Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 5, 2126 - 2142, 01.09.2025
https://doi.org/10.12991/jrespharm.1766361

Abstract

References

  • [1] Yao Q, Choi JH, Dai Z, Wang J, Kim D, Tang X, Zhu L. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl Mater Interfaces. 2017;9(42):36642- 36654. http://dx.doi.org/10.1021/acsami.7b12233
  • [2] Wang Z, Chen C, Liu R, Fan A, Kong D, Zhao Y. Two birds with one stone: dendrimer surface engineering enables tunable periphery hydrophobicity and rapid endosomal escape. Chem Commun. 2014;50(90):14025-14028. http://dx.doi.org/10.1039/C4CC06621A
  • [3] Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28-39. http://dx.doi.org/10.1038/nrc2559
  • [4] Fathi Karkan S, Davaran S, Akbarzadeh A. Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. Nanomed Res J. 2019;4(4):209-219. http://dx.doi.org/10.22034/nmrj.2019.04.002
  • [5] Chen Y, Chen H, Shi J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol Pharm. 2014;11(8):2495-2510. http://dx.doi.org/10.1021/mp400596v
  • [6] Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736. http://dx.doi.org/10.1039/b922024k
  • [7] Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun. 2007;10:1056. http://dx.doi.org/10.1039/b615134e
  • [8] Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018;25(1):132-142. http://dx.doi.org/10.1080/10717544.2017.1419512
  • [9] Zhang CY, Peng S, Zhao B, Luo W, Zhang L. Polymeric micelles self-assembled from amphiphilic polymers with twin disulfides used as siRNA carriers to enhance the transfection. Mater Sci Eng C 2017;78:546-552. http://dx.doi.org/10.1016/j.msec.2017.04.039
  • [10] Farasati Far B, Maleki-baladi R, Fathi-karkan S, Babaei M, Sargazi S. Biomedical applications of cerium vanadate nanoparticles: A review. J Mater Chem B. 2024;12(3):609-636. http://dx.doi.org/10.1039/D3TB01786A
  • [11] Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun. 2014;50(77):11274-11290. http://dx.doi.org/10.1039/C4CC03153A
  • [12] Zhang H, Wang K, Zhang P, He W, Song A, Luan Y. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel. Colloids Surf B Biointerfaces. 2016;142:89-97. http://dx.doi.org/10.1016/j.colsurfb.2016.02.045
  • [13] Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184-202. http://dx.doi.org/10.1016/j.ejps.2015.12.031
  • [14] Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211-228. http://dx.doi.org/10.1016/j.ejpb.2016.12.019
  • [15] Amjad MW, Kesharwani P, Mohd Amin MCI, Iyer AK. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog Polym Sci. 2017;64:154-181. http://dx.doi.org/10.1016/j.progpolymsci.2016.09.008
  • [16] Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics. 2021;14(1):14. http://dx.doi.org/10.3390/pharmaceutics14010014
  • [17] Wu Q, Zheng H, Gu J, Cheng Y, Qiao B, Wang J, Xiong L, Sun S, Wu Z, Bao A, Tong Y. Detection of folate receptor‐positive circulating tumor cells as a biomarker for diagnosis, prognostication, and therapeutic monitoring in breast cancer. J Clin Lab Anal. 2022;36(1): e24180. http://dx.doi.org/10.1002/jcla.24180
  • [18] Chen Q, Zheng J, Yuan X, Wang J, Zhang L. Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery. Mater Sci Eng C. 2018;82:1-9. http://dx.doi.org/10.1016/j.msec.2017.08.026
  • [19] Chen Y, Tezcan O, Li D, Beztsinna N, Lou B, Etrych T, Ulbrich K, Metselaar JM, Lammers T, Hennink WE. Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale. 2017;9(29):10404-10419. http://dx.doi.org/10.1039/C7NR03592F
  • [20] Javad Javid-Naderi M, Valizadeh N, Banimohamad-Shotorbani B, Shahgolzari M, Shayegh F, Maleki- baladi R, Sargazi S, Fathi-karkan S. Exploring the biomedical potential of iron vanadate Nanoparticles: A comprehensive review. Inorg Chem Commun. 2023;157:111423. http://dx.doi.org/10.1016/j.inoche.2023.111423
  • [21] Zhang X, Liang N, Gong X, Kawashima Y, Cui F, Sun S. Tumor-targeting micelles based on folic acid and α-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery. Colloids Surf B Biointerfaces. 2019;177:11-18. http://dx.doi.org/10.1016/j.colsurfb.2019.01.044
  • [22] Dai Y, Cai X, Bi X, Liu C, Yue N, Zhu Y, Zhou J, Fu M, Huang W, Qian H. Synthesis and anti-cancer evaluation of folic acid-peptide- paclitaxel conjugates for addressing drug resistance. Eur J Med Chem. 2019;171:104-115. http://dx.doi.org/10.1016/j.ejmech.2019.03.031
  • [23] Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv. 2018;15(11):1085-1104. http://dx.doi.org/10.1080/17425247.2018.1529756
  • [24] de Castro KC, Coco JC, dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release. 2023;353:802-822. http://dx.doi:10.1016/j.jconrel.2022.12.017
  • [25] Mustafa G, Hassan D, Zeeshan M, Ruiz-Pulido G, Ebrahimi N, Mobashar A, Pourmadadi M, Rahdar A, Sargazi S, Fathi-karkan S, Medina DI, Díez-Pascual AM. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J Drug Deliv Sci Technol. 2023;87:104774. https://doi.org/10.1016/j.jddst.2023.104774
  • [26] Batrakova E V., Kabanov A V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130(2):98-106. http://dx.doi.org/10.1016/j.jconrel.2008.04.013
  • [27] Raval A, Parmar A, Raval A, Bahadur P. Preparation and optimization of media using Pluronic® micelles for solubilization of sirolimus and release from the drug eluting stents. Colloids Surf B Biointerfaces. 2012;93:180-187. http://dx.doi.org/10.1016/j.colsurfb.2011.12.034
  • [28] Guzmán Rodríguez A, Sablón Carrazana M, Rodríguez Tanty C, Malessy MJA, Fuentes G, Cruz LJ. Smart polymeric micelles for anticancer hydrophobic drugs. Cancers (Basel). 2022;15(1):4. http://dx.doi.org/10.3390/cancers15010004
  • [29] Zhang W, Shi Y, Chen Y, Hao J, Sha X, Fang X. The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials. 2011;32(25):5934-5944. http://dx.doi.org/10.1016/j.biomaterials.2011.04.075
  • [30] Anirudhan TS, Varghese S, Manjusha V. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of Paclitaxel and Curcumin. Int J Biol Macromol. 2021;192:950-957. http://dx.doi.org/10.1016/j.ijbiomac.2021.10.061
  • [31] Saghati S, Rahbarghazi R, Fathi Karkan S, Nazifkerdar S, Khoshfetrat AB, Tayefi Nasrabadi H. Shape memory polymers in osteochondral tissue engineering. J Res Clin Med. 2022;10(1):30. http://dx.doi.org/10.34172/jrcm.2022.030
  • [32] Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. . Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther. 2023;14(1):68. http://dx.doi.org/10.1186/s13287-023-03309-4
  • [33] Balasubramaniam A, Panpalia GM. Drug Adjuvant Interaction Study Using DSC Supported by Isothermal Method. Drug Dev Ind Pharm. 2001;27(5):475-480. http://dx.doi.org/10.1081/DDC- 100104324
  • [34] Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol. 2023;243:125232. http://dx.doi.org/10.1016/j.ijbiomac.2023.125232
  • [35] Pourmadadi M, Ostovar S, Ruiz-Pulido G, Hassan D, Souri M, Manicum A-LE, Behzadmehr R, Fathi- karkan S, Rahdar A, Medina DI, Pandey S. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg Chem Commun. 2023;155:110999. http://dx.doi.org/10.1016/j.inoche.2023.110999
  • [36] Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. Nanoscale. 2024;16(6):2713-2746. http://dx.doi.org/10.1039/D3NR03495J
  • [37] Fathi-karkan S, Zeeshan M, Qindeel M, Eshaghi Malekshah R, Rahdar A, Ferreira LFR. NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J Drug Deliv Sci Technol. 2023;87:104805. http://dx.doi.org/10.1016/j.jddst.2023.104805
  • [38] Bakhshi S, Shoari A, Alibolandi P, Ganji M, Ghazy E, Rahdar A, Fathi-karkan S, Pandey S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J Drug Deliv Sci Technol. 2024;91:105270. http://dx.doi.org/10.1016/j.jddst.2023.105270
  • [39] Pourmadadi M, Gerami SE, Ajalli N, Yazdian F, Rahdar A, Fathi-karkan S, Aboudzadeh MA. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Adv. 2024;6:100210. http://dx.doi.org/10.1016/j.hybadv.2024.100210
  • [40] Fatima I, Zeinalilathori S, Qindeel M, Kharaba Z, Sahebzade MS, Rahdar A, Zeinali S, Fathi-karkan S, Khan A, Ghazy E, Pandey S. Advances in targeted nano-delivery of bevacizumab using nanoparticles: Current insights, innovations, and future perspectives. J Drug Deliv Sci Technol. 2024;98:105850. http://dx.doi.org/.1016/j.jddst.2024.105850
  • [41] Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. Nanoscale. 2024;16(8):3881-3914. http://dx.doi.org/10.1039/D3NR05656B
  • [42] Liu Z, Liu D, Wang L, Zhang J, Zhang N. Docetaxel-Loaded Pluronic P123 Polymeric Micelles: in Vitro and in Vivo Evaluation. Int J Mol Sci. 2011;12(3):1684-1696. http://dx.doi.org/10.3390/ijms12031684
  • [43] Bolton S, Bon C. Pharmaceutical Statistics: Practical and Clinical Applications, Revised and Expanded , fourth ed. CRC Press (2003). http://dx.doi.org/10.1201/9780203912799
  • [44] Acharya S, Patra S, Pani NR. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr Polym. 2014;102:360-368. http://dx.doi.org/10.1016/j.carbpol.2013.11.060
  • [45] Gaisford S, Beezer AE, Mitchell JC, Loh W, Finnie JK, Williams SJ. Diode-array UV spectrometric evidence for a concentration dependent phase transition in dilute aqueous solutions of pluronic F87 (poloxamer 237). J Chem Soc Chem Commun. 1995;18:1843. http://dx.doi:10.1039/c39950001843
  • [46] Cho YW, Lee J, Lee SC, Huh KM, Park K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J Control Release. 2004;97(2):249-257. http://dx.doi.org/10.1016/j.jconrel.2004.03.013
  • [47] Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;73:e50166. http://dx.doi.org/10.3791/50166
  • [48] Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K, Yeap SK. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep. 2019;9(1):1514. http://dx.doi.org/10.1038/s41598-018-37796-w

Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles

Year 2025, Volume: 29 Issue: 5, 2126 - 2142, 01.09.2025
https://doi.org/10.12991/jrespharm.1766361

Abstract

Nanotechnology-based drug delivery systems have gained significant attention for improving cancer treatment. In this study, folic acid (FA)-conjugated Poloxamer P188 (FA-P188) micelles were developed for targeted delivery of docetaxel (DTX) to cancer cells that overexpress folate receptors. The micelles were prepared using the thin- film hydration method, where polymers and DTX were dissolved in an organic solvent, followed by solvent evaporation to form a thin film, which was then hydrated with water to form micelles. The critical micelle concentration (CMC) was determined using UV spectroscopy with an iodine standard solution. Micelle size, polydispersity index (PDI), and surface charge were characterized using dynamic light scattering, and the morphology was visualized through scanning electron microscopy. Entrapment efficiency of DTX in micelles was quantified using ultracentrifugation and UV spectrophotometry, after separating the unencapsulated drug. In vitro drug release kinetics were assessed via dialysis and UV spectroscopy. Hemocompatibility was tested by measuring hemoglobin release from red blood cells using spectrophotometry. The anticancer efficacy of the DTX formulations was evaluated in MDA-MB-231 breast cancer cells using the MTT assay after a 72-hour exposure. Stability of the FA-P188-DTX micelles was assessed under accelerated conditions (40°C, 75% relative humidity) for three months. The study's findings showed successful conjugation of FA to P188 and effective encapsulation of DTX in FA-P188 micelles. The optimized FA-P188-DTX micelles demonstrated particle sizes smaller than 200 nm, a PDI of less than 0.2, and a drug entrapment efficiency exceeding 75%. In vitro cytotoxicity assays showed enhanced cytotoxicity of FA-P188-DTX micelles in MDA-MB-231 cancer cells compared to DTX alone and non-targeted micelles. These results highlight the targeting capability and sustained drug release properties of FA-P188-DTX micelles, suggesting their promising potential for targeted cancer therapy involving docetaxel.

References

  • [1] Yao Q, Choi JH, Dai Z, Wang J, Kim D, Tang X, Zhu L. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl Mater Interfaces. 2017;9(42):36642- 36654. http://dx.doi.org/10.1021/acsami.7b12233
  • [2] Wang Z, Chen C, Liu R, Fan A, Kong D, Zhao Y. Two birds with one stone: dendrimer surface engineering enables tunable periphery hydrophobicity and rapid endosomal escape. Chem Commun. 2014;50(90):14025-14028. http://dx.doi.org/10.1039/C4CC06621A
  • [3] Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28-39. http://dx.doi.org/10.1038/nrc2559
  • [4] Fathi Karkan S, Davaran S, Akbarzadeh A. Cisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells. Nanomed Res J. 2019;4(4):209-219. http://dx.doi.org/10.22034/nmrj.2019.04.002
  • [5] Chen Y, Chen H, Shi J. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells. Mol Pharm. 2014;11(8):2495-2510. http://dx.doi.org/10.1021/mp400596v
  • [6] Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736. http://dx.doi.org/10.1039/b922024k
  • [7] Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun. 2007;10:1056. http://dx.doi.org/10.1039/b615134e
  • [8] Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018;25(1):132-142. http://dx.doi.org/10.1080/10717544.2017.1419512
  • [9] Zhang CY, Peng S, Zhao B, Luo W, Zhang L. Polymeric micelles self-assembled from amphiphilic polymers with twin disulfides used as siRNA carriers to enhance the transfection. Mater Sci Eng C 2017;78:546-552. http://dx.doi.org/10.1016/j.msec.2017.04.039
  • [10] Farasati Far B, Maleki-baladi R, Fathi-karkan S, Babaei M, Sargazi S. Biomedical applications of cerium vanadate nanoparticles: A review. J Mater Chem B. 2024;12(3):609-636. http://dx.doi.org/10.1039/D3TB01786A
  • [11] Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun. 2014;50(77):11274-11290. http://dx.doi.org/10.1039/C4CC03153A
  • [12] Zhang H, Wang K, Zhang P, He W, Song A, Luan Y. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel. Colloids Surf B Biointerfaces. 2016;142:89-97. http://dx.doi.org/10.1016/j.colsurfb.2016.02.045
  • [13] Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184-202. http://dx.doi.org/10.1016/j.ejps.2015.12.031
  • [14] Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211-228. http://dx.doi.org/10.1016/j.ejpb.2016.12.019
  • [15] Amjad MW, Kesharwani P, Mohd Amin MCI, Iyer AK. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog Polym Sci. 2017;64:154-181. http://dx.doi.org/10.1016/j.progpolymsci.2016.09.008
  • [16] Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics. 2021;14(1):14. http://dx.doi.org/10.3390/pharmaceutics14010014
  • [17] Wu Q, Zheng H, Gu J, Cheng Y, Qiao B, Wang J, Xiong L, Sun S, Wu Z, Bao A, Tong Y. Detection of folate receptor‐positive circulating tumor cells as a biomarker for diagnosis, prognostication, and therapeutic monitoring in breast cancer. J Clin Lab Anal. 2022;36(1): e24180. http://dx.doi.org/10.1002/jcla.24180
  • [18] Chen Q, Zheng J, Yuan X, Wang J, Zhang L. Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery. Mater Sci Eng C. 2018;82:1-9. http://dx.doi.org/10.1016/j.msec.2017.08.026
  • [19] Chen Y, Tezcan O, Li D, Beztsinna N, Lou B, Etrych T, Ulbrich K, Metselaar JM, Lammers T, Hennink WE. Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale. 2017;9(29):10404-10419. http://dx.doi.org/10.1039/C7NR03592F
  • [20] Javad Javid-Naderi M, Valizadeh N, Banimohamad-Shotorbani B, Shahgolzari M, Shayegh F, Maleki- baladi R, Sargazi S, Fathi-karkan S. Exploring the biomedical potential of iron vanadate Nanoparticles: A comprehensive review. Inorg Chem Commun. 2023;157:111423. http://dx.doi.org/10.1016/j.inoche.2023.111423
  • [21] Zhang X, Liang N, Gong X, Kawashima Y, Cui F, Sun S. Tumor-targeting micelles based on folic acid and α-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery. Colloids Surf B Biointerfaces. 2019;177:11-18. http://dx.doi.org/10.1016/j.colsurfb.2019.01.044
  • [22] Dai Y, Cai X, Bi X, Liu C, Yue N, Zhu Y, Zhou J, Fu M, Huang W, Qian H. Synthesis and anti-cancer evaluation of folic acid-peptide- paclitaxel conjugates for addressing drug resistance. Eur J Med Chem. 2019;171:104-115. http://dx.doi.org/10.1016/j.ejmech.2019.03.031
  • [23] Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv. 2018;15(11):1085-1104. http://dx.doi.org/10.1080/17425247.2018.1529756
  • [24] de Castro KC, Coco JC, dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release. 2023;353:802-822. http://dx.doi:10.1016/j.jconrel.2022.12.017
  • [25] Mustafa G, Hassan D, Zeeshan M, Ruiz-Pulido G, Ebrahimi N, Mobashar A, Pourmadadi M, Rahdar A, Sargazi S, Fathi-karkan S, Medina DI, Díez-Pascual AM. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J Drug Deliv Sci Technol. 2023;87:104774. https://doi.org/10.1016/j.jddst.2023.104774
  • [26] Batrakova E V., Kabanov A V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130(2):98-106. http://dx.doi.org/10.1016/j.jconrel.2008.04.013
  • [27] Raval A, Parmar A, Raval A, Bahadur P. Preparation and optimization of media using Pluronic® micelles for solubilization of sirolimus and release from the drug eluting stents. Colloids Surf B Biointerfaces. 2012;93:180-187. http://dx.doi.org/10.1016/j.colsurfb.2011.12.034
  • [28] Guzmán Rodríguez A, Sablón Carrazana M, Rodríguez Tanty C, Malessy MJA, Fuentes G, Cruz LJ. Smart polymeric micelles for anticancer hydrophobic drugs. Cancers (Basel). 2022;15(1):4. http://dx.doi.org/10.3390/cancers15010004
  • [29] Zhang W, Shi Y, Chen Y, Hao J, Sha X, Fang X. The potential of Pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials. 2011;32(25):5934-5944. http://dx.doi.org/10.1016/j.biomaterials.2011.04.075
  • [30] Anirudhan TS, Varghese S, Manjusha V. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of Paclitaxel and Curcumin. Int J Biol Macromol. 2021;192:950-957. http://dx.doi.org/10.1016/j.ijbiomac.2021.10.061
  • [31] Saghati S, Rahbarghazi R, Fathi Karkan S, Nazifkerdar S, Khoshfetrat AB, Tayefi Nasrabadi H. Shape memory polymers in osteochondral tissue engineering. J Res Clin Med. 2022;10(1):30. http://dx.doi.org/10.34172/jrcm.2022.030
  • [32] Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. . Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther. 2023;14(1):68. http://dx.doi.org/10.1186/s13287-023-03309-4
  • [33] Balasubramaniam A, Panpalia GM. Drug Adjuvant Interaction Study Using DSC Supported by Isothermal Method. Drug Dev Ind Pharm. 2001;27(5):475-480. http://dx.doi.org/10.1081/DDC- 100104324
  • [34] Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol. 2023;243:125232. http://dx.doi.org/10.1016/j.ijbiomac.2023.125232
  • [35] Pourmadadi M, Ostovar S, Ruiz-Pulido G, Hassan D, Souri M, Manicum A-LE, Behzadmehr R, Fathi- karkan S, Rahdar A, Medina DI, Pandey S. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg Chem Commun. 2023;155:110999. http://dx.doi.org/10.1016/j.inoche.2023.110999
  • [36] Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. Nanoscale. 2024;16(6):2713-2746. http://dx.doi.org/10.1039/D3NR03495J
  • [37] Fathi-karkan S, Zeeshan M, Qindeel M, Eshaghi Malekshah R, Rahdar A, Ferreira LFR. NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J Drug Deliv Sci Technol. 2023;87:104805. http://dx.doi.org/10.1016/j.jddst.2023.104805
  • [38] Bakhshi S, Shoari A, Alibolandi P, Ganji M, Ghazy E, Rahdar A, Fathi-karkan S, Pandey S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J Drug Deliv Sci Technol. 2024;91:105270. http://dx.doi.org/10.1016/j.jddst.2023.105270
  • [39] Pourmadadi M, Gerami SE, Ajalli N, Yazdian F, Rahdar A, Fathi-karkan S, Aboudzadeh MA. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Adv. 2024;6:100210. http://dx.doi.org/10.1016/j.hybadv.2024.100210
  • [40] Fatima I, Zeinalilathori S, Qindeel M, Kharaba Z, Sahebzade MS, Rahdar A, Zeinali S, Fathi-karkan S, Khan A, Ghazy E, Pandey S. Advances in targeted nano-delivery of bevacizumab using nanoparticles: Current insights, innovations, and future perspectives. J Drug Deliv Sci Technol. 2024;98:105850. http://dx.doi.org/.1016/j.jddst.2024.105850
  • [41] Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. Nanoscale. 2024;16(8):3881-3914. http://dx.doi.org/10.1039/D3NR05656B
  • [42] Liu Z, Liu D, Wang L, Zhang J, Zhang N. Docetaxel-Loaded Pluronic P123 Polymeric Micelles: in Vitro and in Vivo Evaluation. Int J Mol Sci. 2011;12(3):1684-1696. http://dx.doi.org/10.3390/ijms12031684
  • [43] Bolton S, Bon C. Pharmaceutical Statistics: Practical and Clinical Applications, Revised and Expanded , fourth ed. CRC Press (2003). http://dx.doi.org/10.1201/9780203912799
  • [44] Acharya S, Patra S, Pani NR. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr Polym. 2014;102:360-368. http://dx.doi.org/10.1016/j.carbpol.2013.11.060
  • [45] Gaisford S, Beezer AE, Mitchell JC, Loh W, Finnie JK, Williams SJ. Diode-array UV spectrometric evidence for a concentration dependent phase transition in dilute aqueous solutions of pluronic F87 (poloxamer 237). J Chem Soc Chem Commun. 1995;18:1843. http://dx.doi:10.1039/c39950001843
  • [46] Cho YW, Lee J, Lee SC, Huh KM, Park K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J Control Release. 2004;97(2):249-257. http://dx.doi.org/10.1016/j.jconrel.2004.03.013
  • [47] Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp. 2013;73:e50166. http://dx.doi.org/10.3791/50166
  • [48] Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K, Yeap SK. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep. 2019;9(1):1514. http://dx.doi.org/10.1038/s41598-018-37796-w
There are 48 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Amol Tatode This is me 0000-0001-5813-5125

Divya Zambre This is me 0000-0003-4634-5517

Mohammad Qutub This is me 0009-0007-4789-5701

Tanvi Premchandani This is me 0009-0000-3655-8477

Milind Umekar This is me 0000-0002-2170-0896

Prashant Pande This is me 0000-0001-9930-7704

Publication Date September 1, 2025
Submission Date August 16, 2024
Acceptance Date September 26, 2024
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Tatode, A., Zambre, D., Qutub, M., … Premchandani, T. (2025). Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles. Journal of Research in Pharmacy, 29(5), 2126-2142. https://doi.org/10.12991/jrespharm.1766361
AMA Tatode A, Zambre D, Qutub M, Premchandani T, Umekar M, Pande P. Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles. J. Res. Pharm. September 2025;29(5):2126-2142. doi:10.12991/jrespharm.1766361
Chicago Tatode, Amol, Divya Zambre, Mohammad Qutub, Tanvi Premchandani, Milind Umekar, and Prashant Pande. “Enhanced Cytotoxicity of Docetaxel Delivered through Folic Acid Grafted Poloxamer P188 Polymeric Micelles”. Journal of Research in Pharmacy 29, no. 5 (September 2025): 2126-42. https://doi.org/10.12991/jrespharm.1766361.
EndNote Tatode A, Zambre D, Qutub M, Premchandani T, Umekar M, Pande P (September 1, 2025) Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles. Journal of Research in Pharmacy 29 5 2126–2142.
IEEE A. Tatode, D. Zambre, M. Qutub, T. Premchandani, M. Umekar, and P. Pande, “Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles”, J. Res. Pharm., vol. 29, no. 5, pp. 2126–2142, 2025, doi: 10.12991/jrespharm.1766361.
ISNAD Tatode, Amol et al. “Enhanced Cytotoxicity of Docetaxel Delivered through Folic Acid Grafted Poloxamer P188 Polymeric Micelles”. Journal of Research in Pharmacy 29/5 (September2025), 2126-2142. https://doi.org/10.12991/jrespharm.1766361.
JAMA Tatode A, Zambre D, Qutub M, Premchandani T, Umekar M, Pande P. Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles. J. Res. Pharm. 2025;29:2126–2142.
MLA Tatode, Amol et al. “Enhanced Cytotoxicity of Docetaxel Delivered through Folic Acid Grafted Poloxamer P188 Polymeric Micelles”. Journal of Research in Pharmacy, vol. 29, no. 5, 2025, pp. 2126-42, doi:10.12991/jrespharm.1766361.
Vancouver Tatode A, Zambre D, Qutub M, Premchandani T, Umekar M, Pande P. Enhanced cytotoxicity of docetaxel delivered through folic acid grafted poloxamer P188 polymeric micelles. J. Res. Pharm. 2025;29(5):2126-42.