Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 3, 1078 - 1088, 04.06.2025
https://doi.org/10.12991/jrespharm.1694230

Abstract

References

  • [1] Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015; 53(1):1-5. http://dx.doi.org/10.1007/s12275-015-4656-9.
  • [2] Khan M, Li B, Jiang Y, Weng Q, Chen Q. Evaluation of different PCR-based assays and LAMP method for rapid detection of phytophthora infestans by targeting the Ypt1 Gene. Front Microbiol. 2017;8:1920. https://doi.org/10.3389/fmicb.2017.01920.
  • [3] Du WF, Ge JH, Li JJ, Tang LJ, Yu RQ, Jiang JH. Single-step, high-specificity detection of single nucleotide mutation by primer-activatable loop-mediated isothermal amplification (PA-LAMP). Anal Chim Acta. 2019; 1050:132-138. http://dx.doi.org/10.1016/j.aca.2018.10.068.
  • [4] Lee PLM. DNA amplification in the field: move over PCR, here comes LAMP. Mol Ecol Res. 2017; 17(2):138-141. http://dx.doi.org/10.1111/1755-0998.12548.
  • [5] Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, Stetten F von. Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection. Anal Methods. 2020; 12(6):717-746. http://dx.doi.org/10.1039/C9AY02246E.
  • [6] WHO. World Malaria Report. http://www.who.int/malaria/publications/world_malaria_report_2014/en/(accessed July 10, 2024).
  • [7] WHO | Malaria. http://www.who.int/topics/malaria/en/ (accessed July 18, 2024).
  • [8] Ebel ER, Reis F, Petrov DA, Beleza S. Historical trends and new surveillance of Plasmodium falciparum drug resistance markers in Angola. Malar J. 2021; 20(1):175. http://dx.doi.org/10.1186/s12936-021-03713-2.
  • [9] Srivastava S, Singh PK, Vatsalya V, Karch RC. Developments in the diagnostic techniques of infectious diseases: Rural and urban prospective. Adv Infect Dis. 2018;8(3):121-138. http://dx.doi.org/10.4236/aid.2018.83012.
  • [10] Soni J, Sinha S, Pandey R. Understanding bacterial pathogeicity: a closer look at the journey of harmful microbes. Front Microbiol. 2024; 15:1370818. https://doi.org/10.3389/fmicb.2024.1370818.
  • [11] Murmu LK, Sahu AA, Barik TK. Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis. 2021; 45(3):869-876. http://dx.doi.org/10.1007/s12639-020-01333-2.
  • [12] Alipanahi R, Safari L, Khanteymoori A. CRISPR genome editing using computational approaches: A survey. Front Bioinform. 2023; 2:1001131. http://dx.doi.org/10.3389/fbinf.2022.1001131.
  • [13] Hermantara R, Richmond L, Taqi AF, Chilaka S, Jeantet V, Guerrini I, West K, West A. Improving CRISPR–Cas9 directed faithful transgene integration outcomes by reducing unwanted random DNA integration. J Biomed Sci. 2024;31(1):32. http://dx.doi.org/10.1186/s12929-024-01020-x.
  • [14] Motoche-Monar C, Ordoñez JE, Chang O, Gonzales-Zubiate FA. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement. Biomolecules. 2023; 13(12):1698. http://dx.doi.org/10.3390/biom13121698.
  • [15] Zhang H, Yan J, Lu Z, Zhou Y, Zhang Q, Cui T, Li Y, Chen H, Ma L. Deep sampling of gRNA in the human genome and deep-learning-informed prediction of gRNA activities. Cell Discov. 2023; 9:48. http://dx.doi.org/10.1038/s41421-023-00549-9.
  • [16] He W, Zhang L, Villarreal OD, Fu R, Bedford E, Dou J, Patel AY, Bedford MT, Shi X, Chen T, Bartholomew B, Xu H. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. Nat Commun. 2019; 10(1):4541. http://dx.doi.org/10.1038/s41467-019-12489-8.
  • [17] Chuai G hui, Wang QL, Liu Q. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. 2017; 35(1):12-21. http://dx.doi.org/10.1016/j.tibtech.2016.06.008.
  • [18] Karlapudi AP, Thirupati CV, Srirrama K, Nageswaran DC, Mikkili I, Ayyagari VS, Aluri RR, Butt YN, Gangadhar A. Design of CRISPR-based targets for the development of a diagnostic method for SARS-CoV-2: An in silico approach. Eurasian J Med Oncol. 2020; 4(4):304-308. http://dx.doi.org/10.14744/ejmo.2020.70579.
  • [19] Hwang GH, Song B, Bae S. Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene Genome Ed. 2021; 1:100004. http://dx.doi.org/10.1016/j.ggedit.2021.100004.
  • [20] Balon K, Sheriff A, Jacków J, Łaczmański Ł. Targeting cancer with CRISPR/Cas9-based therapy. Int J Mol Sci. 2022; 23(1):573. http://dx.doi.org/10.3390/ijms23010573.
  • [21] Ahmad A, Ashraf S, Majeed HN, Aslam S, Aslam MA, Mubarik MS, Munawar N. Bioinformatic tools in CRISPR/Cas platform. In: Ahmad A, Khan SH, Khan Z, eds. The CRISPR/Cas Tool Kit for Genome Editing. Springer; 2022: 5 pp.3-111. http://dx.doi.org/10.1007/978-981-16-6305-5_3.
  • [22] Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: A bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 Genome-Editing Systems. PLoS One. 2014; 9(9):e108424. http://dx.doi.org/10.1371/journal.pone.0108424.
  • [23] Yan H, Feng J, Yin JH, Huang F, Kong XL, Lin KM, Zhang T, Feng XY, Zhou SS, Cao JP, Xia ZG. high frequency mutations in pfdhfr and pfdhps of Plasmodium falciparum in response to sulfadoxine-pyrimethamine: A cross-sectional survey in returning Chinese migrants from Africa. Front Cell Infect Microbiol. 2021; 11:673194. https://doi.org/10.3389/fcimb.2021.673194.
  • [24] Kimani J, Phiri K, Kamiza S, Duparc S, Ayoub A, Rojo R, Robbins J, Orrico R, Vandenbroucke P. Efficacy and safety of azithromycin-chloroquine versus sulfadoxine-pyrimethamine for intermittent preventive treatment of Plasmodium falciparum malaria infection in pregnant women in Africa: An open-label, randomized trial. PLoS One. 2016; 11(6):e0157045. http://dx.doi.org/10.1371/journal.pone.0157045.
  • [25] Khattak AA, Venkatesan M, Jacob CG, Artimovich EM, Nadeem MF, Nighat F, Hombhanje F, Mita T, Malik SA, Plowe CV. A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Malar J. 2013; 12(1):300. http://dx.doi.org/10.1186/1475-2875-12-300.
  • [26] Rana R, Khan N, Sandeepta S, Pati S, Das A, Bal M, Ranjit M. Molecular surveillance of anti-malarial drug resistance genes in Plasmodium falciparum isolates in Odisha, India. Malar J. 2022; 21(1):394. http://dx.doi.org/10.1186/s12936-022-04403-3.
  • [27] Parikesit AA, Hermantara R, Kevin G, Sidhartha E. Designing hybrid CRISPR-Cas12 and LAMP detection systems for treatment-resistant Plasmodium falciparum with in silico method. Narra J. 2023; 3(3):e301-e301. http://dx.doi.org/10.52225/narra.v3i3.301.
  • [28] Ansori AN, Antonius Y, Susilo RJ, Hayaza S, Kharisma VD, Parikesit AA, Zainul R, Jakhmola V, Saklani T, Rebezov M, Ullah ME, Maksimiuk N, Derkho M, Burkov P. Application of CRISPR-Cas9 genome editing technology in various fields: review. Narra J. 2023; 3(2):e184-e184. http://dx.doi.org/10.52225/narra.v3i2.184
  • [29] Gholam GM, Irsal RAP, Mahendra FR, Dwicesaria MA, Siregar JE, Ansori ANM, Zainul R. In silico computational prediction of Saussurea pulchella compounds with inhibitory effects on plasmepsin X in Plasmodium falciparum. Informatics Med Unlocked. 2024; 49:101549. http://dx.doi.org/10.1016/J.IMU.2024.101549.
  • [30] Zainul R, Verawati R, Alam G, Nisyak K, Sari TK, Ghifari MA, Ruga R, Azhari P, Romadhon R, Barroroh H, Mandeli RS, Purnamasari D, Kharisma VD, Jakhmola V, Rebezov M, Ansori ANM. Interaction of cynaroside from Orthosiphon aristatus plant extract on TNF alpha as a stimulant in malaria and asthma. Pharmacogn J. 2023; 15(4):581-586. http://dx.doi.org/10.5530/pj.2023.15.123.
  • [31] Making and Utilizing TxDb Objects. https://bioconductor.org/packages/release/bioc/vignettes/GenomicFeatures/inst/doc/GenomicFeatures.html (accessed March 1, 2024)
  • [32] Eiken Chemical Co. Ltd. A Guide to LAMP Primer Designing (Primer Explorer V4). PrimerExplorer V5. https://primerexplorer.jp/e/v4_manual/pdf/PrimerExplorerV4_Manual_1.pdf (accessed April 1, 2024)
  • [33] LAMP primer designing software [PrimerExplorer]. http://primerexplorer.jp/e/v5_manual/index.html (accessed August 3, 2023)
  • [34] Philippidis A. Cloud Cover: Benchling Expands into Early Development. GEN Edge. 2021; 3(1):568-573. http://dx.doi.org/10.1089/genedge.3.1.093.

Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline

Year 2025, Volume: 29 Issue: 3, 1078 - 1088, 04.06.2025
https://doi.org/10.12991/jrespharm.1694230

Abstract

Malaria, a life-threatening disease caused by the parasite Plasmodium falciparum, poses a significant health challenge, particularly in tropical regions where it is most prevalent. This disease is traditionally treated with various medications, including chloroquine, quinine, artemisinin, sulfadoxine-pyrimethamine, and combinations of artemisinin-based therapies. However, the emergence of drug-resistant strains of P. falciparum has necessitated the development of more sophisticated diagnostic and treatment strategies to effectively manage and combat this disease. In response to this growing concern, our research project endeavors to pioneer a novel approach to malaria diagnosis and treatment. We focus on the design of Loop-Mediated Isothermal Amplification (LAMP) primers, which are engineered to specifically identify treatment-resistant strains of P. falciparum. The project strongly emphasizes optimizing the guide RNA (gRNA) efficacy, which is pivotal for enhancing the specificity and sensitivity of the CRISPR-Cas12 system in detecting these resistant strains. Our aim is to significantly improve the efficiency and accuracy of malaria treatments, particularly in areas heavily impacted by drug resistance. By leveraging the advancements in CRISPR technology, we anticipate creating a robust tool for the on-field diagnosis of drug-resistant Malaria based on CHOPCHOP and E-CRISPR in silico gene visualization tools. This research addresses a critical gap in the current treatment paradigm and contributes to the broader initiative of employing innovative genetic technologies for public health. Ultimately, the successful implementation of this project could lead to more effective malaria control and treatment strategies, reducing the global burden of this devastating disease.

References

  • [1] Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015; 53(1):1-5. http://dx.doi.org/10.1007/s12275-015-4656-9.
  • [2] Khan M, Li B, Jiang Y, Weng Q, Chen Q. Evaluation of different PCR-based assays and LAMP method for rapid detection of phytophthora infestans by targeting the Ypt1 Gene. Front Microbiol. 2017;8:1920. https://doi.org/10.3389/fmicb.2017.01920.
  • [3] Du WF, Ge JH, Li JJ, Tang LJ, Yu RQ, Jiang JH. Single-step, high-specificity detection of single nucleotide mutation by primer-activatable loop-mediated isothermal amplification (PA-LAMP). Anal Chim Acta. 2019; 1050:132-138. http://dx.doi.org/10.1016/j.aca.2018.10.068.
  • [4] Lee PLM. DNA amplification in the field: move over PCR, here comes LAMP. Mol Ecol Res. 2017; 17(2):138-141. http://dx.doi.org/10.1111/1755-0998.12548.
  • [5] Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, Stetten F von. Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection. Anal Methods. 2020; 12(6):717-746. http://dx.doi.org/10.1039/C9AY02246E.
  • [6] WHO. World Malaria Report. http://www.who.int/malaria/publications/world_malaria_report_2014/en/(accessed July 10, 2024).
  • [7] WHO | Malaria. http://www.who.int/topics/malaria/en/ (accessed July 18, 2024).
  • [8] Ebel ER, Reis F, Petrov DA, Beleza S. Historical trends and new surveillance of Plasmodium falciparum drug resistance markers in Angola. Malar J. 2021; 20(1):175. http://dx.doi.org/10.1186/s12936-021-03713-2.
  • [9] Srivastava S, Singh PK, Vatsalya V, Karch RC. Developments in the diagnostic techniques of infectious diseases: Rural and urban prospective. Adv Infect Dis. 2018;8(3):121-138. http://dx.doi.org/10.4236/aid.2018.83012.
  • [10] Soni J, Sinha S, Pandey R. Understanding bacterial pathogeicity: a closer look at the journey of harmful microbes. Front Microbiol. 2024; 15:1370818. https://doi.org/10.3389/fmicb.2024.1370818.
  • [11] Murmu LK, Sahu AA, Barik TK. Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis. 2021; 45(3):869-876. http://dx.doi.org/10.1007/s12639-020-01333-2.
  • [12] Alipanahi R, Safari L, Khanteymoori A. CRISPR genome editing using computational approaches: A survey. Front Bioinform. 2023; 2:1001131. http://dx.doi.org/10.3389/fbinf.2022.1001131.
  • [13] Hermantara R, Richmond L, Taqi AF, Chilaka S, Jeantet V, Guerrini I, West K, West A. Improving CRISPR–Cas9 directed faithful transgene integration outcomes by reducing unwanted random DNA integration. J Biomed Sci. 2024;31(1):32. http://dx.doi.org/10.1186/s12929-024-01020-x.
  • [14] Motoche-Monar C, Ordoñez JE, Chang O, Gonzales-Zubiate FA. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement. Biomolecules. 2023; 13(12):1698. http://dx.doi.org/10.3390/biom13121698.
  • [15] Zhang H, Yan J, Lu Z, Zhou Y, Zhang Q, Cui T, Li Y, Chen H, Ma L. Deep sampling of gRNA in the human genome and deep-learning-informed prediction of gRNA activities. Cell Discov. 2023; 9:48. http://dx.doi.org/10.1038/s41421-023-00549-9.
  • [16] He W, Zhang L, Villarreal OD, Fu R, Bedford E, Dou J, Patel AY, Bedford MT, Shi X, Chen T, Bartholomew B, Xu H. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. Nat Commun. 2019; 10(1):4541. http://dx.doi.org/10.1038/s41467-019-12489-8.
  • [17] Chuai G hui, Wang QL, Liu Q. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. 2017; 35(1):12-21. http://dx.doi.org/10.1016/j.tibtech.2016.06.008.
  • [18] Karlapudi AP, Thirupati CV, Srirrama K, Nageswaran DC, Mikkili I, Ayyagari VS, Aluri RR, Butt YN, Gangadhar A. Design of CRISPR-based targets for the development of a diagnostic method for SARS-CoV-2: An in silico approach. Eurasian J Med Oncol. 2020; 4(4):304-308. http://dx.doi.org/10.14744/ejmo.2020.70579.
  • [19] Hwang GH, Song B, Bae S. Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene Genome Ed. 2021; 1:100004. http://dx.doi.org/10.1016/j.ggedit.2021.100004.
  • [20] Balon K, Sheriff A, Jacków J, Łaczmański Ł. Targeting cancer with CRISPR/Cas9-based therapy. Int J Mol Sci. 2022; 23(1):573. http://dx.doi.org/10.3390/ijms23010573.
  • [21] Ahmad A, Ashraf S, Majeed HN, Aslam S, Aslam MA, Mubarik MS, Munawar N. Bioinformatic tools in CRISPR/Cas platform. In: Ahmad A, Khan SH, Khan Z, eds. The CRISPR/Cas Tool Kit for Genome Editing. Springer; 2022: 5 pp.3-111. http://dx.doi.org/10.1007/978-981-16-6305-5_3.
  • [22] Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: A bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 Genome-Editing Systems. PLoS One. 2014; 9(9):e108424. http://dx.doi.org/10.1371/journal.pone.0108424.
  • [23] Yan H, Feng J, Yin JH, Huang F, Kong XL, Lin KM, Zhang T, Feng XY, Zhou SS, Cao JP, Xia ZG. high frequency mutations in pfdhfr and pfdhps of Plasmodium falciparum in response to sulfadoxine-pyrimethamine: A cross-sectional survey in returning Chinese migrants from Africa. Front Cell Infect Microbiol. 2021; 11:673194. https://doi.org/10.3389/fcimb.2021.673194.
  • [24] Kimani J, Phiri K, Kamiza S, Duparc S, Ayoub A, Rojo R, Robbins J, Orrico R, Vandenbroucke P. Efficacy and safety of azithromycin-chloroquine versus sulfadoxine-pyrimethamine for intermittent preventive treatment of Plasmodium falciparum malaria infection in pregnant women in Africa: An open-label, randomized trial. PLoS One. 2016; 11(6):e0157045. http://dx.doi.org/10.1371/journal.pone.0157045.
  • [25] Khattak AA, Venkatesan M, Jacob CG, Artimovich EM, Nadeem MF, Nighat F, Hombhanje F, Mita T, Malik SA, Plowe CV. A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Malar J. 2013; 12(1):300. http://dx.doi.org/10.1186/1475-2875-12-300.
  • [26] Rana R, Khan N, Sandeepta S, Pati S, Das A, Bal M, Ranjit M. Molecular surveillance of anti-malarial drug resistance genes in Plasmodium falciparum isolates in Odisha, India. Malar J. 2022; 21(1):394. http://dx.doi.org/10.1186/s12936-022-04403-3.
  • [27] Parikesit AA, Hermantara R, Kevin G, Sidhartha E. Designing hybrid CRISPR-Cas12 and LAMP detection systems for treatment-resistant Plasmodium falciparum with in silico method. Narra J. 2023; 3(3):e301-e301. http://dx.doi.org/10.52225/narra.v3i3.301.
  • [28] Ansori AN, Antonius Y, Susilo RJ, Hayaza S, Kharisma VD, Parikesit AA, Zainul R, Jakhmola V, Saklani T, Rebezov M, Ullah ME, Maksimiuk N, Derkho M, Burkov P. Application of CRISPR-Cas9 genome editing technology in various fields: review. Narra J. 2023; 3(2):e184-e184. http://dx.doi.org/10.52225/narra.v3i2.184
  • [29] Gholam GM, Irsal RAP, Mahendra FR, Dwicesaria MA, Siregar JE, Ansori ANM, Zainul R. In silico computational prediction of Saussurea pulchella compounds with inhibitory effects on plasmepsin X in Plasmodium falciparum. Informatics Med Unlocked. 2024; 49:101549. http://dx.doi.org/10.1016/J.IMU.2024.101549.
  • [30] Zainul R, Verawati R, Alam G, Nisyak K, Sari TK, Ghifari MA, Ruga R, Azhari P, Romadhon R, Barroroh H, Mandeli RS, Purnamasari D, Kharisma VD, Jakhmola V, Rebezov M, Ansori ANM. Interaction of cynaroside from Orthosiphon aristatus plant extract on TNF alpha as a stimulant in malaria and asthma. Pharmacogn J. 2023; 15(4):581-586. http://dx.doi.org/10.5530/pj.2023.15.123.
  • [31] Making and Utilizing TxDb Objects. https://bioconductor.org/packages/release/bioc/vignettes/GenomicFeatures/inst/doc/GenomicFeatures.html (accessed March 1, 2024)
  • [32] Eiken Chemical Co. Ltd. A Guide to LAMP Primer Designing (Primer Explorer V4). PrimerExplorer V5. https://primerexplorer.jp/e/v4_manual/pdf/PrimerExplorerV4_Manual_1.pdf (accessed April 1, 2024)
  • [33] LAMP primer designing software [PrimerExplorer]. http://primerexplorer.jp/e/v5_manual/index.html (accessed August 3, 2023)
  • [34] Philippidis A. Cloud Cover: Benchling Expands into Early Development. GEN Edge. 2021; 3(1):568-573. http://dx.doi.org/10.1089/genedge.3.1.093.
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Arli Aditya Parikesit1 This is me

Rio Hermantara This is me

Elizabeth Sidhartha This is me

Daniel Ryan Fugaha This is me

Devita Mayanda Heerlie This is me

Solmaz Aslanzadeh This is me

Publication Date June 4, 2025
Submission Date June 25, 2024
Acceptance Date September 7, 2024
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Parikesit1, A. A., Hermantara, R., Sidhartha, E., … Fugaha, D. R. (2025). Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline. Journal of Research in Pharmacy, 29(3), 1078-1088. https://doi.org/10.12991/jrespharm.1694230
AMA Parikesit1 AA, Hermantara R, Sidhartha E, Fugaha DR, Heerlie DM, Aslanzadeh S. Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline. J. Res. Pharm. June 2025;29(3):1078-1088. doi:10.12991/jrespharm.1694230
Chicago Parikesit1, Arli Aditya, Rio Hermantara, Elizabeth Sidhartha, Daniel Ryan Fugaha, Devita Mayanda Heerlie, and Solmaz Aslanzadeh. “Optimizing CRISPR-Cas12-Based Detection Methods for Drug-Resistant Plasmodium Falciparum With an Advanced Gene Visualization Pipeline”. Journal of Research in Pharmacy 29, no. 3 (June 2025): 1078-88. https://doi.org/10.12991/jrespharm.1694230.
EndNote Parikesit1 AA, Hermantara R, Sidhartha E, Fugaha DR, Heerlie DM, Aslanzadeh S (June 1, 2025) Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline. Journal of Research in Pharmacy 29 3 1078–1088.
IEEE A. A. Parikesit1, R. Hermantara, E. Sidhartha, D. R. Fugaha, D. M. Heerlie, and S. Aslanzadeh, “Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline”, J. Res. Pharm., vol. 29, no. 3, pp. 1078–1088, 2025, doi: 10.12991/jrespharm.1694230.
ISNAD Parikesit1, Arli Aditya et al. “Optimizing CRISPR-Cas12-Based Detection Methods for Drug-Resistant Plasmodium Falciparum With an Advanced Gene Visualization Pipeline”. Journal of Research in Pharmacy 29/3 (June2025), 1078-1088. https://doi.org/10.12991/jrespharm.1694230.
JAMA Parikesit1 AA, Hermantara R, Sidhartha E, Fugaha DR, Heerlie DM, Aslanzadeh S. Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline. J. Res. Pharm. 2025;29:1078–1088.
MLA Parikesit1, Arli Aditya et al. “Optimizing CRISPR-Cas12-Based Detection Methods for Drug-Resistant Plasmodium Falciparum With an Advanced Gene Visualization Pipeline”. Journal of Research in Pharmacy, vol. 29, no. 3, 2025, pp. 1078-8, doi:10.12991/jrespharm.1694230.
Vancouver Parikesit1 AA, Hermantara R, Sidhartha E, Fugaha DR, Heerlie DM, Aslanzadeh S. Optimizing CRISPR-Cas12-based detection methods for drug-resistant Plasmodium falciparum with an advanced gene visualization pipeline. J. Res. Pharm. 2025;29(3):1078-8.