Research Article
BibTex RIS Cite

The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion

Year 2025, Volume: 29 Issue: 5, 2045 - 2054, 01.09.2025
https://doi.org/10.12991/jrespharm.1766210

Abstract

The complexity of coronary artery disease (CAD) lesions significantly influences patient outcomes and determines the choice of treatment approaches. For that reason, several classifications were established to grade these lesions and predict clinical outcomes effectively, which led to the discovery of the SYNTAX scores. Growth differentiation factor-15 (GDF-15) is a transforming growth factor that showed to increase significantly in various pathological conditions, including cardiovascular disease. Fatty acid-binding protein (FABP), a protein involved in lipid metabolism, has been implicated as a potential biomarker for CAD. So, the current study aimed to assess the levels of FABP and GDF-15 in association with the SYNTAX score to predict lesion complexity in CAD in a prospective comparative study that was conducted on 120 patients with CAD categorized according to SYNTAX score into low, intermediate, and high scores who were subjected to an assessment of the demographic factors, lipid profile, FABP and GDF-15 and compared with each other with an assessment of the association of the measured markers with the SYNTAX score. The results of the present work showed that as the syntax score went up, the levels of FABP and GDF-15 went up significantly, and the ROC curve results showed that the levels of GDF-15 have excellent discrimination ability in differentiating between patients with a high syntax score and patients with a low score with a sensitivity and specificity of 92% and 98%, whereas FABP showed a good discrimination ability which leads to the conclusion that levels of FABP and GDF-15 may be used in association as a predictor for the complexity of coronary artery lesions in parallel with SYNTAX score.

References

  • [1] Yoon YH, Ahn JM, Kang DY, Park H, Cho SC, Lee PH, Lee SW, Park SW, Park DW, Park SJ. Impact of SYNTAX score on 10-year outcomes after revascularization for left main coronary artery disease. JACC Cardiovasc Interv. 2020;13(3):361-371. https://doi.org/10.1016/j.jcin.2019.10.020
  • [2] Salimi A, Zolghadrasli A, Jahangiri S, Hatamnejad MR, Bazrafshan M, Izadpanah P, Dehghani F, Askarinejad A, Salimi M, Bazrafshan Drissi H. The potential of HEART score to detect the severity of coronary artery disease according to SYNTAX score. Sci Rep. 2023;13(1):7228. https://doi.org/10.1038/s41598-023-34213-9
  • [3] Ninomiya K, Serruys PW, Garg S, Hara H, Masuda S, Kageyama S, Kotoku N, Sevestre E, Kumar A, O'Kane P, Zaman A. The utility of the SYNTAX score II and SYNTAX score 2020 for identifying patients with three-vessel disease eligible for percutaneous coronary intervention in the multivessel TALENT trial: a prospective pilot experience. Rev Cardiovasc Med. 2022;23(4):133. https://doi.org/10.31083/j.rcm2304133
  • [4] Askin L, Tanriverdi O. The clinical value of syntax scores in predicting coronary artery disease outcomes. Cardiovasc Innov App. 2022;6(4):197-208. https://doi.org/10.15212/CVIA.2022.0002
  • [5] Mohammed AA, Lin X, Sun R, Yu J. Correlation between Hypertension and SYNTAX Score in Patients with Chest Pain Admitted to Cardiology Department for Coronary Angiography. World J Cardiovasc Dis. 2021;11(04): 231-241. http://dx.doi.org/10.4236/wjcd.2021.114023
  • [6] Masuda S, Serruys PW, Kageyama S, Kotoku N, Ninomiya K, Garg S, Soo A, Morel MA, Puskas JD, Narula J, Schneider U, Doenst T, Tanaka K, de Mey J, La Meir M, Bartorelli AL, Mushtaq S, Pompilio G, Andreini D, Onuma Y. Treatment recommendation based on SYNTAX score 2020 derived from coronary computed tomography angiography and invasive coronary angiography. Int J Cardiovasc Imaging. 2023;39(9):1795-1804. https://doi.org/10.1007/s10554-023-02884-0
  • [7] Li M, Duan L, Cai YL, Li HY, Hao BC, Chen JQ, Liu HB. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol. 2020;19(1):120. https://doi.org/10.1186%2Fs12933-020-01092-7
  • [8] Arkoumani M, Papadopoulou-Marketou N, Nicolaides NC, Kanaka-Gantenbein C, Tentolouris N, Papassotiriou I. The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Crit Rev Clin Lab Sci. 2020;57(2):114-125. https://doi.org/10.1080/10408363.2019.1678565
  • [9] Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc. 2019;8(17):e012826. https://doi.org/10.1161/jaha.119.012826
  • [10] Zhang S, Hao P, Li J, Zhang Q, Yin X, Wang J, Chen Y. Prognostic value of growth differentiation factor-15 in patients with coronary artery disease: A meta-analysis and systematic review. Front Cardiovasc Med. 2023;10:1054187. https://doi.org/10.3389%2Ffcvm.2023.1054187
  • [11] di Candia AM, de Avila DX, Moreira GR, Villacorta H, Maisel AS. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. Am Heart J Plus. 2021;9:100046. https://doi.org/10.1016/j.ahjo.2021.100046
  • [12] Wang W, Song XT, Chen YD, Yuan F, Xu F, Zhang M, Tan K, Yang XS, Yu XP, Cui KY, Lyu SZ. Growth differentiation factor-15 is a prognostic marker in patients with intermediate coronary artery disease. J Geriatr Cardiol. 2020;17(4):210-216. https://doi.org/10.11909%2Fj.issn.1671-5411.2020.04.004
  • [13] Salam S, Al-Dujaili AN. Growth differentiation factor-15 level in ischemic heart disease patients. AIP Conf Proc. 2022; 2547 (1): 020039. https://doi.org/10.1063/5.0112116
  • [14] Wang J, Han LN, Ai DS, Wang XY, Zhang WJ, Xu XR, Liu HB, Zhang J, Wang P, Li X, Chen ML. Growth differentiation factor 15 predicts cardiovascular events in stable coronary artery disease. J Geriatr Cardiol. 2023;20(7):527-537. https://doi.org/10.26599%2F1671-5411.2023.07.007
  • [15] Ikeno F, Brooks MM, Nakagawa K, Kim M-K, Kaneda H, Mitsutake Y, Vlachos HA, Schwartz L, Frye RL, Kelsey SF. SYNTAX score and long-term outcomes: the BARI-2D trial. J Am Coll Cardiol. 2017;69(4):395-403. http://dx.doi.org/10.1016/j.jacc.2016.10.067
  • [16] El Kersh AM, Reda AA, El Hadad MG, El-Sharnouby KH. Correlation between SYNTAX score and pattern of risk factors in patients referred for coronary angiography in Cardiology Department, Menoufia University. World J Cardiovasc Dis. 2018;8(8):431-439. https://doi.org/10.4236/wjcd.2018.88042.
  • [17] Eickhoff M, Schüpke S, Khandoga A, Fabian J, Baquet M, Jochheim D, Grundmann D, Thienel M, Bauer A, Theiss H, Brunner S, Hausleiter J, Massberg S, Mehilli J. Age-dependent impact of the SYNTAX-score on longer-term mortality after percutaneous coronary intervention in an all-comer population. J Geriatr Cardiol. 2018;15(9):559-566. https://doi.org/10.11909%2Fj.issn.1671-5411.2018.09.009.
  • [18] Ritter A, Lötterle L, Han J, Kalbitz M, Henrich D, Marzi I, Leppik L, Weber B. Evaluation of new cardiac damage biomarkers in polytrauma: GDF-15, HFABP and uPAR for predicting patient outcomes. J Clin Med. 2024;13(4):961. https://doi.org/10.3390/jcm13040961
  • [19] Huang J, Chen G, Zhang Q, Wang Y, Meng Q, Xu F, Zhang X, Zou W, Mi F, Yin J. Correlation between adipocyte fatty acid binding protein and glucose dysregulation is closely associated with obesity and metabolic syndrome: A cohort of Han Chinese population from Yunnan plateau. Lipids. 2022;57(4-5):257-264. https://doi.org/10.1002/lipd.12353
  • [20] Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The biological functions and regulatory mechanisms of fatty acid binding protein 5 in various diseases. Front Cell Dev Biol. 2022;10:857919. https://doi.org/10.3389/fcell.2022.857919
  • [21] Morvaridzadeh M, Zoubdane N, Heshmati J, Alami M, Berrougui H, Khalil A. High-density lipoprotein metabolism and function in cardiovascular diseases: What about aging and diet effects? Nutrients. 2024;16(5):653. https://doi.org/10.3390/nu16050653
  • [22] Kotlyarov S. High-density lipoproteins: A role in ınflammation in COPD. Int J Mol Sci. 2022;23(15):8128. https://doi.org/10.3390%2Fijms23158128
  • [23] Hao Y, Yang YL, Wang YC, Li J. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int Heart J. 2022;63(4):669- 677. https://doi.org/10.1536/ihj.22-052
  • [24] Karagiannidis E, Sofidis G, Papazoglou AS, Deda O, Panteris E, Moysidis DV, Stalikas N, Kartas A, Papadopoulos A, Stefanopoulos L, Karvounis H, Gika H, Theodoridis G, Sianos G. Correlation of the severity of coronary artery disease with patients' metabolic profile- rationale, design and baseline patient characteristics of the CorLipid trial. BMC Cardiovasc Disord. 2021;21(1):79. https://doi.org/10.1186%2Fs12872-021-01865-2
  • [25] Banach M, Surma S, Toth PP, endorsed by the International Lipid Expert Panel (ILEP). 2023: The year in cardiovascular disease - the year of new and prospective lipid lowering therapies. Can we render dyslipidemia a rare disease by 2024? Arch Med Sci. 2023;19(6):1602-1615. https://doi.org/10.5114/aoms/174743
  • [26] Mittas N, Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Theodoroula NF, Papazoglou AS, Karagiannidis E, Sofidis G, Moysidis DV, Stalikas N, Papa A, Chatzidimitriou D, Sianos G, Angelis L, Vizirianakis IS. A risk- stratification machine learning framework for the prediction of coronary artery disease severity: Insights from the GESS Trial. Front Cardiovasc Med. 2022;8:812182. https://doi.org/10.3389%2Ffcvm.2021.812182
  • [27] Pahlavanzade B, Zayeri F, Baghfalaki T, Mozafari O, Khalili D, Azizi F, Abadi A. Association of lipid markers with coronary heart disease and stroke mortality: A 15-year follow-up study. Iran J Basic Med Sci. 2019;22(11):1325-1330. https://doi.org/10.22038%2Fijbms.2019.35617.8775
  • [28] Mayavani K, Suparyatmo JB, Ariningrum D. The correlation between serum growth differentiation factor-15 levels and post-acute myocardial infarction acute heart failure. Indones J Clin Pathol Med Lab. 2020; 26(3): 312–316. https://doi.org/10.24293/ijcpml.v26i3.1555
  • [29] Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc. 2019;8(17):e012826. https://doi.org/10.1161/jaha.119.012826
  • [30] May BM, Pimentel M, Zimerman LI, Rohde LE. GDF-15 as a biomarker in cardiovascular disease. Arq Bras Cardiol. 2021;116:494-500. https://doi.org/10.36660/abc.20200426
  • [31] Pál K, Mănescu IB, Lupu S, Dobreanu M. Emerging biomarkers for predicting clinical outcomes in patients with heart disease. Life (Basel). 2023;13(1):230. https://doi.org/10.3390%2Flife13010230
  • [32] Nar G, Cetin SS, Nar R, Kilic O, Furkan OM, Gunver G, Ilyas SC. Is serum fibroblast growth factor 21 associated with the severity or presence of coronary artery disease? J Med Biochem. 2022;41(2):162-167. https://doi.org/10.5937%2Fjomb0-30191
  • [33] Küçük U, Altun B, Türkön H. The relationship between cardiac fatty acid binding protein and acute coronary syndrome risk scores. Online Turk J Health Sci.2020;5(1):165-175. https://doi.org/10.26453/otjhs.566720.
  • [34] Zhang HW, Jin JL, Cao YX, Liu HH, Zhang Y, Guo YL, Wu NQ, Zhu CG, Gao Y, Xu RX, Hua Q, Li YF, Cui CJ, Liu G, Dong Q, Sun J, Li JJ. Heart-type fatty acid binding protein predicts cardiovascular events in patients with stable coronary artery disease: a prospective cohort study. Ann Transl Med. 2020;8(21):1349. https://doi.org/10.21037%2Fatm-20-2493
  • [35] Li T, Chen Y, Ye T, Zheng L, Chen L, Fan Y, Lin B. Association of growth differentiation factor-15 level with adverse outcomes in patients with stable coronary artery disease: A meta-analysis. Atheroscler Plus. 2021;47:1-7. https://doi.org/10.1016%2Fj.athplu.2021.11.003.
  • [36] Zeren G, Erer HB, Kırış T, Sahin O, Aksu H, Köprülü D, Güvenç TS, Erdoğan G, Sayar N, Günaydın ZY, Eren M. ST segment yükselmesiz akut koroner sendromlu hastalarda kalp tipi yağ asidi bağlayıcı proteinin koroner arter hastalığının yaygınlık ve ciddiyeti ile ilişkisi [Relation of heart-type fatty acid-binding protein with the degree and extent of atherosclerosis in patients with non-ST elevation acute coronary syndrome]. Turk Kardiyol Dern Ars. 2013;41(7):610-6. https://doi.org/10.5543/tkda.2013.26974
  • [37] Güneş E, Nihat ME, Yuksel KA, Günbatar N, Handan ME. Changes in heart type fatty acid binding protein (H- Fabp) and certain biochemical parameters during chronic artery diseases. J Sci Rep-A. 2023;53:1471-1460. https://doi.org/10.59313/jsr-a.1225171
  • [38] Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M. Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: What do we know so far? J Clin Med. 2020;9(1):164. https://doi.org/10.3390%2Fjcm9010164
  • [39] Jalilian N, Pakzad R, Shahbazi M, Edrisi SR, Haghani K, Jalilian M, Bakhtiyari S. Circulating FABP-4 levels in patients with atherosclerosis or coronary artery disease: A comprehensive systematic review and meta-analysis. Cardiovasc Ther. 2023;2023:1092263. https://doi.org/10.1155/2023/1092263
  • [40] Moon MG, Yoon CH, Lee K, Kang SH, Youn TJ, Chae IH. Evaluation of heart-type fatty acid-binding protein in early diagnosis of acute myocardial ınfarction. J Korean Med Sci. 2021;36(8):e61. https://doi.org/10.3346/jkms.2021.36.e61
  • [41] Boutari C, Stefanakis K, Simati S, Guatibonza-García V, Valenzuela-Vallejo L, Anastasiou IA, Connelly MA, Kokkinos A, Mantzoros CS. Circulating total and H-specific GDF15 levels are elevated in subjects with MASLD but not in hyperlipidemic but otherwise metabolically healthy subjects with obesity. Cardiovasc Diabetol. 2024;23(1):174. https://doi.org/10.1186/s12933-024-02264-5
  • [42] Chrysafi P, Valenzuela-Vallejo L, Stefanakis K, Kelesidis T, Connelly MA, Mantzoros CS. Total and H-specific GDF- 15 levels increase in caloric deprivation independently of leptin in humans. Nat Commun. 2024;15(1):5190. https://doi.org/10.1038/s41467-024-49366-y
  • [43] Schwarz A, Kinscherf R, Bonaterra GA. Role of the stress- and ınflammation-ınduced cytokine GDF-15 in cardiovascular diseases: From basic research to clinical relevance. Rev Cardiovasc Med. 2023;24(3):81. https://doi.org/10.31083/j.rcm2403081
  • [44] Ozdemir E, Stavileci B, Ozdemir B, Aksoy FA, Kahraman S, Colakoglu Gevher CZ, Ziyrek M, Dogan A. The association between growth differentiation factor 15 and presence and severity of coronary atherosclerosis. Adv Med Sci. 2024;69(1):56-60. https://doi.org/10.1016/j.advms.2024.02.003
  • [45] Sirtori CR, Corsini A, Ruscica M. The Role of High-Density Lipoprotein Cholesterol in 2022. Curr Atheroscler Rep. 2022;24(5):365-377. https://doi.org/10.1007/s11883-022-01012-y
  • [46] Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. Unveiling familial hypercholesterolemia-review, cardiovascular complications, lipid-lowering treatment and ıts efficacy. Int J Mol Sci. 2024;25(3):1637. https://doi.org/10.3390/ijms25031637
  • [47] Mahdy Ali K, Wonnerth A, Huber K, Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol-- current therapies and future opportunities. Br J Pharmacol. 2012;167(6):1177-1194. https://doi.org/10.1111%2Fj.1476-5381.2012.02081.x
  • [48] Xu M, Chen H, Li HW. The association between SYNTAX score and long-term outcomes in patients with unstable angina pectoris: a single-centre retrospective study. BMC Cardiovasc Disord. 2022;22(1):155. https://doi.org/10.1186/s12872-022-02604-x
  • [49] Toth PP, Fazio S, Wong ND, Hull M, Nichols GA. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab. 2020;22(3):279-289. https://doi.org/10.1111%2Fdom.13921
  • [50] Wang L, Chen F, Xiaoqi C, Yujun C, Zijie L. Atherogenic index of plasma is an independent risk factor for coronary artery disease and a higher SYNTAX score. Angiology. 2021;72(2):181-186. https://doi.org/10.1177/0003319720949804
  • [51] Rämö JT, Ripatti P, Tabassum R, Söderlund S, Matikainen N, Gerl MJ, Klose C, Surma MA, Stitziel NO, Havulinna AS, Pirinen M, Salomaa V, Freimer NB, Jauhiainen M, Palotie A, Taskinen MR, Simons K, Ripatti S. Coronary artery disease risk and lipidomic profiles are similar in hyperlipidemias with family history and population-ascertained hyperlipidemias. J Am Heart Assoc. 2019;8(13):e012415. https://doi.org/10.1161%2FJAHA.119.012415
  • [52] Dugani SB, Moorthy MV, Li C, Demler OV, Alsheikh-Ali AA, Ridker PM, Glynn RJ, Mora S. Association of lipid, ınflammatory, and metabolic biomarkers with age at onset for ıncident coronary heart disease in women. JAMA Cardiol. 2021;6(4):437-447. https://doi.org/10.1001/jamacardio.2020.7073
  • [53] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of Urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1597-1600. http://dx.doi.org/10.5958/0974- 360X.2021.00283.3.
  • [54] Abdulhussein HA, Alwasiti EA, Khiro NK, Nile AK. The potential impact of vascular endothelial growth factor rs699947 polymorphisms on breast tumors susceptibility in a sample of Iraqi females. Acta Pharm Sci. 2024;62(2):268-277. http://dx.doi.org/10.23893/1307.APS6217.

Year 2025, Volume: 29 Issue: 5, 2045 - 2054, 01.09.2025
https://doi.org/10.12991/jrespharm.1766210

Abstract

References

  • [1] Yoon YH, Ahn JM, Kang DY, Park H, Cho SC, Lee PH, Lee SW, Park SW, Park DW, Park SJ. Impact of SYNTAX score on 10-year outcomes after revascularization for left main coronary artery disease. JACC Cardiovasc Interv. 2020;13(3):361-371. https://doi.org/10.1016/j.jcin.2019.10.020
  • [2] Salimi A, Zolghadrasli A, Jahangiri S, Hatamnejad MR, Bazrafshan M, Izadpanah P, Dehghani F, Askarinejad A, Salimi M, Bazrafshan Drissi H. The potential of HEART score to detect the severity of coronary artery disease according to SYNTAX score. Sci Rep. 2023;13(1):7228. https://doi.org/10.1038/s41598-023-34213-9
  • [3] Ninomiya K, Serruys PW, Garg S, Hara H, Masuda S, Kageyama S, Kotoku N, Sevestre E, Kumar A, O'Kane P, Zaman A. The utility of the SYNTAX score II and SYNTAX score 2020 for identifying patients with three-vessel disease eligible for percutaneous coronary intervention in the multivessel TALENT trial: a prospective pilot experience. Rev Cardiovasc Med. 2022;23(4):133. https://doi.org/10.31083/j.rcm2304133
  • [4] Askin L, Tanriverdi O. The clinical value of syntax scores in predicting coronary artery disease outcomes. Cardiovasc Innov App. 2022;6(4):197-208. https://doi.org/10.15212/CVIA.2022.0002
  • [5] Mohammed AA, Lin X, Sun R, Yu J. Correlation between Hypertension and SYNTAX Score in Patients with Chest Pain Admitted to Cardiology Department for Coronary Angiography. World J Cardiovasc Dis. 2021;11(04): 231-241. http://dx.doi.org/10.4236/wjcd.2021.114023
  • [6] Masuda S, Serruys PW, Kageyama S, Kotoku N, Ninomiya K, Garg S, Soo A, Morel MA, Puskas JD, Narula J, Schneider U, Doenst T, Tanaka K, de Mey J, La Meir M, Bartorelli AL, Mushtaq S, Pompilio G, Andreini D, Onuma Y. Treatment recommendation based on SYNTAX score 2020 derived from coronary computed tomography angiography and invasive coronary angiography. Int J Cardiovasc Imaging. 2023;39(9):1795-1804. https://doi.org/10.1007/s10554-023-02884-0
  • [7] Li M, Duan L, Cai YL, Li HY, Hao BC, Chen JQ, Liu HB. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol. 2020;19(1):120. https://doi.org/10.1186%2Fs12933-020-01092-7
  • [8] Arkoumani M, Papadopoulou-Marketou N, Nicolaides NC, Kanaka-Gantenbein C, Tentolouris N, Papassotiriou I. The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Crit Rev Clin Lab Sci. 2020;57(2):114-125. https://doi.org/10.1080/10408363.2019.1678565
  • [9] Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc. 2019;8(17):e012826. https://doi.org/10.1161/jaha.119.012826
  • [10] Zhang S, Hao P, Li J, Zhang Q, Yin X, Wang J, Chen Y. Prognostic value of growth differentiation factor-15 in patients with coronary artery disease: A meta-analysis and systematic review. Front Cardiovasc Med. 2023;10:1054187. https://doi.org/10.3389%2Ffcvm.2023.1054187
  • [11] di Candia AM, de Avila DX, Moreira GR, Villacorta H, Maisel AS. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. Am Heart J Plus. 2021;9:100046. https://doi.org/10.1016/j.ahjo.2021.100046
  • [12] Wang W, Song XT, Chen YD, Yuan F, Xu F, Zhang M, Tan K, Yang XS, Yu XP, Cui KY, Lyu SZ. Growth differentiation factor-15 is a prognostic marker in patients with intermediate coronary artery disease. J Geriatr Cardiol. 2020;17(4):210-216. https://doi.org/10.11909%2Fj.issn.1671-5411.2020.04.004
  • [13] Salam S, Al-Dujaili AN. Growth differentiation factor-15 level in ischemic heart disease patients. AIP Conf Proc. 2022; 2547 (1): 020039. https://doi.org/10.1063/5.0112116
  • [14] Wang J, Han LN, Ai DS, Wang XY, Zhang WJ, Xu XR, Liu HB, Zhang J, Wang P, Li X, Chen ML. Growth differentiation factor 15 predicts cardiovascular events in stable coronary artery disease. J Geriatr Cardiol. 2023;20(7):527-537. https://doi.org/10.26599%2F1671-5411.2023.07.007
  • [15] Ikeno F, Brooks MM, Nakagawa K, Kim M-K, Kaneda H, Mitsutake Y, Vlachos HA, Schwartz L, Frye RL, Kelsey SF. SYNTAX score and long-term outcomes: the BARI-2D trial. J Am Coll Cardiol. 2017;69(4):395-403. http://dx.doi.org/10.1016/j.jacc.2016.10.067
  • [16] El Kersh AM, Reda AA, El Hadad MG, El-Sharnouby KH. Correlation between SYNTAX score and pattern of risk factors in patients referred for coronary angiography in Cardiology Department, Menoufia University. World J Cardiovasc Dis. 2018;8(8):431-439. https://doi.org/10.4236/wjcd.2018.88042.
  • [17] Eickhoff M, Schüpke S, Khandoga A, Fabian J, Baquet M, Jochheim D, Grundmann D, Thienel M, Bauer A, Theiss H, Brunner S, Hausleiter J, Massberg S, Mehilli J. Age-dependent impact of the SYNTAX-score on longer-term mortality after percutaneous coronary intervention in an all-comer population. J Geriatr Cardiol. 2018;15(9):559-566. https://doi.org/10.11909%2Fj.issn.1671-5411.2018.09.009.
  • [18] Ritter A, Lötterle L, Han J, Kalbitz M, Henrich D, Marzi I, Leppik L, Weber B. Evaluation of new cardiac damage biomarkers in polytrauma: GDF-15, HFABP and uPAR for predicting patient outcomes. J Clin Med. 2024;13(4):961. https://doi.org/10.3390/jcm13040961
  • [19] Huang J, Chen G, Zhang Q, Wang Y, Meng Q, Xu F, Zhang X, Zou W, Mi F, Yin J. Correlation between adipocyte fatty acid binding protein and glucose dysregulation is closely associated with obesity and metabolic syndrome: A cohort of Han Chinese population from Yunnan plateau. Lipids. 2022;57(4-5):257-264. https://doi.org/10.1002/lipd.12353
  • [20] Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The biological functions and regulatory mechanisms of fatty acid binding protein 5 in various diseases. Front Cell Dev Biol. 2022;10:857919. https://doi.org/10.3389/fcell.2022.857919
  • [21] Morvaridzadeh M, Zoubdane N, Heshmati J, Alami M, Berrougui H, Khalil A. High-density lipoprotein metabolism and function in cardiovascular diseases: What about aging and diet effects? Nutrients. 2024;16(5):653. https://doi.org/10.3390/nu16050653
  • [22] Kotlyarov S. High-density lipoproteins: A role in ınflammation in COPD. Int J Mol Sci. 2022;23(15):8128. https://doi.org/10.3390%2Fijms23158128
  • [23] Hao Y, Yang YL, Wang YC, Li J. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome. Int Heart J. 2022;63(4):669- 677. https://doi.org/10.1536/ihj.22-052
  • [24] Karagiannidis E, Sofidis G, Papazoglou AS, Deda O, Panteris E, Moysidis DV, Stalikas N, Kartas A, Papadopoulos A, Stefanopoulos L, Karvounis H, Gika H, Theodoridis G, Sianos G. Correlation of the severity of coronary artery disease with patients' metabolic profile- rationale, design and baseline patient characteristics of the CorLipid trial. BMC Cardiovasc Disord. 2021;21(1):79. https://doi.org/10.1186%2Fs12872-021-01865-2
  • [25] Banach M, Surma S, Toth PP, endorsed by the International Lipid Expert Panel (ILEP). 2023: The year in cardiovascular disease - the year of new and prospective lipid lowering therapies. Can we render dyslipidemia a rare disease by 2024? Arch Med Sci. 2023;19(6):1602-1615. https://doi.org/10.5114/aoms/174743
  • [26] Mittas N, Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Theodoroula NF, Papazoglou AS, Karagiannidis E, Sofidis G, Moysidis DV, Stalikas N, Papa A, Chatzidimitriou D, Sianos G, Angelis L, Vizirianakis IS. A risk- stratification machine learning framework for the prediction of coronary artery disease severity: Insights from the GESS Trial. Front Cardiovasc Med. 2022;8:812182. https://doi.org/10.3389%2Ffcvm.2021.812182
  • [27] Pahlavanzade B, Zayeri F, Baghfalaki T, Mozafari O, Khalili D, Azizi F, Abadi A. Association of lipid markers with coronary heart disease and stroke mortality: A 15-year follow-up study. Iran J Basic Med Sci. 2019;22(11):1325-1330. https://doi.org/10.22038%2Fijbms.2019.35617.8775
  • [28] Mayavani K, Suparyatmo JB, Ariningrum D. The correlation between serum growth differentiation factor-15 levels and post-acute myocardial infarction acute heart failure. Indones J Clin Pathol Med Lab. 2020; 26(3): 312–316. https://doi.org/10.24293/ijcpml.v26i3.1555
  • [29] Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc. 2019;8(17):e012826. https://doi.org/10.1161/jaha.119.012826
  • [30] May BM, Pimentel M, Zimerman LI, Rohde LE. GDF-15 as a biomarker in cardiovascular disease. Arq Bras Cardiol. 2021;116:494-500. https://doi.org/10.36660/abc.20200426
  • [31] Pál K, Mănescu IB, Lupu S, Dobreanu M. Emerging biomarkers for predicting clinical outcomes in patients with heart disease. Life (Basel). 2023;13(1):230. https://doi.org/10.3390%2Flife13010230
  • [32] Nar G, Cetin SS, Nar R, Kilic O, Furkan OM, Gunver G, Ilyas SC. Is serum fibroblast growth factor 21 associated with the severity or presence of coronary artery disease? J Med Biochem. 2022;41(2):162-167. https://doi.org/10.5937%2Fjomb0-30191
  • [33] Küçük U, Altun B, Türkön H. The relationship between cardiac fatty acid binding protein and acute coronary syndrome risk scores. Online Turk J Health Sci.2020;5(1):165-175. https://doi.org/10.26453/otjhs.566720.
  • [34] Zhang HW, Jin JL, Cao YX, Liu HH, Zhang Y, Guo YL, Wu NQ, Zhu CG, Gao Y, Xu RX, Hua Q, Li YF, Cui CJ, Liu G, Dong Q, Sun J, Li JJ. Heart-type fatty acid binding protein predicts cardiovascular events in patients with stable coronary artery disease: a prospective cohort study. Ann Transl Med. 2020;8(21):1349. https://doi.org/10.21037%2Fatm-20-2493
  • [35] Li T, Chen Y, Ye T, Zheng L, Chen L, Fan Y, Lin B. Association of growth differentiation factor-15 level with adverse outcomes in patients with stable coronary artery disease: A meta-analysis. Atheroscler Plus. 2021;47:1-7. https://doi.org/10.1016%2Fj.athplu.2021.11.003.
  • [36] Zeren G, Erer HB, Kırış T, Sahin O, Aksu H, Köprülü D, Güvenç TS, Erdoğan G, Sayar N, Günaydın ZY, Eren M. ST segment yükselmesiz akut koroner sendromlu hastalarda kalp tipi yağ asidi bağlayıcı proteinin koroner arter hastalığının yaygınlık ve ciddiyeti ile ilişkisi [Relation of heart-type fatty acid-binding protein with the degree and extent of atherosclerosis in patients with non-ST elevation acute coronary syndrome]. Turk Kardiyol Dern Ars. 2013;41(7):610-6. https://doi.org/10.5543/tkda.2013.26974
  • [37] Güneş E, Nihat ME, Yuksel KA, Günbatar N, Handan ME. Changes in heart type fatty acid binding protein (H- Fabp) and certain biochemical parameters during chronic artery diseases. J Sci Rep-A. 2023;53:1471-1460. https://doi.org/10.59313/jsr-a.1225171
  • [38] Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M. Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: What do we know so far? J Clin Med. 2020;9(1):164. https://doi.org/10.3390%2Fjcm9010164
  • [39] Jalilian N, Pakzad R, Shahbazi M, Edrisi SR, Haghani K, Jalilian M, Bakhtiyari S. Circulating FABP-4 levels in patients with atherosclerosis or coronary artery disease: A comprehensive systematic review and meta-analysis. Cardiovasc Ther. 2023;2023:1092263. https://doi.org/10.1155/2023/1092263
  • [40] Moon MG, Yoon CH, Lee K, Kang SH, Youn TJ, Chae IH. Evaluation of heart-type fatty acid-binding protein in early diagnosis of acute myocardial ınfarction. J Korean Med Sci. 2021;36(8):e61. https://doi.org/10.3346/jkms.2021.36.e61
  • [41] Boutari C, Stefanakis K, Simati S, Guatibonza-García V, Valenzuela-Vallejo L, Anastasiou IA, Connelly MA, Kokkinos A, Mantzoros CS. Circulating total and H-specific GDF15 levels are elevated in subjects with MASLD but not in hyperlipidemic but otherwise metabolically healthy subjects with obesity. Cardiovasc Diabetol. 2024;23(1):174. https://doi.org/10.1186/s12933-024-02264-5
  • [42] Chrysafi P, Valenzuela-Vallejo L, Stefanakis K, Kelesidis T, Connelly MA, Mantzoros CS. Total and H-specific GDF- 15 levels increase in caloric deprivation independently of leptin in humans. Nat Commun. 2024;15(1):5190. https://doi.org/10.1038/s41467-024-49366-y
  • [43] Schwarz A, Kinscherf R, Bonaterra GA. Role of the stress- and ınflammation-ınduced cytokine GDF-15 in cardiovascular diseases: From basic research to clinical relevance. Rev Cardiovasc Med. 2023;24(3):81. https://doi.org/10.31083/j.rcm2403081
  • [44] Ozdemir E, Stavileci B, Ozdemir B, Aksoy FA, Kahraman S, Colakoglu Gevher CZ, Ziyrek M, Dogan A. The association between growth differentiation factor 15 and presence and severity of coronary atherosclerosis. Adv Med Sci. 2024;69(1):56-60. https://doi.org/10.1016/j.advms.2024.02.003
  • [45] Sirtori CR, Corsini A, Ruscica M. The Role of High-Density Lipoprotein Cholesterol in 2022. Curr Atheroscler Rep. 2022;24(5):365-377. https://doi.org/10.1007/s11883-022-01012-y
  • [46] Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. Unveiling familial hypercholesterolemia-review, cardiovascular complications, lipid-lowering treatment and ıts efficacy. Int J Mol Sci. 2024;25(3):1637. https://doi.org/10.3390/ijms25031637
  • [47] Mahdy Ali K, Wonnerth A, Huber K, Wojta J. Cardiovascular disease risk reduction by raising HDL cholesterol-- current therapies and future opportunities. Br J Pharmacol. 2012;167(6):1177-1194. https://doi.org/10.1111%2Fj.1476-5381.2012.02081.x
  • [48] Xu M, Chen H, Li HW. The association between SYNTAX score and long-term outcomes in patients with unstable angina pectoris: a single-centre retrospective study. BMC Cardiovasc Disord. 2022;22(1):155. https://doi.org/10.1186/s12872-022-02604-x
  • [49] Toth PP, Fazio S, Wong ND, Hull M, Nichols GA. Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence. Diabetes Obes Metab. 2020;22(3):279-289. https://doi.org/10.1111%2Fdom.13921
  • [50] Wang L, Chen F, Xiaoqi C, Yujun C, Zijie L. Atherogenic index of plasma is an independent risk factor for coronary artery disease and a higher SYNTAX score. Angiology. 2021;72(2):181-186. https://doi.org/10.1177/0003319720949804
  • [51] Rämö JT, Ripatti P, Tabassum R, Söderlund S, Matikainen N, Gerl MJ, Klose C, Surma MA, Stitziel NO, Havulinna AS, Pirinen M, Salomaa V, Freimer NB, Jauhiainen M, Palotie A, Taskinen MR, Simons K, Ripatti S. Coronary artery disease risk and lipidomic profiles are similar in hyperlipidemias with family history and population-ascertained hyperlipidemias. J Am Heart Assoc. 2019;8(13):e012415. https://doi.org/10.1161%2FJAHA.119.012415
  • [52] Dugani SB, Moorthy MV, Li C, Demler OV, Alsheikh-Ali AA, Ridker PM, Glynn RJ, Mora S. Association of lipid, ınflammatory, and metabolic biomarkers with age at onset for ıncident coronary heart disease in women. JAMA Cardiol. 2021;6(4):437-447. https://doi.org/10.1001/jamacardio.2020.7073
  • [53] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of Urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1597-1600. http://dx.doi.org/10.5958/0974- 360X.2021.00283.3.
  • [54] Abdulhussein HA, Alwasiti EA, Khiro NK, Nile AK. The potential impact of vascular endothelial growth factor rs699947 polymorphisms on breast tumors susceptibility in a sample of Iraqi females. Acta Pharm Sci. 2024;62(2):268-277. http://dx.doi.org/10.23893/1307.APS6217.
There are 54 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Rawa M.m. Taqi This is me 0000-0002-8886-2080

Raid J. M. Al-timimi This is me 0009-0009-4796-0934

Moayed B. Hamid This is me 0000-0002-2078-3597

Publication Date September 1, 2025
Submission Date August 26, 2024
Acceptance Date September 11, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Taqi, R. M., Al-timimi, R. J. M., & Hamid, M. B. (2025). The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion. Journal of Research in Pharmacy, 29(5), 2045-2054. https://doi.org/10.12991/jrespharm.1766210
AMA Taqi RM, Al-timimi RJM, Hamid MB. The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion. J. Res. Pharm. September 2025;29(5):2045-2054. doi:10.12991/jrespharm.1766210
Chicago Taqi, Rawa M.m., Raid J. M. Al-timimi, and Moayed B. Hamid. “The Relationship Between FABP And GDF-15 Levels in Evaluation With Syntax Score to Predict the Complexity of Coronary Artery Lesion”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 2045-54. https://doi.org/10.12991/jrespharm.1766210.
EndNote Taqi RM, Al-timimi RJM, Hamid MB (September 1, 2025) The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion. Journal of Research in Pharmacy 29 5 2045–2054.
IEEE R. M. Taqi, R. J. M. Al-timimi, and M. B. Hamid, “The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion”, J. Res. Pharm., vol. 29, no. 5, pp. 2045–2054, 2025, doi: 10.12991/jrespharm.1766210.
ISNAD Taqi, Rawa M.m. et al. “The Relationship Between FABP And GDF-15 Levels in Evaluation With Syntax Score to Predict the Complexity of Coronary Artery Lesion”. Journal of Research in Pharmacy 29/5 (September2025), 2045-2054. https://doi.org/10.12991/jrespharm.1766210.
JAMA Taqi RM, Al-timimi RJM, Hamid MB. The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion. J. Res. Pharm. 2025;29:2045–2054.
MLA Taqi, Rawa M.m. et al. “The Relationship Between FABP And GDF-15 Levels in Evaluation With Syntax Score to Predict the Complexity of Coronary Artery Lesion”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 2045-54, doi:10.12991/jrespharm.1766210.
Vancouver Taqi RM, Al-timimi RJM, Hamid MB. The relationship between FABP And GDF-15 levels in evaluation with syntax score to predict the complexity of coronary artery lesion. J. Res. Pharm. 2025;29(5):2045-54.