Research Article
BibTex RIS Cite

Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice

Year 2025, Volume: 29 Issue: 6, 2206 - 2217, 02.11.2025
https://doi.org/10.12991/jrespharm.1796199

Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the prevalent health issues. This present study aimed to explore the potential of wild Sumatran turmeric (Curcuma sumatrana) extract as an alternative medicine to manage NAFLD. Male mice were assigned equally to five experimental groups, namely: control (healthy mice), NAFLD mice without any treatment, and NAFLD mice treated orally with C. sumatrana ethanolic extract at doses of 100, 200, and 400 mg/kg of body weight for four consecutive weeks. The results indicated that, compared with NAFLD mice without treatment, administration of C. sumatrana extract significantly reduced serum glutamate propionate transaminase (a liver enzyme) in the blood plasma and malondialdehyde (a marker of oxidative stress) in liver tissue (P < 0.05). The extract substantially ameliorated hepatic steatosis, degenerated hepatocytes, and central vein dilatation (P < 0.05). Regarding its effectiveness, the extract at higher doses (200 and 400 mg/kg BW) elicited greater beneficial effects against NAFLD than the lower dose (100 mg/kg BW). Furthermore, Gas Chromatography-Mass Spectrophotometry analysis revealed 17 compounds in the extract with various plausible bioactivities, including antioxidant and anti-inflammatory properties. Hence, C. sumatrana is a potential candidate for a plant-based remedy to counteract diet-induced metabolic problems, including NAFLD.

References

  • [1] Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-1347. https://doi.org/10.1097/HEP.0000000000000004.
  • [2] Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain MG, Congly SE, Kaplan GG, Shaheen AA. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851-861. https://doi.org/10.1016/S2468-1253(22)00165-0.
  • [3] Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, Colombo M, Craxi A, Crespo J, Day CP, Eguchi Y, Geier A, Kondili LA, Kroy DC, Lazarus JV, Loomba R, Manns MP, Marchesini G, Nakajima A, Negro F, Petta S, Ratziu V, Romero-Gomez M, Sanyal A, Schattenberg JM, Tacke F, Tanaka J, Trautwein C, Wei L, Zeuzem S, Razavi H. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol. 2018;69(4):896-904. https://doi.org/10.1016/j.jhep.2018.05.036.
  • [4] Lindenmeyer CC, McCullough AJ. The natural history of nonalcoholic fatty liver disease—an evolving view. Clin Liver Dis. 2018;22(1):11-21. https://doi.org/10.1016/j.cld.2017.08.003.
  • [5] Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908-922. https://doi.org/10.1038/s41591-018-0104-9.
  • [6] Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, Guo J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne). 2023;13:1087260. https://doi.org/10.3389/fendo.2022.1087260.
  • [7] Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M, Previs S, Milstein S, Fitzgerald K, Kelley DE, Horton JD. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: A bedside to bench investigation. Cell Metab. 2017;26(2):394-406.e6. https://doi.org/10.1016/j.cmet.2017.07.009.
  • [8] Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145(3):574-582.e1. https://doi.org/10.1053/j.gastro.2013.05.042.
  • [9] Alvarado TF, Puliga E, Preziosi M, Poddar M, Singh S, Columbano A, Nejak-Bowen K, Monga SP. Thyroid hormone receptor β agonist induces β-catenin-dependent hepatocyte proliferation in mice: Implications in hepatic regeneration. Gene Expr. 2016;17(1):19-34. https://doi.org/10.3727/105221616X691631.
  • [10] Alolga RN, Wang F, Zhang X, Li J, Tran LP, Yin X. Bioactive compounds from the Zingiberaceae family with known antioxidant activities for possible therapeutic uses. Antioxidants (Basel). 2022;11(7):1281. https://doi.org/10.3390/antiox11071281.
  • [11] Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185. https://doi.org/10.3390/foods8060185.
  • [12] Ballester P, Cerdá B, Arcusa R, Marhuenda J, Yamedjeu K, Zafrilla P. Effect of ginger on inflammatory diseases. Molecules. 2022;27(21):7223. https://doi.org/10.3390/molecules27217223.
  • [13] Ballester P, Cerdá B, Arcusa R, García-Muñoz AM, Marhuenda J, Zafrilla P. Antioxidant activity in extracts from Zingiberaceae family: Cardamom, turmeric, and ginger. Molecules. 2023;28(10):4024. https://doi.org/10.3390/molecules28104024.
  • [14] Perumpail BJ, Li AA, Iqbal U, Sallam S, Shah ND, Kwong W, Cholankeril G, Kim D, Ahmed A. Potential therapeutic benefits of herbs and supplements in patients with NAFLD. Diseases. 2018;6(3):80. https://doi.org/10.3390/diseases6030080.
  • [15] Mun J, Kim S, Yoon HG, You Y, Kim OK, Choi KC, Lee YH, Lee J, Park J, Jun W. Water extract of Curcuma longa L. ameliorates non-alcoholic fatty liver disease. Nutrients. 2019;11(10):2536. https://doi.org/10.3390/nu11102536.
  • [16] Navekar R, Rafraf M, Ghaffari A, Asghari-Jafarabadi M, Khoshbaten M. Turmeric supplementation improves serum glucose indices and leptin levels in patients with nonalcoholic fatty liver diseases. J Am Coll Nutr. 2017;36(4):261-267. https://doi.org/10.1080/07315724.2016.1267597.
  • [17] Ghaffari A, Rafraf M, Navekar R, Sepehri B, Asghari-Jafarabadi M, Ghavami SM. Turmeric and chicory seed have beneficial effects on obesity markers and lipid profile in non-alcoholic fatty liver disease (NAFLD). Int J Vitam Nutr Res. 2019;89(5-6):293-302. https://doi.org/10.1024/0300-9831/a000568.
  • [18] Ardiyani M, Anggara A, Leong-Škorničková J. Rediscovery of Curcuma sumatrana (Zingiberaceae) endemic to West Sumatra. Blumea. 2011;56(1):6-9. https://doi.org/10.3767/000651911X558360.
  • [19] Rahman AT, Jethro A, Santoso P, Kharisma VD, Murtadlo AA, Purnamasari D, Soekamto NH, Ansori ANM, Kuswati, Mandeli RS, Aledresi KAMS, Yusof NFM, Jakhmola V, Rebezov M, Zainul R, Dobhal K, Parashar T, Ghifari MA, Sari DAP. In silico study of the potential of endemic Sumatra wild turmeric rhizomes (Curcuma sumatrana: Zingiberaceae) as anti-cancer. Pharmacogn J. 2022;14(6):806-812. https://doi.org/10.5530/pj.2022.14.171.
  • [20] Alamzjah F, Agustien A, Alam TWN. Antibacterial test of Curcuma sumatrana rhizome extract as endemic plant of West Sumatra against positive gram bacteria. Bioscientist. 2023;11(1):561-570. https://doi.org/10.33394/bioscientist.v11i1.7697.
  • [21] Wang H, Chen L, Zhang R, Zhang G, Liu J, Guo F. Curcuma wenyujin rhizomes extract ameliorates lipid accumulation. Fitoterapia. 2024;175:105957. https://doi.org/10.1016/j.fitote.2024.105957.
  • [22] Prasannarong M, Saengsirisuwan V, Piyachaturawat P, Suksamrarn A. Improvements of insulin resistance in ovariectomized rats by a novel phytoestrogenic formulation. Molecules. 2023;28(6):2364. https://doi.org/10.3390/molecules28062364.
  • [23] Kim TW, Choi SH, Kim JY, Lee JH, Lee S, Kim JY, Kim SH. Effect of a ginger extract on the antioxidant activity and anti-inflammatory cytokines in humans. Nutrients. 2018;10(9):1245. https://doi.org/10.3390/nu10091245.
  • [24] Uchio R, Higashi Y, Kohama Y, Kawasaki K, Hirao T, Muroyama K, Murosaki S. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production. J Nutr Sci. 2017;6. http://dx.doi.org/10.1017/jns.2016.43.
  • [25] Liu K, Qiu D, Liang X, Huang Y, Wang Y, Jia X, Li K, Zhao J, Du C, Qiu X, Cui J, Xiao Z, Qin Y, Zhang Q. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy. 2022;18(4):860-876. http://dx.doi.org/10.1080/15548627.2021.1961072.
  • [26] Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol. 2024;76(10):1269-1283. http://dx.doi.org/10.1093/jpp/rgae102.
  • [27] Manzoni AG, Passos DF, Leitemperger JW, Storck TR, Doleski PH, Jantsch MH, Loro VL, Leal DBR. Hyperlipidemia-induced lipotoxicity and immune activation in rats are prevented by curcumin and rutin. Int Immunopharmacol. 2020;81:106217. http://dx.doi.org/10.1016/j.intimp.2020.106217.
  • [28] Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021;12(9):3898-3918. http://dx.doi.org/10.1039/d0fo02736g.
  • [29] Shuker E, Farhood M, Al-Qudaihi G, Fouad D. Potential effects of boldine on oxidative stress, apoptosis, and inflammatory changes induced by the methylprednisolone hepatotoxicity in male Wistar rats. Dose Response. 2022;20(1):15593258221082877. http://dx.doi.org/10.1177/15593258221082877.
  • [30] Naaz A, Zhang Y, Faidzinn NA, Yogasundaram S, Dorajoo R, Alfatah M. Curcumin inhibits TORC1 and prolongs the lifespan of cells with mitochondrial dysfunction. Cells. 2024;13(17):1470. http://dx.doi.org/10.3390/cells13171470.
  • [31] Nababan SHH, Lesmana CRA. Portal hypertension in nonalcoholic fatty liver disease: from pathogenesis to clinical practice. J Clin Transl Hepatol. 2022;10(5):979-985. http://dx.doi.org/10.14218/JCTH.2021.00593.
  • [32] Wang XK, Peng ZG. Targeting liver sinusoidal endothelial cells: an attractive therapeutic strategy to control inflammation in nonalcoholic fatty liver disease. Front Pharmacol. 2021;12:655557. http://dx.doi.org/10.3389/fphar.2021.655557.
  • [33] Xia X, Cheng G, Pan Y, Xia ZH, Kong LD. Behavioral, neurochemical and neuroendocrine effects of the ethanolic extract from Curcuma longa L. in the mouse forced swimming test. J Ethnopharmacol. 2007;110(2):356-363. http://dx.doi.org/10.1016/j.jep.2006.09.042.
  • [34] Gomathi D, Kalaiselvi M, Ravikumar G, Devaki K, Uma C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J Food Sci Technol. 2015;52(2):1212-1217. http://dx.doi.org/10.1007/s13197-013-1105-9.
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Putra Santoso 0000-0003-4092-6222

Nurul Annisa This is me 0009-0004-0733-1766

Kurniadi Ilham This is me 0009-0007-4341-2370

Muhammad Syukri Fadil This is me 0009-0006-0649-1842

Jihan Aprilia Nawawi This is me 0000-0002-9074-8279

Publication Date November 2, 2025
Submission Date October 15, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2025 Volume: 29 Issue: 6

Cite

APA Santoso, P., Annisa, N., Ilham, K., … Fadil, M. S. (2025). Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice. Journal of Research in Pharmacy, 29(6), 2206-2217. https://doi.org/10.12991/jrespharm.1796199
AMA Santoso P, Annisa N, Ilham K, Fadil MS, Nawawi JA. Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice. J. Res. Pharm. November 2025;29(6):2206-2217. doi:10.12991/jrespharm.1796199
Chicago Santoso, Putra, Nurul Annisa, Kurniadi Ilham, Muhammad Syukri Fadil, and Jihan Aprilia Nawawi. “Therapeutic Effect of Wild Sumatran Turmeric (Curcuma Sumatrana) Extract Against Non-Alcoholic Fatty Liver Disease in Mice”. Journal of Research in Pharmacy 29, no. 6 (November 2025): 2206-17. https://doi.org/10.12991/jrespharm.1796199.
EndNote Santoso P, Annisa N, Ilham K, Fadil MS, Nawawi JA (November 1, 2025) Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice. Journal of Research in Pharmacy 29 6 2206–2217.
IEEE P. Santoso, N. Annisa, K. Ilham, M. S. Fadil, and J. A. Nawawi, “Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice”, J. Res. Pharm., vol. 29, no. 6, pp. 2206–2217, 2025, doi: 10.12991/jrespharm.1796199.
ISNAD Santoso, Putra et al. “Therapeutic Effect of Wild Sumatran Turmeric (Curcuma Sumatrana) Extract Against Non-Alcoholic Fatty Liver Disease in Mice”. Journal of Research in Pharmacy 29/6 (November2025), 2206-2217. https://doi.org/10.12991/jrespharm.1796199.
JAMA Santoso P, Annisa N, Ilham K, Fadil MS, Nawawi JA. Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice. J. Res. Pharm. 2025;29:2206–2217.
MLA Santoso, Putra et al. “Therapeutic Effect of Wild Sumatran Turmeric (Curcuma Sumatrana) Extract Against Non-Alcoholic Fatty Liver Disease in Mice”. Journal of Research in Pharmacy, vol. 29, no. 6, 2025, pp. 2206-17, doi:10.12991/jrespharm.1796199.
Vancouver Santoso P, Annisa N, Ilham K, Fadil MS, Nawawi JA. Therapeutic effect of wild sumatran turmeric (Curcuma sumatrana) extract against non-alcoholic fatty liver disease in mice. J. Res. Pharm. 2025;29(6):2206-17.