Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 2023 - 2034, 01.09.2025
https://doi.org/10.12991/jrespharm.1766172

Abstract

References

  • [1] Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020; 10(1): 107-111. https://doi.org/10.2991/jegh.k.191028.001.
  • [2] Yan T, Wu T, Zhang M, Li C, Liu Q, Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health. 2022;22(1):1382. https://doi.org/10.1186/s12889-022- 13759-9.
  • [3] Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko E, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.
  • [4] Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275.
  • [5] Frederico MJS, Castro AJG, Menegaz D, Murat CB, Mendes CP, Mascarello A, Nunes RJ, Silva FRMB. Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Curr Drug Targets. 2017;18(6):641-650. https://doi.org/10.2174/1389450117666160615084752
  • [6] Sola D, Rossi L, Schianca GP, Maffioli P, Bigliocca M, Mella R, Corlianò F, Fra GP, Bartoli E, Derosa G. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840-848. https://doi.org/10.5114/aoms.2015.53304.
  • [7] Dannenfelser R, Yalkowsky SH. Database for aqueous solubility of nonelectrolytes. Comput Appl Biosci. 1989;5(3):235-236. https://doi.org/10.1093/bioinformatics/5.3.235.
  • [8] Budiman A, Megantara S, Apriliani A. Solid dosage form development of glibenclamide-aspartame cocrystal using the solvent evaporation method to ıncrease the solubility of glibenclamide. Int J Appl Pharm. 2019; 11(3): 150–154. http://dx.doi.org/10.22159/ijap.2019v11i3.32121.
  • [9] Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014; 9(6): 304–316. https://doi.org/10.1016/j.ajps.2014.05.005.
  • [10] Niazi SK. Handbook of Pharmaceutical Manufacturing Formulations, Third Edition: Volume Three, Liquid Products (3rd ed.). CRC Press, Boca Raton, 2019. https://doi.org/10.1201/9781315102917.
  • [11] Cirri M, Righi MF, Maestrelli F, Mura P, Valleri M. Development of glyburide fast-dissolving tablets based on the combined use of cyclodextrins and polymers. Drug Dev Ind Pharm. 2009;35(1):73-82. https://doi.org/10.1080/03639040802192798.
  • [12] Bachhav YG, Patravale VB. SMEDDS of glyburide: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech. 2009; 10(2): 482–487. https://doi.org/10.1208/s12249-009-9234-1.
  • [13] Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010; 67(3): 283–290.
  • [14] Azhar SBL, Hamishehkar H. The ımpact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharm Bull. 2016; 6(2): 143–151. https://doi.org/10.15171/apb.2016.021.
  • [15] Gonçalves LM, Maestrelli F, Di Cesare Mannelli L, Ghelardini C, Almeida AJ, Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm. 2016;102:41- 50. https://doi.org/10.1016/j.ejpb.2016.02.012.
  • [16] Sterren VB, Zoppi A, Abraham-Miranda J, Longhi MR. Enhanced dissolution profiles of glibenclamide with amino acids using a cogrinding method. Mater Today Commun. 2021; 26: 102126-102134. https://doi.org/10.1016/j.mtcomm.2021.102126.
  • [17] Maritim S, Boulas P, Lin Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm. 2021; 592: 120051. https://doi.org/10.1016/j.ijpharm.2020.120051.
  • [18] Ebrahimi A, Saffari M, Langrish T. Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier. Int J Pharm. 2017; 521(1–2): 204–213. https://doi.org/10.1016/j.ijpharm.2017.02.052.
  • [19] Al-Khattawi A, Koner J, Rue P, Kirby D, Perrie Y, Rajabi-Siahboomi A, Mohammed AR. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. Eur J Pharm Biopharm. 2015;94:1-10. https://doi.org/10.1016/j.ejpb.2015.04.011.
  • [20] Saffari M, Ebrahimi A, Langrish T. Nano-confinement of acetaminophen into porous mannitol through adsorption method. Microporous Mesoporous Mater. 2016; 227: 95–103. https://doi.org/10.1016/j.micromeso.2016.02.047.
  • [21] Andriayani A, Telambanua CI, Nainggolan H. Effect of Addition of Oleic Acid as a Template with Tetraethylorthosilicate (TEOS) as Source of Silica on Porosity Mesoporous Silica Material. J Chem Nat Resour. 2023; 5(1): 62-68. https://doi.org/10.32734/jcnar.v5i1.11993.
  • [22] Pang JB, Qiu KY, Wei Y. Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol–gel process. J. Non-Cryst Solids. 2001; 283(1-3): 101–108. https://doi.org/10.1016/S0022-3093(01)00343-X.
  • [23] Kusumorini N, Nugroho AK, Pramono S, Martien R. Spray-dried self-nanoemulsifying drug delivery systems as carriers for the oral delivery of piperine: Characterization and in vitro evaluation. J Appl Pharm Sci. 2022; 12(9): 043–057. https://dx.doi.org/10.7324/JAPS.2022.120906.
  • [24] Kusumorini N, Adhyatmika A. Optimization of highly porous mannitol preparation using ammonium bicarbonate and citric acid as templating agents with spray drying technique. J Food Pharm Sci. 2023; 11(3): 927– 935. https://doi.org/10.22146/jfps.10062.
  • [25] Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J, Wu C, Pan X, Wu C. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci. Rep 2017; 7(1): 46517. https://doi.org/10.1038/srep46517.
  • [26] Saffari M, Ebrahimi A, Langrish T. Nano-confinement of acetaminophen into porous mannitol through adsorption method. Microporous Mesoporous Mater. 2016; 227: 95–103. https://doi.org/10.1016/j.micromeso.2016.02.047.
  • [27] Saffari M, Ebrahimi A, Langrish T. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. Eur J Pharm Sci. 2016;83:52-61. https://doi.org/10.1016/j.ejps.2015.12.016.
  • [28] Khan S, Madni A, Rahim MA, Shah H, Jabar A, Khan MM, Khan A, Jan N, Mahmood M. Enhanced in vitro release and permeability of glibenclamide by proliposomes: Development, characterization and histopathological evaluation. J Drug Deliv Sci Technol. 2021; 63: 102450-102461. https://doi.org/10.1016/j.jddst.2021.102450.
  • [29] Bruni G, Berbenni V, Milanese C, Girella A, Cofrancesco P, Bellazzi G, Marini A. Physico-chemical characterization of anhydrous D-mannitol. J Therm Anal Calorim. 2009; 95(3): 871–876. https://doi.org/10.1016/j.jddst.2021.102450.
  • [30] Pimpang P, Sumang R, Choopun S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Chiang Mai J Sci. 2018; 45(5): 2005–2014.
  • [31] Hulse WL, Forbes RT, Bonner MC, Getrost M. The characterization and comparison of spray-dried mannitol samples. Drug Dev Ind Pharm. 2009; 35(6): 712–718. https://doi.org/10.1080/03639040802516491.
  • [32] Sharma VK, Kalonia DS. Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state. AAPS PharmSciTech. 2004; 5(1):e10. https://doi.org/10.1208/pt050110.
  • [33] Altay Benetti A, Bianchera A, Buttini F, Bertocchi L, Bettini R. Mannitol polymorphs as carrier in dpıs formulations: Isolation characterization and performance. Pharmaceutics. 2021; 13(8): 1113-1134. https://doi.org/10.3390/pharmaceutics13081113.
  • [34] Yoshinari T, Forbes RT, York P, Kawashima Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int J Pharm. 2002;247(1-2):69-77. https://doi.org/10.1016/s0378-5173(02)00380-0.
  • [35] Al-Khattawi A, Mohammed AR. Compressed orally disintegrating tablets excipients evaluation and formulation strategies. Expert Opin Drug Deliv. 2013;10(5):651-663. https://doi.org/10.1517/17425247.2013.769955.
  • [36] Saffari M, Ebrahimi A, Langrish T. Highly-porous mannitol particle production using a new templating approach. Food Res. Int. 2015; 67: 44–51. https://doi.org/10.1016/j.foodres.2014.10.030.
  • [37] Jiang N, Wang Scheng Z, Liu W. In vitro and in vivo evaluation of porous lactose/mannitol carriers for solubility enhancement of poorly water-soluble drugs. Dry. Technol. 2020; 38(7): 889–902. https://doi.org/10.1080/07373937.2019.1596948.
  • [38] Karehill PG, Glazer M, Nyström C. Studies on direct compression of tablets. XXIII. The importance of surface roughness for the compactability of some directly compressible materials with different bonding and volume reduction properties. Int J Pharm. 1990; 64(1): 35-43. https://doi.org/10.1016/0378-5173(90)90176-5
  • [39] Riepma KA, Lerk CF, de Boer AH, Bolhuis GK, Kussendrager KD. Consolidation and compaction of powder mixtures. I. Binary mixtures of same particle size fractions of different types of crystalline lactose. Int J Pharm. 1990; 66(1-3): 47-52. https://doi.org/10.1016/0378-5173(90)90383-F.

Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile

Year 2025, Volume: 29 Issue: 5, 2023 - 2034, 01.09.2025
https://doi.org/10.12991/jrespharm.1766172

Abstract

Recent studies have focused on improving the dissolution profile of drugs classified as Biopharmaceutical Classification System (BCS) Class II by utilizing porous particles. Porous particles such as mesoporous mannitol have demonstrated efficacy in improving the dissolution profile of BCS Class II drugs. The current study aims to enhance the dissolution profile of glibenclamide, characterized by low solubility in water (4 mg/L), using the co-crystallization method facilitated by porous particles of mesoporous mannitol. Mesoporous mannitol is prepared from 15% w/v D-mannitol with 2% w/v citric acid, which is then dried using a spray dryer with an inlet temperature of 170° C and outlet temperature of 100° C, respectively. Furthermore, the glibenclamide drug is loaded into mesoporous mannitol using an adsorption method. The study produced mesoporous mannitol with a surface area of 1.944 ± 0.43 m2/g, pore volume of 8.233 x 10-3 ± 0.31 cc/g, and pore size of 162.9 ± 5.66 Å, much higher than D-mannitol. Moreover, the results of co-crystallization of pure glibenclamide with mesoporous mannitol have succeeded in enhancing the dissolution profile by 5.6 times compared to pure glibenclamide and have resulted in changes in the shape of the crystal structure of polymorphous α and β, which occurs due to hydrogen bonding between glibenclamide and mesoporous mannitol.

References

  • [1] Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020; 10(1): 107-111. https://doi.org/10.2991/jegh.k.191028.001.
  • [2] Yan T, Wu T, Zhang M, Li C, Liu Q, Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health. 2022;22(1):1382. https://doi.org/10.1186/s12889-022- 13759-9.
  • [3] Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko E, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.
  • [4] Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275.
  • [5] Frederico MJS, Castro AJG, Menegaz D, Murat CB, Mendes CP, Mascarello A, Nunes RJ, Silva FRMB. Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Curr Drug Targets. 2017;18(6):641-650. https://doi.org/10.2174/1389450117666160615084752
  • [6] Sola D, Rossi L, Schianca GP, Maffioli P, Bigliocca M, Mella R, Corlianò F, Fra GP, Bartoli E, Derosa G. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840-848. https://doi.org/10.5114/aoms.2015.53304.
  • [7] Dannenfelser R, Yalkowsky SH. Database for aqueous solubility of nonelectrolytes. Comput Appl Biosci. 1989;5(3):235-236. https://doi.org/10.1093/bioinformatics/5.3.235.
  • [8] Budiman A, Megantara S, Apriliani A. Solid dosage form development of glibenclamide-aspartame cocrystal using the solvent evaporation method to ıncrease the solubility of glibenclamide. Int J Appl Pharm. 2019; 11(3): 150–154. http://dx.doi.org/10.22159/ijap.2019v11i3.32121.
  • [9] Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014; 9(6): 304–316. https://doi.org/10.1016/j.ajps.2014.05.005.
  • [10] Niazi SK. Handbook of Pharmaceutical Manufacturing Formulations, Third Edition: Volume Three, Liquid Products (3rd ed.). CRC Press, Boca Raton, 2019. https://doi.org/10.1201/9781315102917.
  • [11] Cirri M, Righi MF, Maestrelli F, Mura P, Valleri M. Development of glyburide fast-dissolving tablets based on the combined use of cyclodextrins and polymers. Drug Dev Ind Pharm. 2009;35(1):73-82. https://doi.org/10.1080/03639040802192798.
  • [12] Bachhav YG, Patravale VB. SMEDDS of glyburide: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech. 2009; 10(2): 482–487. https://doi.org/10.1208/s12249-009-9234-1.
  • [13] Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010; 67(3): 283–290.
  • [14] Azhar SBL, Hamishehkar H. The ımpact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharm Bull. 2016; 6(2): 143–151. https://doi.org/10.15171/apb.2016.021.
  • [15] Gonçalves LM, Maestrelli F, Di Cesare Mannelli L, Ghelardini C, Almeida AJ, Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm. 2016;102:41- 50. https://doi.org/10.1016/j.ejpb.2016.02.012.
  • [16] Sterren VB, Zoppi A, Abraham-Miranda J, Longhi MR. Enhanced dissolution profiles of glibenclamide with amino acids using a cogrinding method. Mater Today Commun. 2021; 26: 102126-102134. https://doi.org/10.1016/j.mtcomm.2021.102126.
  • [17] Maritim S, Boulas P, Lin Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm. 2021; 592: 120051. https://doi.org/10.1016/j.ijpharm.2020.120051.
  • [18] Ebrahimi A, Saffari M, Langrish T. Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier. Int J Pharm. 2017; 521(1–2): 204–213. https://doi.org/10.1016/j.ijpharm.2017.02.052.
  • [19] Al-Khattawi A, Koner J, Rue P, Kirby D, Perrie Y, Rajabi-Siahboomi A, Mohammed AR. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. Eur J Pharm Biopharm. 2015;94:1-10. https://doi.org/10.1016/j.ejpb.2015.04.011.
  • [20] Saffari M, Ebrahimi A, Langrish T. Nano-confinement of acetaminophen into porous mannitol through adsorption method. Microporous Mesoporous Mater. 2016; 227: 95–103. https://doi.org/10.1016/j.micromeso.2016.02.047.
  • [21] Andriayani A, Telambanua CI, Nainggolan H. Effect of Addition of Oleic Acid as a Template with Tetraethylorthosilicate (TEOS) as Source of Silica on Porosity Mesoporous Silica Material. J Chem Nat Resour. 2023; 5(1): 62-68. https://doi.org/10.32734/jcnar.v5i1.11993.
  • [22] Pang JB, Qiu KY, Wei Y. Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol–gel process. J. Non-Cryst Solids. 2001; 283(1-3): 101–108. https://doi.org/10.1016/S0022-3093(01)00343-X.
  • [23] Kusumorini N, Nugroho AK, Pramono S, Martien R. Spray-dried self-nanoemulsifying drug delivery systems as carriers for the oral delivery of piperine: Characterization and in vitro evaluation. J Appl Pharm Sci. 2022; 12(9): 043–057. https://dx.doi.org/10.7324/JAPS.2022.120906.
  • [24] Kusumorini N, Adhyatmika A. Optimization of highly porous mannitol preparation using ammonium bicarbonate and citric acid as templating agents with spray drying technique. J Food Pharm Sci. 2023; 11(3): 927– 935. https://doi.org/10.22146/jfps.10062.
  • [25] Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J, Wu C, Pan X, Wu C. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation. Sci. Rep 2017; 7(1): 46517. https://doi.org/10.1038/srep46517.
  • [26] Saffari M, Ebrahimi A, Langrish T. Nano-confinement of acetaminophen into porous mannitol through adsorption method. Microporous Mesoporous Mater. 2016; 227: 95–103. https://doi.org/10.1016/j.micromeso.2016.02.047.
  • [27] Saffari M, Ebrahimi A, Langrish T. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. Eur J Pharm Sci. 2016;83:52-61. https://doi.org/10.1016/j.ejps.2015.12.016.
  • [28] Khan S, Madni A, Rahim MA, Shah H, Jabar A, Khan MM, Khan A, Jan N, Mahmood M. Enhanced in vitro release and permeability of glibenclamide by proliposomes: Development, characterization and histopathological evaluation. J Drug Deliv Sci Technol. 2021; 63: 102450-102461. https://doi.org/10.1016/j.jddst.2021.102450.
  • [29] Bruni G, Berbenni V, Milanese C, Girella A, Cofrancesco P, Bellazzi G, Marini A. Physico-chemical characterization of anhydrous D-mannitol. J Therm Anal Calorim. 2009; 95(3): 871–876. https://doi.org/10.1016/j.jddst.2021.102450.
  • [30] Pimpang P, Sumang R, Choopun S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Chiang Mai J Sci. 2018; 45(5): 2005–2014.
  • [31] Hulse WL, Forbes RT, Bonner MC, Getrost M. The characterization and comparison of spray-dried mannitol samples. Drug Dev Ind Pharm. 2009; 35(6): 712–718. https://doi.org/10.1080/03639040802516491.
  • [32] Sharma VK, Kalonia DS. Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state. AAPS PharmSciTech. 2004; 5(1):e10. https://doi.org/10.1208/pt050110.
  • [33] Altay Benetti A, Bianchera A, Buttini F, Bertocchi L, Bettini R. Mannitol polymorphs as carrier in dpıs formulations: Isolation characterization and performance. Pharmaceutics. 2021; 13(8): 1113-1134. https://doi.org/10.3390/pharmaceutics13081113.
  • [34] Yoshinari T, Forbes RT, York P, Kawashima Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int J Pharm. 2002;247(1-2):69-77. https://doi.org/10.1016/s0378-5173(02)00380-0.
  • [35] Al-Khattawi A, Mohammed AR. Compressed orally disintegrating tablets excipients evaluation and formulation strategies. Expert Opin Drug Deliv. 2013;10(5):651-663. https://doi.org/10.1517/17425247.2013.769955.
  • [36] Saffari M, Ebrahimi A, Langrish T. Highly-porous mannitol particle production using a new templating approach. Food Res. Int. 2015; 67: 44–51. https://doi.org/10.1016/j.foodres.2014.10.030.
  • [37] Jiang N, Wang Scheng Z, Liu W. In vitro and in vivo evaluation of porous lactose/mannitol carriers for solubility enhancement of poorly water-soluble drugs. Dry. Technol. 2020; 38(7): 889–902. https://doi.org/10.1080/07373937.2019.1596948.
  • [38] Karehill PG, Glazer M, Nyström C. Studies on direct compression of tablets. XXIII. The importance of surface roughness for the compactability of some directly compressible materials with different bonding and volume reduction properties. Int J Pharm. 1990; 64(1): 35-43. https://doi.org/10.1016/0378-5173(90)90176-5
  • [39] Riepma KA, Lerk CF, de Boer AH, Bolhuis GK, Kussendrager KD. Consolidation and compaction of powder mixtures. I. Binary mixtures of same particle size fractions of different types of crystalline lactose. Int J Pharm. 1990; 66(1-3): 47-52. https://doi.org/10.1016/0378-5173(90)90383-F.
There are 39 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Sukmarini Anugrahanti This is me 0009-0001-9661-4183

Nindya Kusumorini This is me 0000-0002-0273-6471

Adhyatmika Adhyatmika This is me 0000-0001-9440-7159

Publication Date September 1, 2025
Submission Date May 14, 2024
Acceptance Date September 12, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Anugrahanti, S., Kusumorini, N., & Adhyatmika, A. (2025). Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile. Journal of Research in Pharmacy, 29(5), 2023-2034. https://doi.org/10.12991/jrespharm.1766172
AMA Anugrahanti S, Kusumorini N, Adhyatmika A. Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile. J. Res. Pharm. September 2025;29(5):2023-2034. doi:10.12991/jrespharm.1766172
Chicago Anugrahanti, Sukmarini, Nindya Kusumorini, and Adhyatmika Adhyatmika. “Glibenclamide Co-Crystals: Development and Characterization Using D-Mannitol and Citric Acid As a Carrier to Improve Its Dissolution Profile”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 2023-34. https://doi.org/10.12991/jrespharm.1766172.
EndNote Anugrahanti S, Kusumorini N, Adhyatmika A (September 1, 2025) Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile. Journal of Research in Pharmacy 29 5 2023–2034.
IEEE S. Anugrahanti, N. Kusumorini, and A. Adhyatmika, “Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile”, J. Res. Pharm., vol. 29, no. 5, pp. 2023–2034, 2025, doi: 10.12991/jrespharm.1766172.
ISNAD Anugrahanti, Sukmarini et al. “Glibenclamide Co-Crystals: Development and Characterization Using D-Mannitol and Citric Acid As a Carrier to Improve Its Dissolution Profile”. Journal of Research in Pharmacy 29/5 (September2025), 2023-2034. https://doi.org/10.12991/jrespharm.1766172.
JAMA Anugrahanti S, Kusumorini N, Adhyatmika A. Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile. J. Res. Pharm. 2025;29:2023–2034.
MLA Anugrahanti, Sukmarini et al. “Glibenclamide Co-Crystals: Development and Characterization Using D-Mannitol and Citric Acid As a Carrier to Improve Its Dissolution Profile”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 2023-34, doi:10.12991/jrespharm.1766172.
Vancouver Anugrahanti S, Kusumorini N, Adhyatmika A. Glibenclamide co-crystals: Development and characterization using D-mannitol and citric acid as a carrier to improve its dissolution profile. J. Res. Pharm. 2025;29(5):2023-34.