and Medicinal Chemistry, vol. 14, no. 11, pp. 3758– 3765, 2006. https://doi.org/10.1016/j.bmc.2006.01.054
  • K. Mounika, B. Anupama, J. Pragathi, and C. Gyanakumari, “Synthesis, characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes,” Journal of Scientific Research, vol. 2, no. 3, pp. 513–524, 2010. https://doi.org/10.3329/jsr.v2i3.4899
  • A. K. Chaubey and S. N. Pandeya, “Synthesis & anticonvulsant activity (Chemo Shock) of Schiff and Mannich bases of Isatin derivatives with 2-Amino pyridine (mechanism of action),” international Journal of PharmTech Research, vol. 4, no. 4, pp. 590–598, 2012. https://www.researchgate.net/publication/287306522
  • T. Aboul-Fadl, F. A. Mohammed, and E. A. Hassan, “Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (INH),” Archives of Pharmacal Research, vol. 26, no. 10, pp. 778–784, 2003. https://doi.org/10.1007/bf02980020
  • R. Miri, N. Razzaghi-asl, and M. K. Mohammadi, “QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent,” Journal of Molecular Modeling, vol. 19, no. 2, pp. 727–735, 2013. https://doi.org/10.1007/s00894-012-1586-x
  • D. Wei, N. Li, G. Lu, and K. Yao, “Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base,” Science in China B, vol. 49, no. 3, pp. 225–229, 2006. https://link.springer.com/article/10.1007/s11426-006-0225-8
  • P. G. Avaji, C. H. Vinod Kumar, S. A. Patil, K. N. Shivananda, and C. Nagaraju, “Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone,” European Journal of Medicinal Chemistry, vol. 44, no. 9, pp. 3552–3559, 2009. https://doi.org/10.1016/j.ejmech.2009.03.032
  • S. Ershad, L. Sagathforoush, G. Karim-Nezhad, and S. Kangari, “Electrochemical behavior of N2 SO Schiff-base Co(II) complexes in non-aqueous media at the surface of solid electrodes,” International Journal of Electrochemical Science, vol. 4, no. 6, pp. 846–854, 2009. https://doi.org/10.1016/S1452-3981(23)15188-1
  • S. Li, S. Chen, S. Lei, H. Ma, R. Yu, D. Liu “Investigation on some Schiff’s bases as HCl corrosion inhibitors for copper” Corros. Sci, 41(7), 1273-1287 (1999). https://doi.org/10.1016/S0010-938X(98)00183-8
  • Rosen HR, Keefe EB. Evaluation of abnormal liver enzymes, use of liver tests and the serology of viral hepatitis: Liver disease, diagnosis and management. 1st ed. New York; Churchill livingstone publishers, 2000; 24-35.
  • Rosalki SB, Mcintyre N. Biochemical investigations in the management of liver disease. Oxford textbook of clinical hepatology, 2nd ed. New York; Oxford university press, 1999; 503-521. https://doi.org/10.1007/978-3-642-76802- 6_2
  • Hagerstrand I : distribution of alkaline phosphatase activity in healthy and diseased human liver tissue. Acta Pathol Microbiol Scand 1975; 83: 519-524. https://doi.org/10.1111/j.1699- 0463.1975.tb00163.x
  • Daniel SP, Marshall MK. Evaluation of the liver: laboratory tests. Schiff’s diseases of the liver, 8 th edn. USA; JB Lippincott publications, 1999; 205-239. https://doi.org/10.1007/s12098-007-0118-7
  • Cappellini MD, Lo SF, Swinkels DW. 38 – Hemoglobin, iron, bilirubin. In: Tietz textbook of clinical chemistry and molecular diagnostics, 6th ed. St. Louis, MO, USA: Elsevier Inc.; 2017. https://doi.org/10.1016/B978-0-323-35921- 4.00038-7.
  • Dufour DR, Lott JA, Nolte FS, Gretch DR, Koff RS, Seeff LB. Diagnosis and monitoring of hepatic injury. II. Recommendations for use of laboratory tests in screening, diagnosis, and monitoring. Clin Chem 2000;46:2050–68. https://doi.org/10.1093/clinchem/46.12.2050
  • Kamisako T, Kobayashi Y, Takeuchi K, Ishihara T, Higuchi K, Tanaka Y, et al. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol 2000; 35: 659–64. https://doi.org/10.1007/s005350070044
  • Mabuza LP, Gamede MW, Maikoo S, Booysen IN, Nguban PS, Khathi A. Hepatoprotective Effects of a Ruthenium(II) Schiff Base Complex in Rats with Diet-Induced Prediabetes. Curr Ther Res Clin Exp. 2019 Nov 13;91:66-72. https://doi.org/10.1016%2Fj.curtheres.2019.100570
  • Taguchi K, Westheimer FH. Catalysis by molecular sieves in the preparation of ketimines and enamines. The Journal of Organic Chemistry. 1971; 36:5556-5557. https://doi.org/10.1021/jo00810a033
  • Özkan, N., Şalva, E., Çakalağaoğlu, F., & Tüzüner, B. (2012). Honey as a substitute for formalin?. Biotechnic & Histochemistry, 87(2), 148-153. https://doi.org/10.3109/10520295.2011.590155
  • Bektur NE, Sahin E, Baycu C, Unver G. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice. Toxicol Ind Health. 2016 Apr;32(4):589-600. https://doi.org/10.1177/0748233713502841
  • Bergmeyer HU and Bernt E. 1963, In: Methods of enzymatic analysis, edited by HU Bergmeyer, Academic Press, Weimheim, NY and London, 837.
  • Aamir, K., Sugumar, V., Khan, H. U., Looi, C. Y., Juneja, R., Waqas, M., & Arya, A. (2022). Non-toxic nature of chebulinic acid on biochemical, hematological and histopathological analysis in normal Sprague Dawley rats. Toxicological Research, 38(2), 159-174. https://doi.org/10.1007/s43188-021-00092-3
  • Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949 June 1:99-114. https://doi.org/10.2307/3001913
There are 39 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Articles
Authors

Attaullah Shah This is me 0009-0006-9983-5033

Shawkat Ali This is me 0009-0002-6629-0031

Haroon Badshah This is me 0000-0003-2959-0414

Mateen Abbas 0000-0003-4605-5501

Durre Nayab This is me 0009-0003-0168-0482

Wadood Ali Shah 0000-0001-8143-2363

Publication Date September 1, 2025
Submission Date July 25, 2024
Acceptance Date November 2, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Shah, A., Ali, S., Badshah, H., … Abbas, M. (2025). Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity. Journal of Research in Pharmacy, 29(5), 1878-1889. https://doi.org/10.12991/jrespharm.1763513
AMA Shah A, Ali S, Badshah H, Abbas M, Nayab D, Ali Shah W. Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity. J. Res. Pharm. September 2025;29(5):1878-1889. doi:10.12991/jrespharm.1763513
Chicago Shah, Attaullah, Shawkat Ali, Haroon Badshah, Mateen Abbas, Durre Nayab, and Wadood Ali Shah. “Evaluation of Hepatoprotective Potential of Selected Schiff Bases (SW8 SB & SW10 SB) Against Gentamicin-Induced Hepatotoxicity”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 1878-89. https://doi.org/10.12991/jrespharm.1763513.
EndNote Shah A, Ali S, Badshah H, Abbas M, Nayab D, Ali Shah W (September 1, 2025) Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity. Journal of Research in Pharmacy 29 5 1878–1889.
IEEE A. Shah, S. Ali, H. Badshah, M. Abbas, D. Nayab, and W. Ali Shah, “Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity”, J. Res. Pharm., vol. 29, no. 5, pp. 1878–1889, 2025, doi: 10.12991/jrespharm.1763513.
ISNAD Shah, Attaullah et al. “Evaluation of Hepatoprotective Potential of Selected Schiff Bases (SW8 SB & SW10 SB) Against Gentamicin-Induced Hepatotoxicity”. Journal of Research in Pharmacy 29/5 (September2025), 1878-1889. https://doi.org/10.12991/jrespharm.1763513.
JAMA Shah A, Ali S, Badshah H, Abbas M, Nayab D, Ali Shah W. Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity. J. Res. Pharm. 2025;29:1878–1889.
MLA Shah, Attaullah et al. “Evaluation of Hepatoprotective Potential of Selected Schiff Bases (SW8 SB & SW10 SB) Against Gentamicin-Induced Hepatotoxicity”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 1878-89, doi:10.12991/jrespharm.1763513.
Vancouver Shah A, Ali S, Badshah H, Abbas M, Nayab D, Ali Shah W. Evaluation of hepatoprotective potential of selected schiff bases (SW8/SB & SW10/SB) against gentamicin-induced hepatotoxicity. J. Res. Pharm. 2025;29(5):1878-89.