Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 2091 - 2109, 01.09.2025
https://doi.org/10.12991/jrespharm.1763687

Abstract

References

  • Caturano A, D'Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, Galiero R, Rinaldi L, Vetrano E, Marfella R, Monda M, Giordano A, Sasso FC. Oxidative stress in type 2 Diabetes: Impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651-6666. https://doi.org/10.3390/cimb45080420
  • Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular red-ox system in health and disease: The latest update. Biomed Pharmacother. 2023;162:114606. https://doi.org/10.1016/j.biopha.2023.114606
  • Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. https://doi.org/10.3389/fchem.2023.1158198.
  • Yang J, Luo J, Tian X, Zhao Y, Li Y, Wu X. Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants (Basel). 2024;13(4):394. https://doi.org/10.3389/fpls.2023.1142212
  • Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative Stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int J Mol Sci. 2024;25(6):11-26. https://10.3390/ijms25063264 Academic
  • Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative stress and natural antioxidants in osteoporosis: Novel preventive and therapeutic approaches. Antioxidants. 2023;12(2):28-41. https://doi.org/10.3390/antiox12020373
  • Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics (Basel). 2023 Mar 1;12(3):487. https://doi.org/10.3390/antiox12020373
  • Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their ımpacts on drug development: A narrative review. Pharmaceuticals (Basel). 2023;16(11):1615. https://doi.org/10.3390/ph16111615
  • Halawa M, Akantibila M, Reid BE, Carabetta VJ. Therapeutic proteins have the potential to become new weapons in the fight against antibiotic resistance. Front Bacteriol. 2023;2(12):1–15. https://doi.org/10.3389/fbrio.2023.1304444
  • Selvarajan R, Obize C, Sibanda T, Abia ALK, Long H. Evolution and emergence of antibiotic resistance in given ecosystems: Possible strategies for addressing the challenge of antibiotic resistance. Antibiotics (Basel). 2022;12(1):28. https://doi.org/10.3390/antibiotics12010028
  • Shelke YP, Bankar NJ, Bandre GR, Hawale D V, Dawande P. An overview of preventive strategies and the role of various organizations in combating antimicrobial resistance. Cureus. 2023;15(9):e44666. https://doi.org/10.7759/cureus.44666
  • Tufa TB, Regassa F, Amenu K, Stegeman JA, Hogeveen H. Livestock producers’ knowledge, attitude, and behavior (KAB) regarding antimicrobial use in Ethiopia. Front Vet Sci. 2023;10:1167847. https://doi.org/10.3390/ healthcare11131946
  • Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance (AMR). Br J Biomed Sci. 2023; 80:11387.https://doi.org/10.3389/bjbs.2023.11387Antimicrobial
  • Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring ımmune redox modulation in bacterial ınfections: Insights into thioredoxin-mediated ınteractions and ımplications for understanding host-pathogen dynamics. Antioxidants (Basel). 2024;13(5):545. https://doi.org/doi.org/10.3390/ antiox13050545
  • Rivera D, Ocampo Y, Franco LA. Physalis angulata Calyces modulate macrophage polarization and alleviate chemically ınduced ıntestinal ınflammation in mice. Biomedicines. 2020;8(2):24. https://doi.org/10.3390/biomedicines8020024
  • Kasali FM, Tusiimire J, Kadima JN, Tolo CU, Weisheit A, Agaba AG. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: An Overview. ScientificWorldJournal. 2021;2021:5212348. https://doi.org/10.1155/2021/5212348
  • Novitasari A, Rohmawaty E, Rosdianto AM. Physalis angulata Linn. as a medicinal plant (Review). Biomed Reports. 2024;20(3):47. https://doi.org/10.3892/br.2024.1735
  • Ferreira LM, do Vale AE, de Souza AJ, Leite KB, Sacramento C, Moreno ML, Araujo TH, Soares MBP, Grassi MFR. Anatomical and phytochemical characterization of Physalis angulata L.: A Plant with therapeutic potential. Pharmacogn Res . 2019;11:171–177. https://doi.org/10.3390/antiox12020373
  • Ramakrishna Pillai J, Wali AF, Menezes GA, Rehman MU, Wani TA, Arafah A, Zargar S, Mir TM. Chemical composition analysis, cytotoxic, antimicrobial and antioxidant activities of Physalis angulata L.: A comparative study of leaves and fruit. Molecules. 2022;27(5):1480. https://doi.org/10.3390/ molecules27051480Academic
  • Cobaleda-Velasco M, Alanis-Bañuelos RE, Almaraz-Abarca N, Rojas-López M, González-Valdez LS, Ávila-Reyes JA, Rodrigo S. Phenolic profiles and antioxidant properties of Physalis angulata L. as quality indicators. J Pharm Pharmacogn Res. 2017;5(2):114–128. https://doi.org/10.3390/antiox12020373
  • Fadhli H, Ruska SL, Furi M, Suhery WN, Susanti E, Nasution MR. Ciplukan (Physalis angulata L.): Review Tanaman Liar yang Berpotensi Sebagai Tanaman Obat. JFIOnline | Print ISSN 1412-1107 | e-ISSN 2355-696X. 2023;15(2):134–41. https://doi.org/10.35617/jfionline.v15i2.144Ciplukan
  • Hmamou A, Eloutassi N, Alshawwa SZ, Al Kamaly O, Kara M, Bendaoud A, El-Assri EM, Tlemcani S, El Khomsi M, Lahkimi A. Total phenolic content and antioxidant and antimicrobial activities of Papaver rhoeas L. organ extracts growing in Taounate Region, Morocco. Molecules. 2022;27(3):854.https://doi.org/10.3390/ molecules27030854
  • Anh HLT, Thao DT, Dung DT, Kiem P Van, Quang TH, Hai Yen PT, Tuan DT, Cuong PV, Viet Cuong LC, Hung TM. Phytochemical constituents and cytotoxic activity of Physalis angulata L. growing in Vietnam. Phytochem Lett. 2018;27(May):193–196. https://doi.org/10.5897/AJAR2016.11717
  • Tuan Anh HL, Le Ba V, Do TT, Phan VK, Pham Thi HY, Bach LG, Tran MH, Tran Thi PA, Kim YH. Bioactive compounds from Physalis angulata and their anti-inflammatory and cytotoxic activities. J Asian Nat Prod Res. 2021;23(8):809- 817. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Wu J, Zhao J, Zhang T, Gu Y, Khan IA, Zou Z, Xu Q. Naturally occurring physalins from the genus Physalis: A review. Phytochemistry. 2021;191:112925.https://doi.org/10.29228/jrp.679
  • El-Hawary SS, Moawad AS, Bahr HS, Abdelmohsen UR, Mohammed R. Natural product diversity from the endophytic fungi of the genusAspergillus. RSC Adv. 2020;10(37):22058–22079. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr. 2023;9. https://doi.org/10.3390/antiox12020373
  • Song J, Lei T, Hao X, Yuan H, Sun W, Chen S. Synergistic effects of Clonostachys rosea ısolates and succinate dehydrogenase ınhibitors fungicides against gray mold on tomato. Microorganisms. 2022;11(1):20. https://doi.org/10.21315/tlsr2018.29.2.1
  • Elfita, Oktiansyah R, Mardiyanto, Setiawan A, Widjajanti H. Combination effect of extracts and pure compounds of endophytic fungi ısolated from Sungkai (Peronema canescens) leaves on antioxidant activity. Sci Technol Indones. 2024;9(1):69– 76. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr. 2020;6(2):115–123. https://doi.org/10.1016/j.aninu.2020.01.001
  • Truong VL, Jeong WS. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int J Mol Sci. 2021;22(17):9109. https://doi.org/10.18280/ijdne.190301
  • Jain D, Pancholi S, Patel R. Synergistic antioxidant activity of green tea with some herbs. J Adv Pharm Technol Res. 2011;2(3):177. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Azima AMS, Noriham A, Manshoor N. Synergistic effects of Garcinia mangostana and Clitoria ternatea extract mixture on antioxidant activities, colour, and anthocyanin stabilities. Int Food Res J. 2022;29(3):631–645. https://doi.org/10.3390/antiox12020373
  • Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J Funct Foods. 2015;18:820–897. https://doi.org/10.29228/jrp.679
  • Hajimehdipoor H, Shahrestani R, Shekarchi M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res J Pharmacogn. 2014;1(3):35–40. https://doi.org/10.29228/jrp.679
  • Sonam KS, Guleria S. Synergistic antioxidant activity of natural products. Ann Pharmacol Pharm. 2017;2(8):1–6. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, Martorell M, Martins N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina (Kaunas). 2019;55(4):110. https://doi.org/10.3390/antiox12020373
  • Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front Pharmacol. 2021;12:723233. https://doi.org/10.3389/fphar.2021.723233
  • Stefanović OD. Synergistic activity of antibiotics and bioactive plant extracts: A study against Gram-Positive and Gram- Negative Bacteria. Bact Pathog Antibact Control. 2018;1(1):23-34. https://doi.org/ 10.5772/intechopen.72026
  • Atta S, Waseem D, Fatima H, Naz I, Rasheed F, Kanwal N. Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J Biol Sci. 2023;30(3):103576. https://doi.org/10.1016/j.sjbs.2023.103576
  • Alam M, Bano N, Ahmad T, Sharangi AB, Upadhyay TK, Alraey Y, Alabdallah NM, Rauf MA, Saeed M. Synergistic Role of Plant Extracts and Essential Oils against Multidrug Resistance and Gram-Negative Bacterial Strains Producing Extended-Spectrum β-Lactamases. Antibiotics (Basel). 2022;11(7):855.https://doi.org/10.3390/antiox12020373
  • Vadhana P, Singh BR, Bharadwaj M. Emergence of Herbal Antimicrobial Drug Resistance in Clinical Bacterial Isolates. Pharm Anal Acta. 2015;6:10. https://doi.org/10.4172/2153-2435.1000434
  • Guzmán-Guzmán P, Kumar A, de Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. Plants (Basel). 2023;12(3):432. https://doi.org/10.3390/ plants12030432Academic
  • Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol. 2023;14:1160551. https://doi.org/10.18280/ijdne.190301
  • Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci. 2022;23(4):2329. https://doi.org/10.3390/antiox12020373
  • Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Front Fungal Biol. 2021;2:716511. https://doi.org/10.18280/ijdne.190301
  • Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, Singh HV. Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustain. 2022;14(19):12786. https://doi.org/10.3390/medicines6020069
  • Poudel S, Khanal P, C. BK, Pokharel S, Gauli S. Biological Control of Fungal Phytopathogens with Trichoderma harzianum and its Fungicidal Compatibility. Int J Appl Biol. 2023;7(1):47–58.
  • Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL, Liu C, Yu X, Zhu HW, Chen GZ, Zhang XX. Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites With Medicinal Importance. Front Microbiol. 2021;12:723828.https://doi.org/10.3389/fmicb.2021.723828
  • Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez- Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Front Plant Sci. 2017;8:102.https://doi.org/10.3389/fpls.2017.00102
  • Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from Trichoderma spp. Against phytopathogenic fungi. Microorganisms. 2020;8(6):817. https://doi.org/10.1016/B978-0-12-816455-6.00015-9 505
  • Salwan R, Kumari N. Bioactive Volatile Metabolites of Trichoderma: An overview. In: Singh H, Keswani C, Reddy M, Sansinenea E, García-Estrada C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 2019. https://doi.org/10.1007/978-981-13-5862-3_5
  • Cruz JS, da Silva CA, Hamerski L. Natural Products from Endophytic Fungi Associated with Rubiaceae Species. J Fungi (Basel). 2020;6(3):128. https://doi.org/10.3390/jof6030128
  • Oktiansyah R, Elfita E, Widjajanti H, Hariani PL, Hidayati N, Setiawan A, Salni S. Secondary metabolites of endophytic fungii isolated from the stem bark of Sungkai (Peronema canescens Jack.). J Res Pharm. 2024;28(1):89–109. https://doi.org/10.29228/jrp.679
  • Sureshkumar J, Amalraj S, Murugan R, Tamilselvan A, Krupa J, Sriramavaratharajan V, Gurav SS, Ayyanar M. Chemical profiling and antioxidant activity of Equisetum ramosissimum Desf. stem extract, a potential traditional medicinal plant for urinary tract infections. Futur J Pharm Sci. 2021;7(1):1-11. https://doi.org/10.1186/s43094-021-00339-8
  • Andrade F, Jenipher C, Gurav N, Nadaf S, Khan MS, Mahajan N, Bhagwat D, Kalaskar M, Chikalle R, Bhole R, Lalsare S, Baheti A, Ayyanar M, Gurav S. Endophytic fungi-assisted biomass synthesis of eco-friendly formulated silver nanoparticles for enhanced antibacterial, antioxidant, and antidiabetic activities. J Drug Deliv Technol. 2024;97(1):105749. https://doi.org/10.1016/j.jddst.2024.105749
  • Gurav SS, Deshkar, NS, Tilloo SK, Duragkar NK, Burade K. Antimicrobial and Antioxidant Evaluation of Flacourtia Ramontchi L. Herit. J Herbs Spices Med P. 2013;19(1):76-95. https://doi.org/10.1080/10496475.2012.743107
  • Krupa J, Murugan R, Gangapriya P, Amalraj S, Gurav S, Arulraj MS, Ayyanar M. Moringa concanensis Nimmo. seed extracts as a potential source of bioactive molecules, antioxidants and enzyme inhibitors. J Food Meas Charact. 2022;16(1):3699- 3711. https://doi.org/10.1007/s11694-022-01463-6
  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–3027. https://doi.org/ 10.1093/molbev/msab120
  • Elfita, Oktiansyah R, Mardiyanto, Setiawan A, Widjajanti H. Combination effect of extracts and pure compounds of endophytic fungi ısolated from Sungkai (Peronema canescens) leaves on antioxidant activity. Sci Technol Indones. 2024;9(1):69–76. https://doi.org/10.26554/sti.2024.9.1.69-76
  • Elfita, Oktiansyah R, Mardiyanto, Setiawan A, Widjajanti H. Synergistic antibacterial effects of combined phytochemicals of endophytic fungi extracts and ıts pure compounds ısolated from Sungkai (Peronema canescens) leaves. Int J Des Nat Ecodynamics. 2024;19(3):713–721. https://doi.org/10.18280/ijdne.190301

Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects

Year 2025, Volume: 29 Issue: 5, 2091 - 2109, 01.09.2025
https://doi.org/10.12991/jrespharm.1763687

Abstract

Natural products sourced from endophytic fungal are recognized as one of the most important resources for
drug discovery and molecular diversity. Utilizing combinations of extracts or pure compounds can produce synergistic
effects, offering strong pharmacological efficacy at relatively low concentrations. Physalis angulata L. is a medicinal plant
traditionally used by people globally. The endophytic fungi associated with this plant represent a valuable, yet
underexplored, source of bioactive compounds. This study aimed to identify extracts and pure compounds from
endophytic fungi isolated from the roots of P. angulata that exhibit antioxidant and antibacterial activities, as well as to
explore their combined effects. The endophytic fungi isolates used in this study were obtained from P. angulata roots stored
in the laboratory as stock cultures. Each isolate was re-identified morphologically for purity and cultivated in Potato
Dextrose Broth (PDB) media for 4 weeks at room temperature under static conditions. Liquid culture was extracted in ethyl
acetate and evaporated. Antioxidant and antibacterial activities were tested for each endophytic fungal extract, followed
by the isolation of active compounds from the selected extracts. The chemical structures were elucidated using
spectroscopic techniques, such as 1D and 2D NMR. The endophytic fungi responsible for producing bioactive compounds
were identified through molecular analysis. Combination effects were examined on both extracts and pure compounds
exhibiting antioxidant and antibacterial activities. The extract of Trichoderma virens endophytic fungi, which produced
two bioactive compounds, demonstrated the highest antioxidant and antibacterial activities. Spectroscopic analysis
indicated that the two compounds were 10-hydroxy-benzoisochromen-1-one (1) and 7-hydroxy-benzochromen-6-one (2).
Molecular identification and phylogenetic analysis of the selected endophytic fungi showed a high similarity to Trichoderma
virens. The best combination effect with strong antioxidant activity was found in the CA4+CA6 blend (test 3). The
antioxidant activity of compounds 1, 2, and their combination products exhibited weak antioxidant activity. The highest
antibacterial activity (≥ 95%) for the combination product was derived from synergistic effects (27.8%) and additive effects
(13.9%). Compound 1 had strong antibacterial activity compared to compound 2 and their combination products. Thus, for
the development of Trichoderma virens as a source of medicinal substances, extract combinations are more efficient than
pure compound combinations.

References

  • Caturano A, D'Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, Galiero R, Rinaldi L, Vetrano E, Marfella R, Monda M, Giordano A, Sasso FC. Oxidative stress in type 2 Diabetes: Impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651-6666. https://doi.org/10.3390/cimb45080420
  • Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular red-ox system in health and disease: The latest update. Biomed Pharmacother. 2023;162:114606. https://doi.org/10.1016/j.biopha.2023.114606
  • Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198. https://doi.org/10.3389/fchem.2023.1158198.
  • Yang J, Luo J, Tian X, Zhao Y, Li Y, Wu X. Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants (Basel). 2024;13(4):394. https://doi.org/10.3389/fpls.2023.1142212
  • Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative Stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int J Mol Sci. 2024;25(6):11-26. https://10.3390/ijms25063264 Academic
  • Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative stress and natural antioxidants in osteoporosis: Novel preventive and therapeutic approaches. Antioxidants. 2023;12(2):28-41. https://doi.org/10.3390/antiox12020373
  • Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics (Basel). 2023 Mar 1;12(3):487. https://doi.org/10.3390/antiox12020373
  • Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their ımpacts on drug development: A narrative review. Pharmaceuticals (Basel). 2023;16(11):1615. https://doi.org/10.3390/ph16111615
  • Halawa M, Akantibila M, Reid BE, Carabetta VJ. Therapeutic proteins have the potential to become new weapons in the fight against antibiotic resistance. Front Bacteriol. 2023;2(12):1–15. https://doi.org/10.3389/fbrio.2023.1304444
  • Selvarajan R, Obize C, Sibanda T, Abia ALK, Long H. Evolution and emergence of antibiotic resistance in given ecosystems: Possible strategies for addressing the challenge of antibiotic resistance. Antibiotics (Basel). 2022;12(1):28. https://doi.org/10.3390/antibiotics12010028
  • Shelke YP, Bankar NJ, Bandre GR, Hawale D V, Dawande P. An overview of preventive strategies and the role of various organizations in combating antimicrobial resistance. Cureus. 2023;15(9):e44666. https://doi.org/10.7759/cureus.44666
  • Tufa TB, Regassa F, Amenu K, Stegeman JA, Hogeveen H. Livestock producers’ knowledge, attitude, and behavior (KAB) regarding antimicrobial use in Ethiopia. Front Vet Sci. 2023;10:1167847. https://doi.org/10.3390/ healthcare11131946
  • Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance (AMR). Br J Biomed Sci. 2023; 80:11387.https://doi.org/10.3389/bjbs.2023.11387Antimicrobial
  • Dagah OMA, Silaa BB, Zhu M, Pan Q, Qi L, Liu X, Liu Y, Peng W, Ullah Z, Yudas AF, Muhammad A, Zhang X, Lu J. Exploring ımmune redox modulation in bacterial ınfections: Insights into thioredoxin-mediated ınteractions and ımplications for understanding host-pathogen dynamics. Antioxidants (Basel). 2024;13(5):545. https://doi.org/doi.org/10.3390/ antiox13050545
  • Rivera D, Ocampo Y, Franco LA. Physalis angulata Calyces modulate macrophage polarization and alleviate chemically ınduced ıntestinal ınflammation in mice. Biomedicines. 2020;8(2):24. https://doi.org/10.3390/biomedicines8020024
  • Kasali FM, Tusiimire J, Kadima JN, Tolo CU, Weisheit A, Agaba AG. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: An Overview. ScientificWorldJournal. 2021;2021:5212348. https://doi.org/10.1155/2021/5212348
  • Novitasari A, Rohmawaty E, Rosdianto AM. Physalis angulata Linn. as a medicinal plant (Review). Biomed Reports. 2024;20(3):47. https://doi.org/10.3892/br.2024.1735
  • Ferreira LM, do Vale AE, de Souza AJ, Leite KB, Sacramento C, Moreno ML, Araujo TH, Soares MBP, Grassi MFR. Anatomical and phytochemical characterization of Physalis angulata L.: A Plant with therapeutic potential. Pharmacogn Res . 2019;11:171–177. https://doi.org/10.3390/antiox12020373
  • Ramakrishna Pillai J, Wali AF, Menezes GA, Rehman MU, Wani TA, Arafah A, Zargar S, Mir TM. Chemical composition analysis, cytotoxic, antimicrobial and antioxidant activities of Physalis angulata L.: A comparative study of leaves and fruit. Molecules. 2022;27(5):1480. https://doi.org/10.3390/ molecules27051480Academic
  • Cobaleda-Velasco M, Alanis-Bañuelos RE, Almaraz-Abarca N, Rojas-López M, González-Valdez LS, Ávila-Reyes JA, Rodrigo S. Phenolic profiles and antioxidant properties of Physalis angulata L. as quality indicators. J Pharm Pharmacogn Res. 2017;5(2):114–128. https://doi.org/10.3390/antiox12020373
  • Fadhli H, Ruska SL, Furi M, Suhery WN, Susanti E, Nasution MR. Ciplukan (Physalis angulata L.): Review Tanaman Liar yang Berpotensi Sebagai Tanaman Obat. JFIOnline | Print ISSN 1412-1107 | e-ISSN 2355-696X. 2023;15(2):134–41. https://doi.org/10.35617/jfionline.v15i2.144Ciplukan
  • Hmamou A, Eloutassi N, Alshawwa SZ, Al Kamaly O, Kara M, Bendaoud A, El-Assri EM, Tlemcani S, El Khomsi M, Lahkimi A. Total phenolic content and antioxidant and antimicrobial activities of Papaver rhoeas L. organ extracts growing in Taounate Region, Morocco. Molecules. 2022;27(3):854.https://doi.org/10.3390/ molecules27030854
  • Anh HLT, Thao DT, Dung DT, Kiem P Van, Quang TH, Hai Yen PT, Tuan DT, Cuong PV, Viet Cuong LC, Hung TM. Phytochemical constituents and cytotoxic activity of Physalis angulata L. growing in Vietnam. Phytochem Lett. 2018;27(May):193–196. https://doi.org/10.5897/AJAR2016.11717
  • Tuan Anh HL, Le Ba V, Do TT, Phan VK, Pham Thi HY, Bach LG, Tran MH, Tran Thi PA, Kim YH. Bioactive compounds from Physalis angulata and their anti-inflammatory and cytotoxic activities. J Asian Nat Prod Res. 2021;23(8):809- 817. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Wu J, Zhao J, Zhang T, Gu Y, Khan IA, Zou Z, Xu Q. Naturally occurring physalins from the genus Physalis: A review. Phytochemistry. 2021;191:112925.https://doi.org/10.29228/jrp.679
  • El-Hawary SS, Moawad AS, Bahr HS, Abdelmohsen UR, Mohammed R. Natural product diversity from the endophytic fungi of the genusAspergillus. RSC Adv. 2020;10(37):22058–22079. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr. 2023;9. https://doi.org/10.3390/antiox12020373
  • Song J, Lei T, Hao X, Yuan H, Sun W, Chen S. Synergistic effects of Clonostachys rosea ısolates and succinate dehydrogenase ınhibitors fungicides against gray mold on tomato. Microorganisms. 2022;11(1):20. https://doi.org/10.21315/tlsr2018.29.2.1
  • Elfita, Oktiansyah R, Mardiyanto, Setiawan A, Widjajanti H. Combination effect of extracts and pure compounds of endophytic fungi ısolated from Sungkai (Peronema canescens) leaves on antioxidant activity. Sci Technol Indones. 2024;9(1):69– 76. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr. 2020;6(2):115–123. https://doi.org/10.1016/j.aninu.2020.01.001
  • Truong VL, Jeong WS. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. Int J Mol Sci. 2021;22(17):9109. https://doi.org/10.18280/ijdne.190301
  • Jain D, Pancholi S, Patel R. Synergistic antioxidant activity of green tea with some herbs. J Adv Pharm Technol Res. 2011;2(3):177. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Azima AMS, Noriham A, Manshoor N. Synergistic effects of Garcinia mangostana and Clitoria ternatea extract mixture on antioxidant activities, colour, and anthocyanin stabilities. Int Food Res J. 2022;29(3):631–645. https://doi.org/10.3390/antiox12020373
  • Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J Funct Foods. 2015;18:820–897. https://doi.org/10.29228/jrp.679
  • Hajimehdipoor H, Shahrestani R, Shekarchi M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res J Pharmacogn. 2014;1(3):35–40. https://doi.org/10.29228/jrp.679
  • Sonam KS, Guleria S. Synergistic antioxidant activity of natural products. Ann Pharmacol Pharm. 2017;2(8):1–6. https://doi.org/10.26554/sti.2024.9.1.17-27
  • Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, Martorell M, Martins N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina (Kaunas). 2019;55(4):110. https://doi.org/10.3390/antiox12020373
  • Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front Pharmacol. 2021;12:723233. https://doi.org/10.3389/fphar.2021.723233
  • Stefanović OD. Synergistic activity of antibiotics and bioactive plant extracts: A study against Gram-Positive and Gram- Negative Bacteria. Bact Pathog Antibact Control. 2018;1(1):23-34. https://doi.org/ 10.5772/intechopen.72026
  • Atta S, Waseem D, Fatima H, Naz I, Rasheed F, Kanwal N. Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J Biol Sci. 2023;30(3):103576. https://doi.org/10.1016/j.sjbs.2023.103576
  • Alam M, Bano N, Ahmad T, Sharangi AB, Upadhyay TK, Alraey Y, Alabdallah NM, Rauf MA, Saeed M. Synergistic Role of Plant Extracts and Essential Oils against Multidrug Resistance and Gram-Negative Bacterial Strains Producing Extended-Spectrum β-Lactamases. Antibiotics (Basel). 2022;11(7):855.https://doi.org/10.3390/antiox12020373
  • Vadhana P, Singh BR, Bharadwaj M. Emergence of Herbal Antimicrobial Drug Resistance in Clinical Bacterial Isolates. Pharm Anal Acta. 2015;6:10. https://doi.org/10.4172/2153-2435.1000434
  • Guzmán-Guzmán P, Kumar A, de Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. Plants (Basel). 2023;12(3):432. https://doi.org/10.3390/ plants12030432Academic
  • Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol. 2023;14:1160551. https://doi.org/10.18280/ijdne.190301
  • Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int J Mol Sci. 2022;23(4):2329. https://doi.org/10.3390/antiox12020373
  • Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Front Fungal Biol. 2021;2:716511. https://doi.org/10.18280/ijdne.190301
  • Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, Sharma SK, Singh HV. Trichoderma: Advent of Versatile Biocontrol Agent, Its Secrets and Insights into Mechanism of Biocontrol Potential. Sustain. 2022;14(19):12786. https://doi.org/10.3390/medicines6020069
  • Poudel S, Khanal P, C. BK, Pokharel S, Gauli S. Biological Control of Fungal Phytopathogens with Trichoderma harzianum and its Fungicidal Compatibility. Int J Appl Biol. 2023;7(1):47–58.
  • Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, Jiang LL, Liu C, Yu X, Zhu HW, Chen GZ, Zhang XX. Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites With Medicinal Importance. Front Microbiol. 2021;12:723828.https://doi.org/10.3389/fmicb.2021.723828
  • Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez- Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Front Plant Sci. 2017;8:102.https://doi.org/10.3389/fpls.2017.00102
  • Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from Trichoderma spp. Against phytopathogenic fungi. Microorganisms. 2020;8(6):817. https://doi.org/10.1016/B978-0-12-816455-6.00015-9 505
  • Salwan R, Kumari N. Bioactive Volatile Metabolites of Trichoderma: An overview. In: Singh H, Keswani C, Reddy M, Sansinenea E, García-Estrada C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 2019. https://doi.org/10.1007/978-981-13-5862-3_5
  • Cruz JS, da Silva CA, Hamerski L. Natural Products from Endophytic Fungi Associated with Rubiaceae Species. J Fungi (Basel). 2020;6(3):128. https://doi.org/10.3390/jof6030128
  • Oktiansyah R, Elfita E, Widjajanti H, Hariani PL, Hidayati N, Setiawan A, Salni S. Secondary metabolites of endophytic fungii isolated from the stem bark of Sungkai (Peronema canescens Jack.). J Res Pharm. 2024;28(1):89–109. https://doi.org/10.29228/jrp.679
  • Sureshkumar J, Amalraj S, Murugan R, Tamilselvan A, Krupa J, Sriramavaratharajan V, Gurav SS, Ayyanar M. Chemical profiling and antioxidant activity of Equisetum ramosissimum Desf. stem extract, a potential traditional medicinal plant for urinary tract infections. Futur J Pharm Sci. 2021;7(1):1-11. https://doi.org/10.1186/s43094-021-00339-8
  • Andrade F, Jenipher C, Gurav N, Nadaf S, Khan MS, Mahajan N, Bhagwat D, Kalaskar M, Chikalle R, Bhole R, Lalsare S, Baheti A, Ayyanar M, Gurav S. Endophytic fungi-assisted biomass synthesis of eco-friendly formulated silver nanoparticles for enhanced antibacterial, antioxidant, and antidiabetic activities. J Drug Deliv Technol. 2024;97(1):105749. https://doi.org/10.1016/j.jddst.2024.105749
  • Gurav SS, Deshkar, NS, Tilloo SK, Duragkar NK, Burade K. Antimicrobial and Antioxidant Evaluation of Flacourtia Ramontchi L. Herit. J Herbs Spices Med P. 2013;19(1):76-95. https://doi.org/10.1080/10496475.2012.743107
  • Krupa J, Murugan R, Gangapriya P, Amalraj S, Gurav S, Arulraj MS, Ayyanar M. Moringa concanensis Nimmo. seed extracts as a potential source of bioactive molecules, antioxidants and enzyme inhibitors. J Food Meas Charact. 2022;16(1):3699- 3711. https://doi.org/10.1007/s11694-022-01463-6
  • Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–3027. https://doi.org/ 10.1093/molbev/msab120
  • Elfita, Oktiansyah R, Mardiyanto, Setiawan A, Widjajanti H. Combination effect of extracts and pure compounds of endophytic fungi ısolated from Sungkai (Peronema canescens) leaves on antioxidant activity. Sci Technol Indones. 2024;9(1):69–76. https://doi.org/10.26554/sti.2024.9.1.69-76
  • Elfita, Oktiansyah R, Mardiyanto, Setiawan A, Widjajanti H. Synergistic antibacterial effects of combined phytochemicals of endophytic fungi extracts and ıts pure compounds ısolated from Sungkai (Peronema canescens) leaves. Int J Des Nat Ecodynamics. 2024;19(3):713–721. https://doi.org/10.18280/ijdne.190301
There are 61 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Elfita Elfita 0000-0003-2527-6639

Budi Eko Wahyudi This is me 0009-0004-7585-1106

Hary Wıdjajantı 0000-0001-5555-1537

Salni Salni This is me 0000-0002-5509-7917

Mardiyanto Mardiyanto This is me 0000-0002-2951-4123

Rian Oktiansyah 0000-0002-4747-396X

Julinar Julinar This is me 0000-0002-6138-3020

Publication Date September 1, 2025
Submission Date August 14, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Elfita, E., Wahyudi, B. E., Wıdjajantı, H., … Salni, S. (2025). Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects. Journal of Research in Pharmacy, 29(5), 2091-2109. https://doi.org/10.12991/jrespharm.1763687
AMA Elfita E, Wahyudi BE, Wıdjajantı H, et al. Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects. J. Res. Pharm. September 2025;29(5):2091-2109. doi:10.12991/jrespharm.1763687
Chicago Elfita, Elfita, Budi Eko Wahyudi, Hary Wıdjajantı, Salni Salni, Mardiyanto Mardiyanto, Rian Oktiansyah, and Julinar Julinar. “Antioxidant and Antibacterial Activity of Extracts and Compounds from Endophytic Fungi Isolated from Roots of Physalis Angulata and Their Combination Effects”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 2091-2109. https://doi.org/10.12991/jrespharm.1763687.
EndNote Elfita E, Wahyudi BE, Wıdjajantı H, Salni S, Mardiyanto M, Oktiansyah R, Julinar J (September 1, 2025) Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects. Journal of Research in Pharmacy 29 5 2091–2109.
IEEE E. Elfita, B. E. Wahyudi, H. Wıdjajantı, S. Salni, M. Mardiyanto, R. Oktiansyah, and J. Julinar, “Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects”, J. Res. Pharm., vol. 29, no. 5, pp. 2091–2109, 2025, doi: 10.12991/jrespharm.1763687.
ISNAD Elfita, Elfita et al. “Antioxidant and Antibacterial Activity of Extracts and Compounds from Endophytic Fungi Isolated from Roots of Physalis Angulata and Their Combination Effects”. Journal of Research in Pharmacy 29/5 (September2025), 2091-2109. https://doi.org/10.12991/jrespharm.1763687.
JAMA Elfita E, Wahyudi BE, Wıdjajantı H, Salni S, Mardiyanto M, Oktiansyah R, Julinar J. Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects. J. Res. Pharm. 2025;29:2091–2109.
MLA Elfita, Elfita et al. “Antioxidant and Antibacterial Activity of Extracts and Compounds from Endophytic Fungi Isolated from Roots of Physalis Angulata and Their Combination Effects”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 2091-09, doi:10.12991/jrespharm.1763687.
Vancouver Elfita E, Wahyudi BE, Wıdjajantı H, Salni S, Mardiyanto M, Oktiansyah R, et al. Antioxidant and antibacterial activity of extracts and compounds from endophytic fungi isolated from roots of Physalis angulata and their combination effects. J. Res. Pharm. 2025;29(5):2091-109.