Review
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 3, 1111 - 1121, 04.06.2025
https://doi.org/10.12991/jrespharm.1694292

Abstract

References

  • [1] Signore A. About inflammation and infection. EJNMMI Res. 2013; 3: 8. https://dx.doi.org/10.1186/2191-219X-3-8
  • [2] Oronsky B, Caroen S, Reid T. What exactly is inflammation (and what is it not?). Int J Mol Sci. 2022; 23(23): 14905. https://doi.org/10.3390/ijms232314905
  • [3] Heim N, Wiedemeyer V, Reich RH, Martini M. The role of C-reactive protein and white blood cell count in the prediction of length of stay in hospital and severity of odontogenic abscess. J Craniomaxillofac Surg. 2018;46(12):2220-2226. https://doi.org/10.1016/j.jcms.2018.10.013
  • [4] Yusa T, Tateda K, Ohara A, Miyazaki S. New possible biomarkers for diagnosis of infections and diagnostic distinction between bacterial and viral infections in children. J Infect Chemother. 2017; 23(2): 96-100. https://doi.org/10.1016/j.jiac.2016.11.002
  • [5] Termaat MF, Raijmakers PGHM, Scholten HJ, Bakker FC, Patka P, Haarman HJTM. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005; 87(11): 2464-2471.
  • [6] Navalkissoor S, Nowosinska E, Gnanasegaran G, Buscombe JR. Single-photon emission computed tomography–computed tomography in imaging infection. Nucl Med Commun. 2013; 34(4): 283-290. https://doi.org/10.1097/MNM.0b013e32835f0ac7
  • [7] Glaudemans AWJM, Quintero AM, Signore A. PET/MRI in infectious and inflammatory diseases: will it be a useful improvement? Eur J Nucl Med Mol Imaging. 2012; 39(5): 745-749. https://doi.org/10.1007/s00259-012-2060-9
  • [8] Erdogan S. Liposomal nanocarriers for tumor imaging. J Biomed Nanotechnol. 2009; 5(2): 141-150. https://doi.org/10.1166/jbn.2009.1016
  • [9] Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial probes for nuclear imaging. Nanomaterials. 2022; 12(4): 582. https://doi.org/10.3390/nano12040582
  • [10] Ordonez AA, Jain SK. Pathogen-specific bacterial imaging in nuclear medicine. Semin Nucl Med. 2018; 48(2): 182-194. https://doi.org/10.1053/j.semnuclmed.2017.11.003
  • [11] Glaudemans AWJM, de Vries EFJ, Galli F, Dierckx RAJO, Slart RHJA, Signore A. The Use of 18F‐FDG‐PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol. 2013; 2013: 623036. https://doi.org/10.1155/2013/623036
  • [12] Corstens FH, van der Meer JW. Nuclear medicine's role in infection and inflammation. Lancet. 1999; 354(9180): 765-770. https://doi.org/10.1016/S0140-6736(99)06070-5
  • [13] Riddhi PD, Patel PM, Patel NM. A review on radiopharmaceuti‐cals and radiochemical method in analysis. Int J Pharm Biol Arch. 2011; 2(4): 1062-1067.
  • [14] Salmanoglu E, Kim S, Thakur ML. Currently available radiopharmaceuticals for imaging infection and the holy grail. Semin Nucl Med; 2018: 48(2): 86-99. https://doi.org/10.1053/j.semnuclmed.2017.10.003
  • [15] Hoffer P. Gallium: mechanisms. J Nucl Med. 1980;21(3): 282-285.
  • [16] Palestro CJ. Radionuclide imaging of musculoskeletal infection: A review. J Nucl Med. 2016; 57(9): 1406-1412. https://doi.org/10.2967/jnumed.115.157297
  • [17] Connolly CM, Donohoe KJ. Nuclear medicine imaging of infection. Semin Roentgenol. 2017; 52(2): 114-119. https://doi.org/10.1053/j.ro.2016.07.001
  • [18] Das SS, Hall AV, Wareham DW, Britton KE. Infection imaging with radiopharmaceuticals in the 21st century. Braz Arch Biol Technol. 2002; 45: 25-37. https://doi.org/10.1590/S1516-89132002000500005
  • [19] Goldsmith SJ, Vallabhajosula S. Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Semin Nucl Med; 2009: 39(1): 2-10. https://doi.org/10.1053/j.semnuclmed.2008.08.002
  • [20] Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004; 32(2): 47-57.
  • [21] Karesh SM, Henkin RE. Preparation of 111In leukocytes after hemolytic removal of erythrocytes. Int J Rad Appl Instrum Part B. 1987; 14(1): 79-80. https://doi.org/10.1016/0883-2897(87)90166-8
  • [22] Robins PD, Salazar I, Forstrom LA, Mullan BP, Hung JC. Biodistribution and radiation dosimetry of stabilized 99mTc-exametazime-labeled leukocytes in normal subjects. J Nucl Med. 2000; 41(5): 934-940.
  • [23] Weldon MJ, Joseph AE, French A, Saverymuttu SH, Maxwell JD. Comparison of 99m technetium hexamethylpropylene-amine oxime labelled leucocyte with 111-indium tropolonate labelled granulocyte scanning and ultrasound in the diagnosis of intra-abdominal abscess. Gut. 1995; 37(4): 557-564. https://doi.org/10.1136/gut.37.4.557
  • [24] Kakkar D, Tiwari AK, Singh H, Mishra AK. Past and present scenario of imaging infection and inflammation: A nuclear medicine perspective. Mol Imaging. 2012;11(4): 09–337 309. https://doi.org/10.2310/7290.2011.00051
  • [25] Palestro CJ, Torres M. Radionuclide imaging of nonosseous infection. Q J Nucl Med. 1999; 43(1): 46-60.
  • [26] Autio A, Jalkanen S, Roivainen A. Nuclear imaging of inflammation: homing-associated molecules as targets. EJNMMI Res. 2013; 3: 1-7. https://doi.org/10.1186/2191-219X-3-1
  • [27] Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013; 54(4): 647-658. https://doi.org/10.2967/jnumed.112.112524
  • [28] van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med; 2010: 40(1): 3-15. https://doi.org/10.1053/j.semnuclmed.2009.08.005
  • [29] Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol. 2005; 52(3): 381-390. https://doi.org/10.1016/j.jaad.2004.08.026
  • [30] Akhtar MS, Imran MB, Nadeem MA, Shahid A. Antimicrobial peptides as infection imaging agents: better than radiolabeled antibiotics. Int J Pept. 2012; 965238. https://doi.org/10.1155/2012/965238
  • [31] Okarvi SM. Peptide‐based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med Res Rev. 2004; 24(3): 357-397. https://doi.org/10.1002/med.20002
  • [32] Okarvi S. Recent developments in 99Tcm-labelled peptide-based radiopharmaceuticals: an overview. Nucl Med Commun. 1999; 20(12): 1093-1112. https://dx.doi.org/10.1097/00006231-199912000-00002
  • [33] Akhtar MS, Qaisar A, Irfanullah J, Iqbal J, Khan B, Jehangir M, Nadeem MA, Khan MA, Afzal MS, Ul-Haq I, Imran MB. Antimicrobial peptide 99mTc-ubiquicidin 29–41 as human infection-imaging agent: clinical trial. J Nucl Med. 2005; 46(4): 567-573.
  • [34] Jiang Y, Zhang J. Current status of and perspectives on radiolabelled Ubiquicidin 29-41 derivatives for bacterial infection imaging. Mini-Rev Med Chem. 2023; 23(15): 1500-1506. https://dx.doi.org/10.2174/1389557523666230131100654
  • [35] Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med. 2000; 27(3): 292-301. https://doi.org/10.1007/s002590050036
  • [36] Mitra JB, Chatterjee S, Kumar A, Bandyopadhyay A, Mukherjee A. Integrating a covalent probe with ubiquicidin fragment enables effective bacterial infection imaging. RSC Med Chem. 2022; 13(10): 1239-1245. https://doi.org/10.1039/D2MD00190J
  • [37] Akhtar MS, Iqbal J, Khan MA, Irfanullah J, Jehangir M, Khan B, Ul-Haq I, Muhammad G, Nadeem MA, Afzal MS, Imran MB. 99mTc-labeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection. J Nucl Med. 2004;45(5):849-56.
  • [38] Singh A, Verma J, Bhatnager A, Sen S. Tc-99m Isoniazid: A specific agent for diagnosis of tuberculosis. World J Nuc Med. 2003;2(4):292-305.
  • [39] van Genugten EAJ, van Lith TJ, van den Heuvel FMA, van Steenis JL, Ten Heggeler RM, Brink M, Rodwell L, Meijer FJA, Lobeek D, Have WHT, van de Veerdonk FL, Netea MG, Prokop M, Nijveldt R, Tuladhar AM, Aarntzen EHJG. Gallium-68 labelled RGD PET/CT imaging of endothelial activation in COVID-19 patients. Sci Rep. 2023; 13(1): 11507. https://doi.org/10.1038/s41598-023-37390-9.
  • [40] Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256(5517): 495-497.https://doi.org/10.1038/256495a0
  • [41] Harrison KA, Tempero MA. Diagnostic use of radiolabeled antibodies for cancer. Oncology (Williston Park). 1995; 9(7): 625-631.
  • [42] Palesto CJ. Radiolabeled Antibodies for Diagnostic Imaging. In: Dübel S, Reichert JM (Eds). Handbook of therapeutic antibodies: Wiley‐VCH Verlag GmbH & Co., 2014, pp. 2123-2142. https://doi.org/10.1002/9783527682423.ch76
  • [43] Sarcan ET, Özer Y. Monoclonal antibodies and immuno-PET imaging: An overview. FABAD J Pharm Sci. 2023; 48(1): 165-182. https://doi.org/10.55262/fabadeczacilik.1172020
  • [44] Erdogan S, Roby A, Sawant R, Hurley J, Torchilin VP. Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J Liposome Res. 2006; 16(1): 45-55. https://doi.org/10.1080/08982100500528784
  • [45] Silindir-Gunay M, Karpuz M, Ozturk N, Ozer AY, Erdogan S, Tuncel M. Radiolabeled, folate-conjugated liposomes as tumor imaging agents: formulation and in vitro evaluation. J Drug Deliv Sci Technol. 2019; 50: 321-328. https://doi.org/10.1016/j.jddst.2019.02.003
  • [46] Bensimon C, Redshaw R. Antibody Radiolabeling. In: Shire SJ, Gombotz W, Bechtold-Peters K, Andya J (Eds). Current Trends in Monoclonal Antibody Development and Manufacturing. Springer, New York, 2010, pp. 323-344. https://doi.org/10.1007/978-0-387-76643-0
  • [47] Nijhof MW, Oyen WJ, van Kampen A, Claessens RA, van der Meer JW, Corstens FH. Evaluation of infections of the locomotor system with indium-111-labeled human IgG scintigraphy. J Nucl Med. 1997; 38(8): 1300-1305.
  • [48] Buscombe JR, Oyen WJG, Grant A, Claessens RAMJ, van der Meer JWM, Corstens FHM, Ell PJ, Miller RF. Indium-111-labeled polyclonal human immunoglobulin: identifying focal infection in patients positive for human immunodeficiency virus. J Nucl Med. 1993; 34(10): 1621-1625.
  • [49] Oyen WJ, Claessens RA, Raemaekers JM, de Pauw BE, van der Meer JW, Corstens FH. Diagnosing infection in febrile granulocytopenic patients with indium-111-labeled human immunoglobulin G. J Clin Oncol. 1992; 10(1): 61-68. https://dx.doi.org/10.1200/JCO.1992.10.1.61
  • [50] Rubin RH, Young LS, Hansen WP, Nedelman M, Wilkinson R, Nelles MJ, Callahan R, Khaw BA, Strausset HW. Specific and nonspecific imaging of localized Fisher immunotype 1 Pseudomonas aeruginosa infection with radiolabeled monoclonal antibody. J Nucl Med. 1988; 29(5): 651-656.
  • [51] Huang JT, Raiszadeh M, Sakimura I, Montgomerie JZ, Harwig JF. Detection of bacterial endocarditis with technetium-99m-labeled antistaphylococcal antibody. J Nucl Med. 1980; 21(8): 783-786.
  • [52] Goldenberg DM, Sharkey RM, Udem S, Vagg R, Levine GM, Conte P, Swayne LC, Hansen HJ, Cunniff D, Anton J, Linke MJ, Smulian AG, Walzer PD. Immunoscintigraphy of Pneumocystis carinii pneumonia in AIDS patients. J Nucl Med. 1994; 35(6): 1028-1034.
  • [53] Palestro CJ, Kipper SL, Weiland FL, Love C, Tomas MB. Osteomyelitis: diagnosis with 99mTc-labeled antigranulocyte antibodies compared with diagnosis with 111In-labeled leukocytes—initial experience. Radiology. 2002; 223(3): 758-764. https://doi.org/10.1148/radiol.2233011072
  • [54] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346(6287): 818-822. https://doi.org/10.1038/346818a0
  • [55] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249(4968): 505-510. https://doi.org/10.1126/science.2200121
  • [56] Wandtke T, Woźniak J, Kopiński P. Aptamers in diagnostics and treatment of viral infections. Viruses. 2015; 7(2): 751-780. https://doi.org/10.3390/v7020751
  • [57] Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nature Reviews Drug Discovery. 2010; 9(7): 537-550. https://doi.org/10.1038/nrd3141
  • [58] Hidding J. Master Thesis, A therapeutic battle: Antibodies vs. Aptamers. University of Groningen, Nanosci Master Progr, 2017; NS109 Research Paper.
  • [59] Lopez-Silva C, Surapaneni A, Coresh J, Reiser J, Parikh CR, Obeid W, Grams ME, Chen TK. Comparison of aptamer-based and antibody-based assays for protein quantification in chronic kidney disease. Clin J Am Soc Nephrol. 2022; 17(3): 350-360. https://dx.doi.org/10.2215/CJN.11700921
  • [60] Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl. 2012; 6(11-12): 563-573. https://dx.doi.org/10.1002/prca.201200042
  • [61] Ferreira IM, de Souza Lacerda CM, de Faria LS, Corrêa CR, de Andrade ASR. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl Biochem Biotechnol. 2014; 174: 2548-2556. https://doi.org/10.1007/s12010-014-1206-6
  • [62] Banerjee J, Nilsen-Hamilton M. Aptamers: Multifunctional molecules for biomedical research. J Mol Med (Berl). 2013; 91: 1333-1342. https://doi.org/10.1007/s00109-013-1085-2
  • [63] Barbas AS, Mi J, Clary BM, White RR. Aptamer applications for targeted cancer therapy. Future Oncol. 2010; 6(7): 1117-1126. https://doi.org/10.2217/fon.10.67
  • [64] Ilgu M, Fazlioglu R, Ozturk M, Ozsurekci Y, Nilsen-Hamilton M. Aptamers for diagnostics with applications for infectious diseases. Recent Adv Anal Chem. 2019:1-32. https://doi.org/10.5772/intechopen.84867
  • [65] Lavania S, Das R, Dhiman A, Myneedu VP, Verma A, Singh N, Sharma TK, Tyagi JS. Aptamer-Based TB Antigen tests for the rapid diagnosis of pulmonary tuberculosis: Potential utility in screening for tuberculosis. ACS Infect Dis. 2018; 4(12): 1718-1726. https://doi.org/10.1021/acsinfecdis.8b00201.
  • [66] Sypabekova M, Jolly P, Estrela P, Kanayeva D. Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron. 2019; 123: 141-1451. https://doi.org/10.1016/j.bios.2018.07.053
  • [67] Chen Y, Liu X, Guo S, Cao J, Zhou J, Zuo J, Bai L. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C(60)NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials. 2019; 216: 119253. https://doi.org/10.1016/j.biomaterials.2019.119253
  • [68] Ye H, Duan N, Gu H, Wang H, Wang Z. Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Mikrochim Acta. 2019; 186(3): 173. https://doi.org/10.1007/s00604-019-3261-8
  • [69] Li L, Li Q, Liao Z, Sun Y, Cheng Q, Song Y, Song E, Tan W. Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens. Anal Chem. 2018; 90(15): 9621-9628. https://doi.org/10.1021/acs.analchem.8b02572
  • [70] Cai R, Yin F, Zhang Z, Tian Y, Zhou N. Functional chimera aptamer and molecular beacon based fluorescent detection of Staphylococcus aureus with strand displacement-target recycling amplification. Anal Chim Acta. 2019; 1075: 128-136. https://doi.org/10.1016/j.aca.2019.05.014
  • [71] Wei X, Zhou W, Sanjay ST, Zhang J, Jin Q, Xu F, Dominguez DC, Li X. Multiplexed Instrument-Free Bar-Chart SpinChip integrated with nanoparticle-mediated magnetic aptasensors for visual quantitative detection of multiple pathogens. Anal Chem. 2018; 90(16): 9888-9896. https://dx.doi.org/10.1021/acs.analchem.8b02055
  • [72] Zhang Y, Zhu L, He P, Zi F, Hu X, Wang Q. Sensitive assay of Escherichia coli in food samples by microchip capillary electrophoresis based on specific aptamer binding strategy. Talanta. 2019; 197: 284-290. https://dx.doi.org/10.1016/j.talanta.2019.01.040
  • [73] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Sİ HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270-273. https://dx.doi.org/10.1038/s41586-020-2012-7
  • [74] Caglayan MO, Üstündağ Z. Spectrophotometric ellipsometry based Tat-protein RNA-aptasensor for HIV-1 diagnosis. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 227: 117748. https://dx.doi.org/10.1016/j.saa.2019.117748
  • [75] Ghanbari K, Roushani M, Azadbakht A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem. 2017; 534: 64-69. https://dx.doi.org/10.1016/j.ab.2017.07.016
  • [76] Li X, Yin C, Wu Y, Zhang Z, Jiang D, Xiao D, Fang X, Zhou C. Plasmonic nanoplatform for point-of-care testing trace HCV core protein. Biosens Bioelectron. 2020; 147: 111488. https://dx.doi.org/10.1016/j.bios.2019.111488
  • [77] Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997; 4(11): 809-816. https://doi.org/10.1016/S1074-5521(97)90114-9
  • [78] Dos Santos SR, de Sousa Lacerda CM, Ferreira IM, Dos Santos SR, de Barros ALB, Fernandes SO, Cardoso VN, de Andrade ASR. Scintigraphic imaging of Staphylococcus aureus infection using 99mTc radiolabeled aptamers. Appl Radiat Isot. 2017; 128: 22-27. https://doi.org/10.1016/j.apradiso.2017.06.043
  • [79] Dos Santos SR, Corrêa CR, de Barros ALB, Serakides R, Fernandes SO, Cardoso VN, de Andrade ASR. Identification of Staphylococcus aureus infection by aptamers directly radiolabeled with technetium-99m. Nucl Med Biol. 2015; 42(3): 292-298. https://doi.org/10.1016/j.nucmedbio.2014.12.002
  • [80] Ferreira IM. de Souza Lacerda CM, Santos SR, Fernandes SO, de Barros AB, Cardoso VN, Andrade ASR: Evaluation of anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification. International Nuclear Atlantic Conference, INAC-2017, Belo Horizonte, Brazil, 2017.
  • [81] Chen X, Yan GY. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics. 2013; 29(20): 2617-2624. https://doi.org/10.1093/bioinformatics/btt426
  • [82] de Sousa Lacerda CM, Ferreira IM, Dos Santos SR, de Barros ALB, Fernandes SO, Cardoso VN, de Andrade ASR. (1→ 3)-β-D-glucan aptamers labeled with technetium-99 m: Biodistribution and imaging in experimental models of bacterial and fungal infection. Nucl Med Biol. 2017; 46: 19-24. https://doi.org/10.1016/j.nucmedbio.2016.11.008
  • [83] Singh B, Mittal B, Bhattacharya A, Aggarwal A, Nagi O, Singh A. Technetium-99m ciprofloxacin imaging in the diagnosis of postsurgical bony infection and evaluation of the response to antibiotic therapy: A case report. J Orthop Surg (Hong Kong). 2005; 13(2): 190-194. https://doi.org/10.1177/230949900501300217
  • [84] Solanki KK, Bomanji J, Siraj Q, Small M, Britton KE. Tc-99m “Infecton”—a new class of radiopharmaceutical for imaging infection. J Nucl Med. 1993; 34(Suppl): 119.
  • [85] Malamitsi J, Giamarellou H, Kanellakopoulou K, Dounis E, Grecka V, Christakopoulos J, Koratzanis G, Antoniadou A, Panoutsopoulos G, Batsakis C, Proukakis C. Infecton: a 99mTc-ciprofloxacin radiopharmaceutical for the detection of bone infection. Clin Microbiol Infect. 2003;9(2):101-109.https://doi.org/10.1046/j.1469-0691.2003.00506.x
  • [86] Choe YM, Choe W, Lee KY, Ahn SI, Kim K, Cho YU, Choi SK, Hur YS, Kim SJ, Hong KC, Shin SH, Kim KR, Woo ZH. Tc-99m ciprofloxacin imaging in acute cholecystitis. World J Gastroenterol: 2007; 13(23): 3249-3252.
  • [87] Barreto VG, Iglesias F, Roca M, Tubau F, Martín-Comín J. Labelling of ceftizoxime with 99mTc. Rev Esp Med Nucl. 2000; 19(7): 479-483. [88] Motaleb IM, Attalah K. Synthesis and biological distribution of 99m Tc–norfloxacin complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem. 2010; 285(3): 431-436. https://doi.org/10.1007/s10967-010-0607-4
  • [89] El-Ghany EA, El-Kolaly T, Amine AM, El-Sayed AS, Abdel-Gelil F. Synthesis of 99m Tc-pefloxacin: A new targeting agent for infectious foci. J Radioanal Nucl Chem. 2005; 266(1): 131-139. https://doi.org/10.1007/s10967-005-0881-8
  • [90] Motaleb MA. Preparation and biodistribution of 99mTc-lomefloxacin and 99mTc-ofloxacin complexes. J Radioanal Nucl Chem. 2007; 272(1): 95-99. https://doi.org/10.1007/s10967-006-6786-3
  • [91] İlem‐Özdemir D, Asikoglu M, Ozkilic H, Yilmaz F, Hosgor‐Limoncu M, Ayhan S. 99mTc‐Doxycycline hyclate: A new radiolabeled antibiotic for bacterial infection imaging. J Labelled Comp Radiopharm. 2014; 57(1): 36-41. https://doi.org/10.1002/jlcr.3135
  • [92] Silindir-Gunay M, Ozer AY. 99mTc-radiolabeled Levofloxacin and micelles as infection and inflammation imaging agents. J Drug Deliv Sci Technol. 2020; 56: 101571. https://doi.org/10.1016/j.jddst.2020.101571
  • [93] Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naicker T, Ebenhan T. Antibiotic‐Derived Radiotracers for Positron Emission Tomography: Nuclear or “Unclear” Infection Imaging? Angew Chem Int Ed Engl. 2022; 134(45): e202204955. https://doi.org/10.1002/anie.202204955
  • [94] Welling MM, Visentin R, Feitsma HIJ, Lupetti A, Pauwels EKJ, Nibbering PH. Infection detection in mice using 99mTc-labeled HYNIC and N2S2 chelate conjugated to the antimicrobial peptide UBI 29-41. Nucl Med Biol. 2004; 31(4): 503-509. https://doi.org/10.1016/j.nucmedbio.2003.11.009
  • [95] Northrup JD, Mach RH, Sellmyer MA. Radiochemical approaches to imaging bacterial infections: Intracellular versus extracellular targets. Int J Mol Sci. 2019; 20(22): 5808. https://doi.org/10.3390/ijms20225808

Radiopharmaceuticals for infection imaging

Year 2025, Volume: 29 Issue: 3, 1111 - 1121, 04.06.2025
https://doi.org/10.12991/jrespharm.1694292

Abstract

Infectious diseases hold significant global importance, resulting in millions of deaths annually and spreading so swiftly that they present a global public health threat. Diagnosis of infections is usually based on a detailed anamnesis, physical examination, as well as laboratory evaluation, and imaging methods. Nuclear medicine and radionuclide imaging have gained a significant role in the diagnosis of infection in the last decades, mainly due to the restrictions and limitations of conventional diagnosis methods in detecting and diffracting sterile inflammation and infection. In recent years different agents such as peptides, aptamers, and antibodies have been investigated for infection imaging due to the success they accomplished in radio imaging diagnosis of different diseases. In this review, currently used and novel tracers for infection/inflammation imaging have been summarized and their advantages and disadvantages have been reviewed for further possible studies.

References

  • [1] Signore A. About inflammation and infection. EJNMMI Res. 2013; 3: 8. https://dx.doi.org/10.1186/2191-219X-3-8
  • [2] Oronsky B, Caroen S, Reid T. What exactly is inflammation (and what is it not?). Int J Mol Sci. 2022; 23(23): 14905. https://doi.org/10.3390/ijms232314905
  • [3] Heim N, Wiedemeyer V, Reich RH, Martini M. The role of C-reactive protein and white blood cell count in the prediction of length of stay in hospital and severity of odontogenic abscess. J Craniomaxillofac Surg. 2018;46(12):2220-2226. https://doi.org/10.1016/j.jcms.2018.10.013
  • [4] Yusa T, Tateda K, Ohara A, Miyazaki S. New possible biomarkers for diagnosis of infections and diagnostic distinction between bacterial and viral infections in children. J Infect Chemother. 2017; 23(2): 96-100. https://doi.org/10.1016/j.jiac.2016.11.002
  • [5] Termaat MF, Raijmakers PGHM, Scholten HJ, Bakker FC, Patka P, Haarman HJTM. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005; 87(11): 2464-2471.
  • [6] Navalkissoor S, Nowosinska E, Gnanasegaran G, Buscombe JR. Single-photon emission computed tomography–computed tomography in imaging infection. Nucl Med Commun. 2013; 34(4): 283-290. https://doi.org/10.1097/MNM.0b013e32835f0ac7
  • [7] Glaudemans AWJM, Quintero AM, Signore A. PET/MRI in infectious and inflammatory diseases: will it be a useful improvement? Eur J Nucl Med Mol Imaging. 2012; 39(5): 745-749. https://doi.org/10.1007/s00259-012-2060-9
  • [8] Erdogan S. Liposomal nanocarriers for tumor imaging. J Biomed Nanotechnol. 2009; 5(2): 141-150. https://doi.org/10.1166/jbn.2009.1016
  • [9] Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial probes for nuclear imaging. Nanomaterials. 2022; 12(4): 582. https://doi.org/10.3390/nano12040582
  • [10] Ordonez AA, Jain SK. Pathogen-specific bacterial imaging in nuclear medicine. Semin Nucl Med. 2018; 48(2): 182-194. https://doi.org/10.1053/j.semnuclmed.2017.11.003
  • [11] Glaudemans AWJM, de Vries EFJ, Galli F, Dierckx RAJO, Slart RHJA, Signore A. The Use of 18F‐FDG‐PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol. 2013; 2013: 623036. https://doi.org/10.1155/2013/623036
  • [12] Corstens FH, van der Meer JW. Nuclear medicine's role in infection and inflammation. Lancet. 1999; 354(9180): 765-770. https://doi.org/10.1016/S0140-6736(99)06070-5
  • [13] Riddhi PD, Patel PM, Patel NM. A review on radiopharmaceuti‐cals and radiochemical method in analysis. Int J Pharm Biol Arch. 2011; 2(4): 1062-1067.
  • [14] Salmanoglu E, Kim S, Thakur ML. Currently available radiopharmaceuticals for imaging infection and the holy grail. Semin Nucl Med; 2018: 48(2): 86-99. https://doi.org/10.1053/j.semnuclmed.2017.10.003
  • [15] Hoffer P. Gallium: mechanisms. J Nucl Med. 1980;21(3): 282-285.
  • [16] Palestro CJ. Radionuclide imaging of musculoskeletal infection: A review. J Nucl Med. 2016; 57(9): 1406-1412. https://doi.org/10.2967/jnumed.115.157297
  • [17] Connolly CM, Donohoe KJ. Nuclear medicine imaging of infection. Semin Roentgenol. 2017; 52(2): 114-119. https://doi.org/10.1053/j.ro.2016.07.001
  • [18] Das SS, Hall AV, Wareham DW, Britton KE. Infection imaging with radiopharmaceuticals in the 21st century. Braz Arch Biol Technol. 2002; 45: 25-37. https://doi.org/10.1590/S1516-89132002000500005
  • [19] Goldsmith SJ, Vallabhajosula S. Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Semin Nucl Med; 2009: 39(1): 2-10. https://doi.org/10.1053/j.semnuclmed.2008.08.002
  • [20] Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Technol. 2004; 32(2): 47-57.
  • [21] Karesh SM, Henkin RE. Preparation of 111In leukocytes after hemolytic removal of erythrocytes. Int J Rad Appl Instrum Part B. 1987; 14(1): 79-80. https://doi.org/10.1016/0883-2897(87)90166-8
  • [22] Robins PD, Salazar I, Forstrom LA, Mullan BP, Hung JC. Biodistribution and radiation dosimetry of stabilized 99mTc-exametazime-labeled leukocytes in normal subjects. J Nucl Med. 2000; 41(5): 934-940.
  • [23] Weldon MJ, Joseph AE, French A, Saverymuttu SH, Maxwell JD. Comparison of 99m technetium hexamethylpropylene-amine oxime labelled leucocyte with 111-indium tropolonate labelled granulocyte scanning and ultrasound in the diagnosis of intra-abdominal abscess. Gut. 1995; 37(4): 557-564. https://doi.org/10.1136/gut.37.4.557
  • [24] Kakkar D, Tiwari AK, Singh H, Mishra AK. Past and present scenario of imaging infection and inflammation: A nuclear medicine perspective. Mol Imaging. 2012;11(4): 09–337 309. https://doi.org/10.2310/7290.2011.00051
  • [25] Palestro CJ, Torres M. Radionuclide imaging of nonosseous infection. Q J Nucl Med. 1999; 43(1): 46-60.
  • [26] Autio A, Jalkanen S, Roivainen A. Nuclear imaging of inflammation: homing-associated molecules as targets. EJNMMI Res. 2013; 3: 1-7. https://doi.org/10.1186/2191-219X-3-1
  • [27] Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013; 54(4): 647-658. https://doi.org/10.2967/jnumed.112.112524
  • [28] van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med; 2010: 40(1): 3-15. https://doi.org/10.1053/j.semnuclmed.2009.08.005
  • [29] Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol. 2005; 52(3): 381-390. https://doi.org/10.1016/j.jaad.2004.08.026
  • [30] Akhtar MS, Imran MB, Nadeem MA, Shahid A. Antimicrobial peptides as infection imaging agents: better than radiolabeled antibiotics. Int J Pept. 2012; 965238. https://doi.org/10.1155/2012/965238
  • [31] Okarvi SM. Peptide‐based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med Res Rev. 2004; 24(3): 357-397. https://doi.org/10.1002/med.20002
  • [32] Okarvi S. Recent developments in 99Tcm-labelled peptide-based radiopharmaceuticals: an overview. Nucl Med Commun. 1999; 20(12): 1093-1112. https://dx.doi.org/10.1097/00006231-199912000-00002
  • [33] Akhtar MS, Qaisar A, Irfanullah J, Iqbal J, Khan B, Jehangir M, Nadeem MA, Khan MA, Afzal MS, Ul-Haq I, Imran MB. Antimicrobial peptide 99mTc-ubiquicidin 29–41 as human infection-imaging agent: clinical trial. J Nucl Med. 2005; 46(4): 567-573.
  • [34] Jiang Y, Zhang J. Current status of and perspectives on radiolabelled Ubiquicidin 29-41 derivatives for bacterial infection imaging. Mini-Rev Med Chem. 2023; 23(15): 1500-1506. https://dx.doi.org/10.2174/1389557523666230131100654
  • [35] Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med. 2000; 27(3): 292-301. https://doi.org/10.1007/s002590050036
  • [36] Mitra JB, Chatterjee S, Kumar A, Bandyopadhyay A, Mukherjee A. Integrating a covalent probe with ubiquicidin fragment enables effective bacterial infection imaging. RSC Med Chem. 2022; 13(10): 1239-1245. https://doi.org/10.1039/D2MD00190J
  • [37] Akhtar MS, Iqbal J, Khan MA, Irfanullah J, Jehangir M, Khan B, Ul-Haq I, Muhammad G, Nadeem MA, Afzal MS, Imran MB. 99mTc-labeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection. J Nucl Med. 2004;45(5):849-56.
  • [38] Singh A, Verma J, Bhatnager A, Sen S. Tc-99m Isoniazid: A specific agent for diagnosis of tuberculosis. World J Nuc Med. 2003;2(4):292-305.
  • [39] van Genugten EAJ, van Lith TJ, van den Heuvel FMA, van Steenis JL, Ten Heggeler RM, Brink M, Rodwell L, Meijer FJA, Lobeek D, Have WHT, van de Veerdonk FL, Netea MG, Prokop M, Nijveldt R, Tuladhar AM, Aarntzen EHJG. Gallium-68 labelled RGD PET/CT imaging of endothelial activation in COVID-19 patients. Sci Rep. 2023; 13(1): 11507. https://doi.org/10.1038/s41598-023-37390-9.
  • [40] Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256(5517): 495-497.https://doi.org/10.1038/256495a0
  • [41] Harrison KA, Tempero MA. Diagnostic use of radiolabeled antibodies for cancer. Oncology (Williston Park). 1995; 9(7): 625-631.
  • [42] Palesto CJ. Radiolabeled Antibodies for Diagnostic Imaging. In: Dübel S, Reichert JM (Eds). Handbook of therapeutic antibodies: Wiley‐VCH Verlag GmbH & Co., 2014, pp. 2123-2142. https://doi.org/10.1002/9783527682423.ch76
  • [43] Sarcan ET, Özer Y. Monoclonal antibodies and immuno-PET imaging: An overview. FABAD J Pharm Sci. 2023; 48(1): 165-182. https://doi.org/10.55262/fabadeczacilik.1172020
  • [44] Erdogan S, Roby A, Sawant R, Hurley J, Torchilin VP. Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J Liposome Res. 2006; 16(1): 45-55. https://doi.org/10.1080/08982100500528784
  • [45] Silindir-Gunay M, Karpuz M, Ozturk N, Ozer AY, Erdogan S, Tuncel M. Radiolabeled, folate-conjugated liposomes as tumor imaging agents: formulation and in vitro evaluation. J Drug Deliv Sci Technol. 2019; 50: 321-328. https://doi.org/10.1016/j.jddst.2019.02.003
  • [46] Bensimon C, Redshaw R. Antibody Radiolabeling. In: Shire SJ, Gombotz W, Bechtold-Peters K, Andya J (Eds). Current Trends in Monoclonal Antibody Development and Manufacturing. Springer, New York, 2010, pp. 323-344. https://doi.org/10.1007/978-0-387-76643-0
  • [47] Nijhof MW, Oyen WJ, van Kampen A, Claessens RA, van der Meer JW, Corstens FH. Evaluation of infections of the locomotor system with indium-111-labeled human IgG scintigraphy. J Nucl Med. 1997; 38(8): 1300-1305.
  • [48] Buscombe JR, Oyen WJG, Grant A, Claessens RAMJ, van der Meer JWM, Corstens FHM, Ell PJ, Miller RF. Indium-111-labeled polyclonal human immunoglobulin: identifying focal infection in patients positive for human immunodeficiency virus. J Nucl Med. 1993; 34(10): 1621-1625.
  • [49] Oyen WJ, Claessens RA, Raemaekers JM, de Pauw BE, van der Meer JW, Corstens FH. Diagnosing infection in febrile granulocytopenic patients with indium-111-labeled human immunoglobulin G. J Clin Oncol. 1992; 10(1): 61-68. https://dx.doi.org/10.1200/JCO.1992.10.1.61
  • [50] Rubin RH, Young LS, Hansen WP, Nedelman M, Wilkinson R, Nelles MJ, Callahan R, Khaw BA, Strausset HW. Specific and nonspecific imaging of localized Fisher immunotype 1 Pseudomonas aeruginosa infection with radiolabeled monoclonal antibody. J Nucl Med. 1988; 29(5): 651-656.
  • [51] Huang JT, Raiszadeh M, Sakimura I, Montgomerie JZ, Harwig JF. Detection of bacterial endocarditis with technetium-99m-labeled antistaphylococcal antibody. J Nucl Med. 1980; 21(8): 783-786.
  • [52] Goldenberg DM, Sharkey RM, Udem S, Vagg R, Levine GM, Conte P, Swayne LC, Hansen HJ, Cunniff D, Anton J, Linke MJ, Smulian AG, Walzer PD. Immunoscintigraphy of Pneumocystis carinii pneumonia in AIDS patients. J Nucl Med. 1994; 35(6): 1028-1034.
  • [53] Palestro CJ, Kipper SL, Weiland FL, Love C, Tomas MB. Osteomyelitis: diagnosis with 99mTc-labeled antigranulocyte antibodies compared with diagnosis with 111In-labeled leukocytes—initial experience. Radiology. 2002; 223(3): 758-764. https://doi.org/10.1148/radiol.2233011072
  • [54] Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346(6287): 818-822. https://doi.org/10.1038/346818a0
  • [55] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249(4968): 505-510. https://doi.org/10.1126/science.2200121
  • [56] Wandtke T, Woźniak J, Kopiński P. Aptamers in diagnostics and treatment of viral infections. Viruses. 2015; 7(2): 751-780. https://doi.org/10.3390/v7020751
  • [57] Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nature Reviews Drug Discovery. 2010; 9(7): 537-550. https://doi.org/10.1038/nrd3141
  • [58] Hidding J. Master Thesis, A therapeutic battle: Antibodies vs. Aptamers. University of Groningen, Nanosci Master Progr, 2017; NS109 Research Paper.
  • [59] Lopez-Silva C, Surapaneni A, Coresh J, Reiser J, Parikh CR, Obeid W, Grams ME, Chen TK. Comparison of aptamer-based and antibody-based assays for protein quantification in chronic kidney disease. Clin J Am Soc Nephrol. 2022; 17(3): 350-360. https://dx.doi.org/10.2215/CJN.11700921
  • [60] Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl. 2012; 6(11-12): 563-573. https://dx.doi.org/10.1002/prca.201200042
  • [61] Ferreira IM, de Souza Lacerda CM, de Faria LS, Corrêa CR, de Andrade ASR. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl Biochem Biotechnol. 2014; 174: 2548-2556. https://doi.org/10.1007/s12010-014-1206-6
  • [62] Banerjee J, Nilsen-Hamilton M. Aptamers: Multifunctional molecules for biomedical research. J Mol Med (Berl). 2013; 91: 1333-1342. https://doi.org/10.1007/s00109-013-1085-2
  • [63] Barbas AS, Mi J, Clary BM, White RR. Aptamer applications for targeted cancer therapy. Future Oncol. 2010; 6(7): 1117-1126. https://doi.org/10.2217/fon.10.67
  • [64] Ilgu M, Fazlioglu R, Ozturk M, Ozsurekci Y, Nilsen-Hamilton M. Aptamers for diagnostics with applications for infectious diseases. Recent Adv Anal Chem. 2019:1-32. https://doi.org/10.5772/intechopen.84867
  • [65] Lavania S, Das R, Dhiman A, Myneedu VP, Verma A, Singh N, Sharma TK, Tyagi JS. Aptamer-Based TB Antigen tests for the rapid diagnosis of pulmonary tuberculosis: Potential utility in screening for tuberculosis. ACS Infect Dis. 2018; 4(12): 1718-1726. https://doi.org/10.1021/acsinfecdis.8b00201.
  • [66] Sypabekova M, Jolly P, Estrela P, Kanayeva D. Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron. 2019; 123: 141-1451. https://doi.org/10.1016/j.bios.2018.07.053
  • [67] Chen Y, Liu X, Guo S, Cao J, Zhou J, Zuo J, Bai L. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C(60)NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials. 2019; 216: 119253. https://doi.org/10.1016/j.biomaterials.2019.119253
  • [68] Ye H, Duan N, Gu H, Wang H, Wang Z. Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Mikrochim Acta. 2019; 186(3): 173. https://doi.org/10.1007/s00604-019-3261-8
  • [69] Li L, Li Q, Liao Z, Sun Y, Cheng Q, Song Y, Song E, Tan W. Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens. Anal Chem. 2018; 90(15): 9621-9628. https://doi.org/10.1021/acs.analchem.8b02572
  • [70] Cai R, Yin F, Zhang Z, Tian Y, Zhou N. Functional chimera aptamer and molecular beacon based fluorescent detection of Staphylococcus aureus with strand displacement-target recycling amplification. Anal Chim Acta. 2019; 1075: 128-136. https://doi.org/10.1016/j.aca.2019.05.014
  • [71] Wei X, Zhou W, Sanjay ST, Zhang J, Jin Q, Xu F, Dominguez DC, Li X. Multiplexed Instrument-Free Bar-Chart SpinChip integrated with nanoparticle-mediated magnetic aptasensors for visual quantitative detection of multiple pathogens. Anal Chem. 2018; 90(16): 9888-9896. https://dx.doi.org/10.1021/acs.analchem.8b02055
  • [72] Zhang Y, Zhu L, He P, Zi F, Hu X, Wang Q. Sensitive assay of Escherichia coli in food samples by microchip capillary electrophoresis based on specific aptamer binding strategy. Talanta. 2019; 197: 284-290. https://dx.doi.org/10.1016/j.talanta.2019.01.040
  • [73] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Sİ HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270-273. https://dx.doi.org/10.1038/s41586-020-2012-7
  • [74] Caglayan MO, Üstündağ Z. Spectrophotometric ellipsometry based Tat-protein RNA-aptasensor for HIV-1 diagnosis. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 227: 117748. https://dx.doi.org/10.1016/j.saa.2019.117748
  • [75] Ghanbari K, Roushani M, Azadbakht A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem. 2017; 534: 64-69. https://dx.doi.org/10.1016/j.ab.2017.07.016
  • [76] Li X, Yin C, Wu Y, Zhang Z, Jiang D, Xiao D, Fang X, Zhou C. Plasmonic nanoplatform for point-of-care testing trace HCV core protein. Biosens Bioelectron. 2020; 147: 111488. https://dx.doi.org/10.1016/j.bios.2019.111488
  • [77] Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997; 4(11): 809-816. https://doi.org/10.1016/S1074-5521(97)90114-9
  • [78] Dos Santos SR, de Sousa Lacerda CM, Ferreira IM, Dos Santos SR, de Barros ALB, Fernandes SO, Cardoso VN, de Andrade ASR. Scintigraphic imaging of Staphylococcus aureus infection using 99mTc radiolabeled aptamers. Appl Radiat Isot. 2017; 128: 22-27. https://doi.org/10.1016/j.apradiso.2017.06.043
  • [79] Dos Santos SR, Corrêa CR, de Barros ALB, Serakides R, Fernandes SO, Cardoso VN, de Andrade ASR. Identification of Staphylococcus aureus infection by aptamers directly radiolabeled with technetium-99m. Nucl Med Biol. 2015; 42(3): 292-298. https://doi.org/10.1016/j.nucmedbio.2014.12.002
  • [80] Ferreira IM. de Souza Lacerda CM, Santos SR, Fernandes SO, de Barros AB, Cardoso VN, Andrade ASR: Evaluation of anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification. International Nuclear Atlantic Conference, INAC-2017, Belo Horizonte, Brazil, 2017.
  • [81] Chen X, Yan GY. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics. 2013; 29(20): 2617-2624. https://doi.org/10.1093/bioinformatics/btt426
  • [82] de Sousa Lacerda CM, Ferreira IM, Dos Santos SR, de Barros ALB, Fernandes SO, Cardoso VN, de Andrade ASR. (1→ 3)-β-D-glucan aptamers labeled with technetium-99 m: Biodistribution and imaging in experimental models of bacterial and fungal infection. Nucl Med Biol. 2017; 46: 19-24. https://doi.org/10.1016/j.nucmedbio.2016.11.008
  • [83] Singh B, Mittal B, Bhattacharya A, Aggarwal A, Nagi O, Singh A. Technetium-99m ciprofloxacin imaging in the diagnosis of postsurgical bony infection and evaluation of the response to antibiotic therapy: A case report. J Orthop Surg (Hong Kong). 2005; 13(2): 190-194. https://doi.org/10.1177/230949900501300217
  • [84] Solanki KK, Bomanji J, Siraj Q, Small M, Britton KE. Tc-99m “Infecton”—a new class of radiopharmaceutical for imaging infection. J Nucl Med. 1993; 34(Suppl): 119.
  • [85] Malamitsi J, Giamarellou H, Kanellakopoulou K, Dounis E, Grecka V, Christakopoulos J, Koratzanis G, Antoniadou A, Panoutsopoulos G, Batsakis C, Proukakis C. Infecton: a 99mTc-ciprofloxacin radiopharmaceutical for the detection of bone infection. Clin Microbiol Infect. 2003;9(2):101-109.https://doi.org/10.1046/j.1469-0691.2003.00506.x
  • [86] Choe YM, Choe W, Lee KY, Ahn SI, Kim K, Cho YU, Choi SK, Hur YS, Kim SJ, Hong KC, Shin SH, Kim KR, Woo ZH. Tc-99m ciprofloxacin imaging in acute cholecystitis. World J Gastroenterol: 2007; 13(23): 3249-3252.
  • [87] Barreto VG, Iglesias F, Roca M, Tubau F, Martín-Comín J. Labelling of ceftizoxime with 99mTc. Rev Esp Med Nucl. 2000; 19(7): 479-483. [88] Motaleb IM, Attalah K. Synthesis and biological distribution of 99m Tc–norfloxacin complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem. 2010; 285(3): 431-436. https://doi.org/10.1007/s10967-010-0607-4
  • [89] El-Ghany EA, El-Kolaly T, Amine AM, El-Sayed AS, Abdel-Gelil F. Synthesis of 99m Tc-pefloxacin: A new targeting agent for infectious foci. J Radioanal Nucl Chem. 2005; 266(1): 131-139. https://doi.org/10.1007/s10967-005-0881-8
  • [90] Motaleb MA. Preparation and biodistribution of 99mTc-lomefloxacin and 99mTc-ofloxacin complexes. J Radioanal Nucl Chem. 2007; 272(1): 95-99. https://doi.org/10.1007/s10967-006-6786-3
  • [91] İlem‐Özdemir D, Asikoglu M, Ozkilic H, Yilmaz F, Hosgor‐Limoncu M, Ayhan S. 99mTc‐Doxycycline hyclate: A new radiolabeled antibiotic for bacterial infection imaging. J Labelled Comp Radiopharm. 2014; 57(1): 36-41. https://doi.org/10.1002/jlcr.3135
  • [92] Silindir-Gunay M, Ozer AY. 99mTc-radiolabeled Levofloxacin and micelles as infection and inflammation imaging agents. J Drug Deliv Sci Technol. 2020; 56: 101571. https://doi.org/10.1016/j.jddst.2020.101571
  • [93] Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naicker T, Ebenhan T. Antibiotic‐Derived Radiotracers for Positron Emission Tomography: Nuclear or “Unclear” Infection Imaging? Angew Chem Int Ed Engl. 2022; 134(45): e202204955. https://doi.org/10.1002/anie.202204955
  • [94] Welling MM, Visentin R, Feitsma HIJ, Lupetti A, Pauwels EKJ, Nibbering PH. Infection detection in mice using 99mTc-labeled HYNIC and N2S2 chelate conjugated to the antimicrobial peptide UBI 29-41. Nucl Med Biol. 2004; 31(4): 503-509. https://doi.org/10.1016/j.nucmedbio.2003.11.009
  • [95] Northrup JD, Mach RH, Sellmyer MA. Radiochemical approaches to imaging bacterial infections: Intracellular versus extracellular targets. Int J Mol Sci. 2019; 20(22): 5808. https://doi.org/10.3390/ijms20225808
There are 94 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Saharnaz Bargh This is me

Suna Erdoğan

Publication Date June 4, 2025
Submission Date August 1, 2024
Acceptance Date November 9, 2024
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Bargh, S., & Erdoğan, S. (2025). Radiopharmaceuticals for infection imaging. Journal of Research in Pharmacy, 29(3), 1111-1121. https://doi.org/10.12991/jrespharm.1694292
AMA Bargh S, Erdoğan S. Radiopharmaceuticals for infection imaging. J. Res. Pharm. June 2025;29(3):1111-1121. doi:10.12991/jrespharm.1694292
Chicago Bargh, Saharnaz, and Suna Erdoğan. “Radiopharmaceuticals for Infection Imaging”. Journal of Research in Pharmacy 29, no. 3 (June 2025): 1111-21. https://doi.org/10.12991/jrespharm.1694292.
EndNote Bargh S, Erdoğan S (June 1, 2025) Radiopharmaceuticals for infection imaging. Journal of Research in Pharmacy 29 3 1111–1121.
IEEE S. Bargh and S. Erdoğan, “Radiopharmaceuticals for infection imaging”, J. Res. Pharm., vol. 29, no. 3, pp. 1111–1121, 2025, doi: 10.12991/jrespharm.1694292.
ISNAD Bargh, Saharnaz - Erdoğan, Suna. “Radiopharmaceuticals for Infection Imaging”. Journal of Research in Pharmacy 29/3 (June2025), 1111-1121. https://doi.org/10.12991/jrespharm.1694292.
JAMA Bargh S, Erdoğan S. Radiopharmaceuticals for infection imaging. J. Res. Pharm. 2025;29:1111–1121.
MLA Bargh, Saharnaz and Suna Erdoğan. “Radiopharmaceuticals for Infection Imaging”. Journal of Research in Pharmacy, vol. 29, no. 3, 2025, pp. 1111-2, doi:10.12991/jrespharm.1694292.
Vancouver Bargh S, Erdoğan S. Radiopharmaceuticals for infection imaging. J. Res. Pharm. 2025;29(3):1111-2.