Research Article
BibTex RIS Cite

Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus

Year 2023, Volume: 27 Issue: 1, 221 - 231, 28.06.2025

Abstract

Influenza is an infectious disease of the respiratory system caused by the influenza virus. Influenza virus RNA polymerase (RdRp) is essential in viral RNA replication and transcription. This polymerase has acid polymerase (PA) and polymerase basic 1 (PB1) subunits responsible for viral endonuclease and proteolytic activity. This study aims to determine the potential and interactions of the biochemical constituents of turmeric (Curcuma longa) and bitter (Andrographis paniculata) against the polymerase PA-PB1 (PDB ID: 3CM8) from the influenza A virus. The study was carried out using the molecular docking workflow method with a combination of standard-precision (SP), extraprecision (XP), and induced fit docking (IFD) utilizing the Maestro's Schrodinger. The docking result successfully identified seven compounds in C. longa and thirty-four in A. paniculata, which had a better docking score than R151785 as a reference ligand. XP docking showed compounds 1 from C. longa with a score of -7.555 kcal/mol and 4 from A. paniculata with a score of -9.156 kcal/mol. The IFD method results identified compounds 3 from C. longa and 5 from A. paniculata as potential compounds in inhibiting the activity of the polymerase PA-PB1 with a docking score of -9.979 kcal/mol, and -13.153 kcal/mol, respectively. All the best compounds interacted with critical residues such as Thr7, Gln16, Gln587, Ser594, Lys643, Ser647, Ser659, Ser662, Arg663, and Asn703 of the polymerase PA-PB1 enzyme from influenza A virus. The best compound in turmeric showed an excellent GI absorption profile, and the best compound in bitter showed a good safety profile because it was predicted to only inhibit the CYP3A4 enzyme. All the best compounds from these two plants fulfilled the criteria for oral drugs based on Lipinski's rules. Based on the research, these two plants have a potential antiviral activity to be verified experimentally as a candidate for Influenza A virus inhibitor.

References

  • [1] Sarmin S, Hijrawati H, Pertiwi R, Ningsi CN, Wulandari W, Tosepu R. Hubungan Iklim Dengan Penyakit Influenza : Literatur Review. J Kesehat Lingkung J dan Apl Tek Kesehat Lingkung. 2020;17(1):27–32. [CrossRef]
  • [2] Wolff T, Veit M. Influenza B, C and D Viruses (Orthomyxoviridae). Encycl Virol. 2021;2:561–574. [CrossRef]
  • [3] El Ramahi R, Freifeld A. Epidemiology, Diagnosis, Treatment, and Prevention of Influenza Infection in Oncology Patients. J Oncol Pract. 2019;15(4):177–184. [CrossRef]
  • [4] Su S, Fu X, Li G, Kerlin F, Veit M. Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics. Virulence. 2017;8(8):1580–1591. [CrossRef]
  • [5] Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzym. 2021;49:315–354. [CrossRef]
  • [6] Haque A, Hober D, Kasper LH. Confronting potential influenza A (H5N1) pandemic with better vaccines. Emerging infectious diseases. 2007;13(10:)1512–1518. [CrossRef]
  • [7] Fodor E, Te Velthuis AJW. Structure and Function of the Influenza Virus Transcription and Replication Machinery. Cold Spring Harb Perspect Med. 2020;10(9):1–15. [CrossRef]
  • [8] Massari S, Desantis J, Nizi MG, Cecchetti V, Tabarrini O. Inhibition of Influenza Virus Polymerase by Interfering with Its Protein-Protein Interactions. ACS Infect Dis. 2021;7(6):1332–1350. [CrossRef]
  • [9] Zhang J, Hu Y, Wu N, Wang J. Discovery of Influenza Polymerase PA-PB1 Interaction Inhibitors Using an In Vitro Split-Luciferase Complementation-Based Assay. ACS Chem Biol. 2020;15(1):74–82. [CrossRef]
  • [10] Watanabe K, Ishikawa T, Otaki H, Mizuta S, Hamada T, Nakagaki T, Ishibashi D, Urata S, Yasuda J, Tanaka Y, Nishida N. Structure-based drug discovery for combating influenza virus by targeting the PA–PB1 interaction. Sci Rep. 2017;7(1):1–12. [CrossRef]
  • [11] Fu B, Wang L, Ding H, Schwamborn JC, Li S, Dorf ME. TRIM32 senses and restricts influenza A virus by ubiquitination of PB1 polymerase. PLoS Pathog. 2015;11(6):1–23. [CrossRef]
  • [12] Ulfah NN, Mutakin M. Review aktivitas antivirus ekstrak lima tanaman rimpang terhadap penghambatan virus Influenza H5N1 dengan metode in vitro. Farmaka. 2017;15(3):153–161.
  • [13] Kasmawati H, Mustarichie R, Halimah E, Ruslin R, Arfan A, Sida NA. Unrevealing the potential of Sansevieria trifasciata prain fraction for the treatment of androgenetic alopecia by ınhibiting androgen receptors based on LC-MS/MS analysis, and ın-silico studies. Molecules. 2022;27(14):1–12. [CrossRef]
  • [14] Syamsu RF, Nuryanti SA, Jamal MF. Herbal yang berpotensı sebagaı antı vırus pada covıd-19. Molucca Medica. 2021;14(1):76–85. [CrossRef]
  • [15] Dewi YK, Riyandari BA. Potensi tanaman lokal sebagai tanaman obat dalam menghambat penyebaran covıd-19. J Pharmascience. 2020;7(2):112–128. [CrossRef]
  • [16] Ardebili A, Pouriayevali MH, Aleshikh S, Zahani M, Ajorloo M, Izanloo A, Siyadatpanah A, Razavi Nikoo H, Wilairatana P, Coutinho HDM. Antiviral therapeutic potential of curcumin: an update. Molecules. 2021;26(22):1–23. [CrossRef]
  • [17] Anas Y, Ratnani RD, Kurniasari L, Hartati I. Aktıvıtas antıplasmodıum ekstrak hıdrotropı daun sambıloto (Andrographis paniculata Ness.) secara ın vitro pada Plasmodium falciparum straın G-2300 resısten kloroquın. J Ilmu Farm dan Farm Klin. 2020;17(1):1–7. [CrossRef]
  • [18] Tan JK, Chen R, Lee RCH, Li F, Dai K, Zhou GC, Chu JJH. Discovery of novel andrographolide derivatives as antiviral ınhibitors against human enterovirus A71. Pharmaceuticals. 2022;15(2):1–22. [CrossRef]
  • [19] Wang D, Guo H, Chang J, Wang D, Liu B, Gao P, Wei W. Andrographolide Prevents EV-D68 Replication by Inhibiting the Acidification of Virus-Containing Endocytic Vesicles. Front Microbiol [Internet]. 2018 Oct 8;9:1–10. [CrossRef]
  • [20] Kaushik AC, Sahi S, Wei DQ. Computational methods for structure-based drug design through system biology BT - computational methods for estimating the kinetic parameters of biological systems. in: vanhaelen Q. Springer, New York, 2022, pp. 161–174. [CrossRef]
  • [21] Sliwoski G, Kothiwale S, Meiler J, Lowe Jr EW. Computational methods in drug discovery. Pharmacol Rev. 2013;66(1):334–395. [CrossRef]
  • [22] Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–13421. [CrossRef]
  • [23] Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):1–23. [CrossRef]
  • [24] Mizuta S, Otaki H, Ishikawa T, Makau JN, Yamaguchi T, Fujimoto T, Takakura N, Sakauchi N, Kitamura S, Nono H, Nishi R, Tanaka Y, Takeda K, Nishida N, Watanabe K. Lead optimization of ınfluenza virus RNA polymerase ınhibitors targeting PA–PB1 interaction. J Med Chem. 2022;65(1):369–385. [CrossRef]
  • [25] Noshi T, Kitano M, Taniguchi K, Yamamoto A, Omoto S, Baba K, Hashimoto T, Ishida K, Kushima Y, Hattori K, Kawai M, Yoshida R, Kobayashi M, Yoshinaga T, Sato A, Okamatsu M, Sakoda Y, Kida H, Shishido T, Naito A. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral Res. 2018;160:109–117. [CrossRef]
  • [26] He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z, Ge R, Rao Z, Liu Y. Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus. Nature. 2008;454(7208):1123–1126. [CrossRef]
  • [27] Zhou Z, Felts AK, Friesner RA, Levy RM. Comparative performance of several flexible docking programs and scoring functions:  enrichment studies for a diverse set of pharmaceutically relevant targets. J Chem Inf Model. 2007;47(4):1599–1608. [CrossRef]
  • [28] Elokely KM, Doerksen RJ. Docking challenge: protein sampling and molecular docking performance. J Chem Inf Model. 2013;53(8):1934–1945. [CrossRef]
  • [29] Ritchie TJ, Macdonald SJF, Peace S, Pickett SD, Luscombe CN. Increasing small molecule drug developability in sub-optimal chemical space. Medchemcomm. 2013;4(4):673–680. [CrossRef]
  • [30] Ottaviani G, Gosling DJ, Patissier C, Rodde S, Zhou L, Faller B. What is modulating solubility in simulated intestinal fluids?. Eur J Pharm Sci. 2010;41(3):452–457. [CrossRef]
  • [31] Hollenberg PF. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev. 2002;34(1–2):17–35. [CrossRef]
  • [32] Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G. Predicting drug metabolism: experiment and/or computation?. Nat Rev Drug Discov. 2015;14(6):387–404. [CrossRef]
  • [33] Mermer A, Vakal S. Pyrazine-chromene-3-carbohydrazide conjugates: Molecular docking and admet predictions on dual-acting compounds against SARS-CoV-2 Mpro and RdRp. J Res Pharm. 2021;25(6):953–966. [CrossRef]
  • [34] Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–234. [CrossRef]
  • [35] Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide:  docking and scoring ıncorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem. 2006;49(21):6177–6196. [CrossRef]
  • [36] Miller EB, Murphy RB, Sindhikara D, Borrelli KW, Grisewood MJ, Ranalli F, Dixon SL, Jerome S, Boyles NA, Day T, Ghanakota P, Mondal S, Rafi SB, Troast DM, Abel R, Friesner RA. Reliable and accurate solution to the ınduced fit docking problem for protein–ligand binding. J Chem Theory Comput. 2021;17(4):2630–2639. [CrossRef]
  • [37] Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide:  A New approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem. 2004;47(7):1750–1759. [CrossRef]
  • [38] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide:  A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749. [CrossRef]
  • [39] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):1–13. [CrossRef]
There are 39 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Sitti Nur Aidah Lya Citra This is me 0009-0004-6968-6343

Arfan Arfan This is me 0000-0003-3004-7101

Armid Alroem This is me 0000-0002-5821-0284

La Ode Santiaji Bande This is me 0000-0003-4639-8934

Irnawati Irnawati This is me 0000-0001-8054-1664

Muhammad Arba 0000-0001-7254-2659

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 1

Cite

APA Citra, S. N. A. L., Arfan, A., Alroem, A., … Bande, L. O. S. (2025). Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. Journal of Research in Pharmacy, 27(1), 221-231.
AMA Citra SNAL, Arfan A, Alroem A, Bande LOS, Irnawati I, Arba M. Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. J. Res. Pharm. June 2025;27(1):221-231.
Chicago Citra, Sitti Nur Aidah Lya, Arfan Arfan, Armid Alroem, La Ode Santiaji Bande, Irnawati Irnawati, and Muhammad Arba. “Docking-Based Workflow and ADME Prediction of Some Compounds in Curcuma Longa and Andrographis Paniculata As Polymerase PA-PB1 Inhibitors of Influenza A H5N1 Virus”. Journal of Research in Pharmacy 27, no. 1 (June 2025): 221-31.
EndNote Citra SNAL, Arfan A, Alroem A, Bande LOS, Irnawati I, Arba M (June 1, 2025) Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. Journal of Research in Pharmacy 27 1 221–231.
IEEE S. N. A. L. Citra, A. Arfan, A. Alroem, L. O. S. Bande, I. Irnawati, and M. Arba, “Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus”, J. Res. Pharm., vol. 27, no. 1, pp. 221–231, 2025.
ISNAD Citra, Sitti Nur Aidah Lya et al. “Docking-Based Workflow and ADME Prediction of Some Compounds in Curcuma Longa and Andrographis Paniculata As Polymerase PA-PB1 Inhibitors of Influenza A H5N1 Virus”. Journal of Research in Pharmacy 27/1 (June2025), 221-231.
JAMA Citra SNAL, Arfan A, Alroem A, Bande LOS, Irnawati I, Arba M. Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. J. Res. Pharm. 2025;27:221–231.
MLA Citra, Sitti Nur Aidah Lya et al. “Docking-Based Workflow and ADME Prediction of Some Compounds in Curcuma Longa and Andrographis Paniculata As Polymerase PA-PB1 Inhibitors of Influenza A H5N1 Virus”. Journal of Research in Pharmacy, vol. 27, no. 1, 2025, pp. 221-3.
Vancouver Citra SNAL, Arfan A, Alroem A, Bande LOS, Irnawati I, Arba M. Docking-based workflow and ADME prediction of some compounds in Curcuma longa and Andrographis paniculata as polymerase PA-PB1 inhibitors of influenza A/H5N1 virus. J. Res. Pharm. 2025;27(1):221-3.