Research Article
BibTex RIS Cite

Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption

Year 2024, Volume: 28 Issue: 3, 781 - 796, 28.06.2025

Abstract

Paclitaxel is an anticancer drug that has poor oral bioavailability (>10%) because of its poor solubility in aqueous medium, poor permeability, and is a substrate of poly-glycoprotein and CYP450 metabolism. The current study intends to create Paclitaxel-loaded solid lipid nanoparticles (SLNs) to overcome these limitations. The nanoparticles were formulated through an emulsification-solvent evaporation method and freeze-dried. To optimize the nanoparticle formulation, the box-behnken design was adopted. The final formulation had a particle size of 190 nm with 88.79% drug entrapment. The in-vitro release study for 24 hr showed a 1.6-fold increase in drug release in the dissolution of paclitaxel from SLNs in comparison to drug suspension. A 2.4-fold increase in bioavailability of the drug in-vivo was obtained compared to the commercial formulation. Thus, a promising carrier for PTX was developed that could increase its efficiency and alleviate the dose-dependent side effects.

References

  • [1] Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11:1-29. http://doi.org/10.3390/pharmaceutics11030129.
  • [2] Schenk M, Mueller C. The mucosal immune system at the gastrointestinal barrier. Best Prac Res Clin Gastroenterol. 2008;22:391-409. http://doi.org/10.1016/j.bpg.2007.11.002.
  • [3] Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems–an overview. Acta Pharm Sinica B. 2013;3:367-372. http://doi.org/10.1016/j.apsb.2013.10.001.
  • [4] Fasinu P, Pillay V, Ndesendo VM, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm Drug Dispos. 2011;32:185-209. http://doi.org/10.1002/bdd.750.
  • [5] Patil OB, Manjappa AS, Kumbhar PS, Bhosale SP, Disouza JI, Salawi A, Sambamurthy U. Development of stable self-nanoemulsifying composition and its nanoemulsions for improved oral delivery of non-oncology drugs against hepatic cancer. OpenNano. 2022;7:100044. http://doi.org/10.1016/j.onano.2022.100044.
  • [6] Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42:11-18. http://doi.org/10.1016/j.ejps.2010.10.002.
  • [7] Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm. 2008;34:1394-1405. http://doi.org/10.1080/03639040802130061.
  • [8] Ma P, Mumper RJ. Paclitaxel nano-delivery systems: A comprehensive review. J Nanomed Nanotechnol. 2013;4:1000164. http://doi.org/10.4172/2157-7439.1000164.
  • [9] Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25:445-453. http://doi.org/10.1016/j.ejps.2005.04.003.
  • [10] Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shah VP, Amidon GL. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1:85-96. http://doi.org/10.1021/mp034006h.
  • [11] Wang H, Cheng G, Du Y, Ye L, Chen W, Zhang L, Wang T, Tian J, Fu F. Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation. Mol Med Rep. 2013;7:947-952. http://doi.org/10.3892/mmr.2013.1264.
  • [12] Zhao M, Lei C, Yang Y, Bu X, Ma H, Gong H, Liu J, Fang X, Hu Z, Fang Qiaojun F. Abraxane, the nanoparticle formulation of paclitaxel can ınduce drug resistance by up-regulation of P-gp. PloS one. 2015;10:e0131429. http://doi.org/10.1371/journal.pone.0131429.
  • [13] Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278-287. http://doi.org/10.1016/j.ejps.2006.04.016.
  • [14] des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Rel. 2006;116:1-27. http://doi.org/10.1016/j.jconrel.2006.08.013.
  • [15] Brayden DJ, Jepson MA, Baird AW. Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov Today. 2005;10:1145-1157. http://doi.org/10.1016/S1359-6446(05)03536-1.
  • [16] Desai J, Khatri N, Chauhan S, Seth A. Design, development and optimization of self-microemulsifying drug delivery system of an anti-obesity drug. J Pharm Bioallied Sci. 2012;4:S21-22. http://doi.org/10/4103/0975-7406.94124.
  • [17] Maharjan S, Singh B, Jiang T, Yoon SY, Li HS, Kim G, Gu MJ, Kim SJ, Park O, Han SH, Kang S, Yun C, Choi Y, Cho C. Systemic administration of RANKL overcomes the bottleneck of oral vaccine delivery through microfold cells in ileum. Biomaterials. 2016;84:286-300. http://doi.org/10.1016/j.biomaterials.2016.01.043.
  • [18] Prabhu S, Ortega M, Ma C. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int J Pharm. 2005;301:209-216. http://doi.org/10.1016/j.ijpharm.2005.05.032.
  • [19] Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity--in vivo study. Eur J Pharm Biopharm. 2003;56:67-72. http://doi.org/10.1016/s0939-6411(03)00040-7.
  • [20] Sanchez-Lopez E, Espina M, Doktorovova S, Souto EB, Garcia ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm. 2017;110:58-69. http://doi.org/10.1016/j.ejpb.2016.10.013.
  • [21] Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2:289-300.
  • [22] Sawant KK, Dodiya SS. Recent advances and patents on solid lipid nanoparticles. Recent Pat Drug Deliv Formul. 2008;2:120-35. http://doi.org/10.2174/187221108784534081.
  • [23] Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165-196. http://doi.org/10.1016/s0169-409x(01)00105-3.
  • [24] Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res. 2006;23:1243-1250. http://doi.org/10.1007/s11095-006-0022-2.
  • [25] Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Rel. 2008;127:97-109. http://doi.org/10.1016/j.jconrel.2007.12.018
  • [26] Desai J, Thakkar H. Darunavir-Loaded Lipid Nanoparticles for Targeting to HIV Reservoirs. AAPS PharmSciTech. 2018;19:648-660. http://doi.org/10.1208/s12249-017-0876-0.
  • [27] Zhang C, Qineng P, Zhang H. Self Assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf B Biointerfaces. 2004;39:69-75. http://doi.org/10.1016/j.colsurfb.2004.09.002.
  • [28] Desai J, Patel T. Lymphatic targeting system using nano-formulation: Challenges and approaches. Int J Pharm Sci Res. 2021;12:2036-2048. http://doi.org/10.13040/IJPSR.0975-8232.12(4).2036-48.
  • [29] Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017;7:47-57. http://doi.org/10.1007/s13204-017-0547-1.
  • [30] Harshita, Barkat MA, Rizwanullah M, Beg S, Pottoo FH, Siddiqui S, Ahmad FJ. Paclitaxel-loaded nanolipidic carriers with ımproved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech. 2019;20:87. http://doi.org/10.1208/s12249-019-1304-4.
  • [31] Sharma G, Rath G, Goyal A. Improved biological activity and stability of enzyme L-asparaginase in solid lipid nanoparticles formulation. J Drug Deliv Ther. 2019;9:325-329. http://doi.org/10.22270/jddt.v9i2-s.2708.
  • [32] Gidwani B, Vyas A. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology. Artif Cells Nanomed Biotechnol. 2016;44:571-580. http://doi.org/10.3109/21691401.2014.971462.
  • [33] Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data in Brief. 2016;6:15-19. http://doi.org/10.1016/j.dib.2015.11.038.
  • [34] Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, Mashru R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm. 2018;536:95-107. http://doi.org/10.1016/j.ijpharm.2017.11.048.
  • [35] Qiu N, Cai L, Wang W, Wang G, Cheng X, Xu Q, Wen J, Liu J, Wei Y, Chen L. Barbigerone-in-hydroxypropyl-β-cyclodextrin-liposomal nanoparticle: preparation, characterization and anti-cancer activities. J Incl Phenom Macrocycl Chem. 2015;82:505-514. http://doi.org/10.1001/s10847-015-0533-8.
  • [36] Martins KF, Messias AD, Leite FL, Duek EA. Preparation and characterization of paclitaxel-loaded PLDLA microspheres. Mat Res. 2014;17:650-656. http://doi.org/10.1590/S1516-14392014005000028.
  • [37] Dinda A, Biswal I, Chowdhury P, Mohapatra R. Formulation development and evaluation of paclitaxel loaded solid lipid nanoparticles using glyceryl monostearate. J Appl Pharm Sci. 2013;3:133. http://doi.org/10.7324JAPS.2013.3823.
  • [38] Shenoy VS, Rajyaguru TH, Gude RP, Murthy RS. Studies on paclitaxel-loaded glyceryl monostearate nanoparticles. J Microencapsul. 2009;26:471-478. http://doi.org/10.1080/02652040802379902.
  • [39] Saboktakin MR, Tabatabaee RM, Maharramov A, Ramazanov MA. Design and characterization of chitosan nanoparticles as delivery systems for paclitaxel. Carbohydr Polym. 2010;82:466-471. http://doi.org/10.1016/j.carbpol.2010.05.005.
  • [40] Desai J, Thakkar H. Mechanistic evaluation of lymphatic targeting efficiency of Atazanavir sulfate loaded lipid nanocarriers: In-vitro and in-vivo studies. J Drug Deliv Sci Technol. 2022;68:103090. http://doi.org/10.1016/j.jddst.2021.103090.
  • [41] Chen Te, Tu L, Wang G, Qi N, Wu W, Zhang W, Feng J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm. 2020;578:119105. http://doi.org/10.1016/j.ijpharm.2020.119105.
There are 41 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Articles
Authors

Jagruti Desai This is me 0000-0001-7147-5861

Swayamprakash Patel This is me 0000-0002-6882-7042

Arehalli Manjappa This is me 0000-0002-8576-6608

Alkesh Patel This is me 0000-0001-7036-5011

Twinkle Patel This is me 0009-0000-6668-3500

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 3

Cite

APA Desai, J., Patel, S., Manjappa, A., … Patel, A. (2025). Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption. Journal of Research in Pharmacy, 28(3), 781-796.
AMA Desai J, Patel S, Manjappa A, Patel A, Patel T. Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption. J. Res. Pharm. June 2025;28(3):781-796.
Chicago Desai, Jagruti, Swayamprakash Patel, Arehalli Manjappa, Alkesh Patel, and Twinkle Patel. “Investigation of Solid Lipid Nanoparticles As Oral Delivery of Paclitaxel for Enhanced Absorption”. Journal of Research in Pharmacy 28, no. 3 (June 2025): 781-96.
EndNote Desai J, Patel S, Manjappa A, Patel A, Patel T (June 1, 2025) Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption. Journal of Research in Pharmacy 28 3 781–796.
IEEE J. Desai, S. Patel, A. Manjappa, A. Patel, and T. Patel, “Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption”, J. Res. Pharm., vol. 28, no. 3, pp. 781–796, 2025.
ISNAD Desai, Jagruti et al. “Investigation of Solid Lipid Nanoparticles As Oral Delivery of Paclitaxel for Enhanced Absorption”. Journal of Research in Pharmacy 28/3 (June2025), 781-796.
JAMA Desai J, Patel S, Manjappa A, Patel A, Patel T. Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption. J. Res. Pharm. 2025;28:781–796.
MLA Desai, Jagruti et al. “Investigation of Solid Lipid Nanoparticles As Oral Delivery of Paclitaxel for Enhanced Absorption”. Journal of Research in Pharmacy, vol. 28, no. 3, 2025, pp. 781-96.
Vancouver Desai J, Patel S, Manjappa A, Patel A, Patel T. Investigation of solid lipid nanoparticles as oral delivery of Paclitaxel for enhanced absorption. J. Res. Pharm. 2025;28(3):781-96.