Research Article
BibTex RIS Cite

Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria

Year 2019, Volume: 23 Issue: 6, 1131 - 1139, 27.06.2025

Abstract

Cisplatin is a common chemotherapeutic agent against a wide range of solid tumors. The clinical application of cisplatin is restricted due to its adverse effect, mainly nephrotoxicity. The aim of this study was to examine whether betanin (a natural pigment) is able to alleviate cisplatin-induced renal injury. Rats received cisplatin (10 mg/kg, single dose) after 3 consecutive days of betanin (100 mg/kg) oral gavage. Serum and urine samples were collected and kidney mitochondria were isolated from the treated groups for the further evaluations. Cisplatin-treated animals revealed altered biochemical evidence of nephrotoxicity, which were significantly improved in betanin pre-treated groups. On the other hand, betanin modulated mitochondrial parameters such as mitochondrial dehydrogenase activity, mitochondrial swelling, mitochondrial ATP content, mitochondrial depolarization, lipid peroxidation, and cytochrome c release. These data propose the possible protective role of betanin in cisplatin-associated nephrotoxicity in which the mechanism appears to be a prohibition of chemical disturbances and mitochondrial damage.

References

  • [1] Hall A, Bass P, Unwin R. Drug-induced renal Fanconi syndrome. QJM-Int J Med. 2013; 107(4): 261-269. [CrossRef]
  • [2] Heidari R. The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi’s syndrome: a comprehensive review. Toxicology. 2019; 423: 1-31. [CrossRef]
  • [3] Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol. 2019; 124: 1246-1255. [CrossRef]
  • [4] Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010; 2(11): 2490-518. [CrossRef]
  • [5] Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014; 740: 364-378. [CrossRef]
  • [6] Ali BH, Al Moundhri MS. Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol. 2006; 44(8): 1173-1183. [CrossRef]
  • [7] Meng XM, Li HD, Wu WF, Tang PM, Ren GL, Gao L, Li XF, Yang Y, Xu T, Ma TT, Li Z. Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis. Lab Invest. 2018; 98(1): 79. [CrossRef]
  • [8] Hagar H, ElMedany A, Salam R, El Medany G, Nayal OA. Betaine supplementation mitigates cisplatin-induced nephrotoxicity by abrogation of oxidative/nitrosative stress and suppression of inflammation and apoptosis in rats. Exp Toxıcol Pathol. 2015; 67(2): 133-141. [CrossRef]
  • [9] Matsushima H, Yonemura K, Ohishi K, Hishida A. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med. 1998; 131(6): 518-526. [CrossRef]
  • [10] Fariss MW, Chan CB, Patel M, Van BH, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv. 2005; 5(2): 94-111. [CrossRef]
  • [11] Ahmadian E, Babaei H, Nayebi AM, Eftekhari A, Eghbal MA. Mechanistic approach for toxic effects of bupropion in primary rat hepatocytes. Drug Res. 2017; 67(04): 217-222. [CrossRef]
  • [12] Rodrigues MC, Rodrigues J, Martins N, Barbosa F, Curti C, Santos N, Santos AC. Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chem-Biol Interact. 2011; 189(1-2): 45-51. [CrossRef]
  • [13] Ahmadian E, Khosroushahi AY, Eghbal MA, Eftekhari A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. Pestic Biochem Physiol. 2018; 144: 71-78. [CrossRef]
  • [14] Yadi M, Mostafavi E, Saleh B, Davaran S, Aliyeva I, Khalilov R, Nikzamir M, Akbarzadeh A, Panahi Y, Milani M. Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cell Nanomed B. 2018; 46(sup3): S336-S43. [CrossRef]
  • [15] Farshbaf M, Salehi R, Annabi N, Khalilov R, Akbarzadeh A, Davaran S. PH-and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging. Drug Dev Ind Pharm. 2018; 44(3): 452-462. [CrossRef]
  • [16] Khalilov R, Ahmadov IS, Kadirov SG. Two types of kinetics of membrane potential of water plant leaves illuminated by ultraviolet light. Bioelectrochemistry. 2002; 58(2): 189-191. [CrossRef]
  • [17] Gol'dfel'd MG, Khalilov RI. Localization of copper in the photosynthetic apparatus of chloroplasts. Biofizika. 1979; 24(4): 762-4.
  • [18] Tan D, Wang Y, Bai B, Yang X, Han J. Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat. Food Chem Toxicol. 2015; 78: 141-146. [CrossRef]
  • [19] Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sc. 2007; 334(2): 115-124. [CrossRef]
  • [20] Kafshdooz L, Pourfathi H, Akbarzadeh A, Kafshdooz T, Razban Z, Sheervalilou R, Ebrahimi Sadr N, Khalilov R, Saghfi S, Kavetskyy T, Mammadova L. The role of microRNAs and nanoparticles in ovarian cancer: a review. Artif Cell Nanomed B. 2018; 46(sup2): 241-247. [CrossRef]
  • [21] Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. Journal of nephrology. 2018; 31(1): 15-25. [CrossRef]
  • [22] Santos N, Catao C, Martins N, Curti C, Bianchi MdLP, Santos ACd. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol. 2007; 81(7): 495-504. [CrossRef]
  • [23] Shaik ZP, Fifer EK, Nowak G. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury. Am J Physiol Renal Physiol. 2008; 294(2): F423-F32. [CrossRef]
  • [24] Soltoff SP, Mandel LJ. Active ion transport in the renal proximal tubule. III. The ATP dependence of the Na pump. J Gen Physiol. 1984; 84(4): 643-662. [CrossRef]
  • [25] You G. Structure, function, and regulation of renal organic anion transporters. Med Res Rev. 2002; 22(6): 602-616. [CrossRef]
  • [26] Rahgozar M, Willgoss DA, Gobé GC, Endre ZH. ATP-dependent K+ channels in renal ischemia reperfusion injury. Renal Fail. 2003; 25(6): 885-896. [CrossRef]
  • [27] Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018; 103: 1018-1027. [CrossRef]
  • [28] Ahmadian E, Khosroushahi AY, Eftekhari A, Farajnia S, Babaei H, Eghbal MA. Novel angiotensin receptor blocker, azilsartan induces oxidative stress and NFkB-mediated apoptosis in hepatocellular carcinoma cell line HepG2. Biomed Pharmacother. 2018; 99: 939-946. [CrossRef]
  • [29] Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and-independent pathways. J Pharmacol Exp Ther. 2002; 302(1): 8-17. [CrossRef]
  • [30] Jung M, Hotter G, Viñas JL, Sola A. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury. Toxicol Appl Pharmacol. 2009; 234(2): 236-246. [CrossRef]
  • [31] Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci. 2005; 76(18): 2125-2235. [CrossRef]
  • [32] Aldemir M, Okulu E, Kösemehmetoğlu K, Ener K, Topal F, Evirgen O, Gürleyik E, Avcı A. Evaluation of the protective effect of quercetin against cisplatin‐induced renal and testis tissue damage and sperm parameters in rats. Andrologia. 2014; 46(10): 1089-97. [CrossRef]
  • [33] Clifford T, Howatson G, West D, Stevenson E. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015; (4): 2801-22. [CrossRef]
  • [34] Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005; 28(1): 164-76. [CrossRef]
  • [35] Sutariya B, Saraf M. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. J Ethnopharmacol. 2017; 198: 432-43. [CrossRef]
  • [36] Fernández-Vizarra E, Ferrín G, Pérez-Martos A, Fernández-Silva P, Zeviani M, Enríquez JA. Isolation of mitochondria for biogenetical studies: An update. Mitochondrion. 2010; 10(3): 253-62. [CrossRef]
  • [37] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2): 248-54. [CrossRef]
  • [38] Heidari R, Mandegani L, Ghanbarinejad V, Siavashpour A, Ommati MM, Azarpira N, Najibi A, Niknahad H. Mitochondrial dysfunction as a mechanism involved in the pathogenesis of cirrhosis-associated cholemic nephropathy. Biomed Pharmacother. 2019; 109: 271-80. [CrossRef]
  • [39] Caro AA, Adlong LW, Crocker SJ, Gardner MW, Luikart EF, Gron LU. Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria. Toxicol Lett. 2012; 214(2): 166-74. [CrossRef]
  • [40] Eftekhari A, Ahmadian E, Azami A, Johari‐Ahar M, Eghbal MA. Protective effects of coenzyme Q10 nanoparticles on dichlorvos‐induced hepatotoxicity and mitochondrial/lysosomal injury. Environ Toxicol. 2018; 33(2): 167-77. [CrossRef]
  • [41] Ahmadian E, Eftekhari A, Babaei H, Nayebi A, Eghbal M. Anti-cancer effects of citalopram on hepatocellular carcinoma cells occur via cytochrome C release and the activation of NF-kB. Anticancer Agents Med Chem. 2017; 17(11): 1570-7. [CrossRef]
  • [42] Eftekhari A, Ahmadian E, Azarmi Y, Parvizpur A, Fard JK, Eghbal MA. The effects of cimetidine, N-acetylcysteine, and taurine on thioridazine metabolic activation and induction of oxidative stress in isolated rat hepatocytes. Pharm Chem J. 2018; 51(11): 965-9. [CrossRef]
  • [43] Sukkurwala AQ, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E, Baracco EE, Galluzzi L, Zitvogel L, Kepp O, Kroemer G. Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set. Oncoimmunology. 2014; 3(4): e28473. [CrossRef]
There are 43 citations in total.

Details

Primary Language English
Subjects Medical Pharmacology
Journal Section Articles
Authors

Sepideh Zununi Vahed

Mohammadreza Ardalan This is me

Rovshan Khalilov This is me

Elham Ahmadian This is me

Publication Date June 27, 2025
Published in Issue Year 2019 Volume: 23 Issue: 6

Cite

APA Zununi Vahed, S., Ardalan, M., Khalilov, R., Ahmadian, E. (2025). Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria. Journal of Research in Pharmacy, 23(6), 1131-1139.
AMA Zununi Vahed S, Ardalan M, Khalilov R, Ahmadian E. Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria. J. Res. Pharm. July 2025;23(6):1131-1139.
Chicago Zununi Vahed, Sepideh, Mohammadreza Ardalan, Rovshan Khalilov, and Elham Ahmadian. “Betanin Prohibits Cisplatin-Induced Nephrotoxicity through Targeting Mitochondria”. Journal of Research in Pharmacy 23, no. 6 (July 2025): 1131-39.
EndNote Zununi Vahed S, Ardalan M, Khalilov R, Ahmadian E (July 1, 2025) Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria. Journal of Research in Pharmacy 23 6 1131–1139.
IEEE S. Zununi Vahed, M. Ardalan, R. Khalilov, and E. Ahmadian, “Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria”, J. Res. Pharm., vol. 23, no. 6, pp. 1131–1139, 2025.
ISNAD Zununi Vahed, Sepideh et al. “Betanin Prohibits Cisplatin-Induced Nephrotoxicity through Targeting Mitochondria”. Journal of Research in Pharmacy 23/6 (July2025), 1131-1139.
JAMA Zununi Vahed S, Ardalan M, Khalilov R, Ahmadian E. Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria. J. Res. Pharm. 2025;23:1131–1139.
MLA Zununi Vahed, Sepideh et al. “Betanin Prohibits Cisplatin-Induced Nephrotoxicity through Targeting Mitochondria”. Journal of Research in Pharmacy, vol. 23, no. 6, 2025, pp. 1131-9.
Vancouver Zununi Vahed S, Ardalan M, Khalilov R, Ahmadian E. Betanin prohibits cisplatin-induced nephrotoxicity through targeting mitochondria. J. Res. Pharm. 2025;23(6):1131-9.