Research Article
BibTex RIS Cite

Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities

Year 2025, Volume: 29 Issue: 6, 2336 - 2348, 02.11.2025
https://doi.org/10.12991/jrespharm.1797835

Abstract

Kombucha, a popular functional beverage, is widely recognized for its health-promoting properties. Recently, there has been a growing interest in using alternative substrates for kombucha production. Phaleria macrocarpa, commonly known as Mahkota Dewa, is a medicinal plant with various pharmacological activities, yet its use as a kombucha substrate has not been explored. This study aimed to evaluate the polyphenol content, antioxidant, and antihyperglycemic properties of kombucha derived from P. macrocarpa fruit. The experimental design involved four stages: extraction of P. macrocarpa, fermentation, product standardization, and pharmacological activity evaluation. The kombucha was chemically standardized by measuring total phenol and flavonoid content, while bioactive compounds were identified via UPLC-MS analysis. Pharmacological activities were tested in vitro for antioxidant effects using the DPPH method and in vivo for antihyperglycemic effects in alloxan-induced diabetic mice. Data were analyzed using independent T-tests and ANOVA with a 95% confidence interval. Results demonstrated a significant increase in total phenol content in P. macrocarpa kombucha compared to the non-fermented infusion (34.4±0.55 mgGAE/g vs. 29.4±0.71 mgGAE/g, p=0.001), as well as an increase in flavonoid content (20.2±1.18 mgQE/g vs. 17.8±0.11 mgQE/g, p=0.025). The kombucha also contained glycoside xanthones, including mangiferin and swertianolin, and flavonoids like rutin, naringin and 8-C-glucopyranosyleriodictylol. Moreover, P. macrocarpa kombucha exhibited stronger antioxidant activity (421.3 μg/mL vs. 436.6 μg/mL). It demonstrated significant antihyperglycemic effects after 14 days, lowering glucose levels by 54.99% ± 1.65 (p=0.001), surpassing both metformin (37.05% ± 1.65) and the non-fermented infusion (34.99% ± 1.65). These results highlight P. macrocarpa kombucha's potential as a functional beverage, particularly for managing diabetes mellitus.

References

  • [1] Júnior JC da S, Meireles ÍM, Brito I de L, Cordeiro AMT de M. Kombucha: Formulation, chemical composition, and therapeutic potentialities. Curr Res Food Sci 2022;5:360–365. https://doi.org/10.1016/J.CRFS.2022.01.023.
  • [2] Jayabalan R, Malbaša R V., Lončar ES, Vitas JS, Sathishkumar M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr Rev Food Sci Food Saf 2014;13:538–550. https://doi.org/10.1111/1541-4337.12073.
  • [3] de Miranda JF, Ruiz LF, Silva CB, Uekane TM, Silva KA, Gonzalez AGM, Fernandes FF, Lima AR. Kombucha: A review of substrates, regulations, composition, and biological properties. J Food Sci 2022;87:503–527. https://doi.org/10.1111/1750-3841.16029.
  • [4] Vázquez-Cabral BD, Larrosa-Pérez M, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Rutiaga-Quiñones JG, Gamboa-Gómez CI, Rocha-Guzmán NE. Oak kombucha protects against oxidative stress and inflammatory processes. Chem Biol Interact 2017;272:1–9. https://doi.org/10.1016/J.CBI.2017.05.001.
  • [5] Abaci N, Senol Deniz FS, Orhan IE. Kombucha - An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chem X 2022;14. https://doi.org/10.1016/J.FOCHX.2022.100302.
  • [6] Emiljanowicz KE, Malinowska-Pańczyk E. Kombucha from alternative raw materials - The review. Crit Rev Food Sci Nutr 2020;60:3185–94. https://doi.org/10.1080/10408398.2019.1679714.
  • [7] Barakat N, Beaufort S, Rizk Z, Bouajila J, Taillandier P, El Rayess Y. Kombucha analogues around the world: A review. Crit Rev Food Sci Nutr. 2023;63(29):10105-10129. https://doi.org/10.1080/10408398.2022.2069673.
  • [8] Ministry of Health Indonesia. Indonesian Herbal Pharmacopeia. 2nd Edition. Jakarta,Indonesia: Directorate General of Pharmacy and Medical Devices,Ministry of Health of Indonesia; 2017.
  • [9] Alara O, Alara J, Olalere O. Review on Phaleria macrocarpa Pharmacological and Phytochemical Properties. Drug Des. 2016;05. https://doi.org/10.4172/2169-0138.1000134.
  • [10] Lay MM, Karsani SA, Mohajer S, Abd Malek SN. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl fruits. BMC Complement Altern Med. 2014;14:152. https://doi.org/10.1186/1472-6882-14-152/TABLES/7.
  • [11] Ahmad R, Mazlan MKN, Aziz AFA, Gazzali AM, Rawa MSA, Wahab HA. Phaleria macrocarpa (Scheff.) Boerl.: An updated review of pharmacological effects, toxicity studies, and separation techniques. Saudi Pharm J. 2023;31:874–888. https://doi.org/10.1016/J.JSPS.2023.04.006.
  • [12] Ali RB, Atangwho IJ, Kaur N, Abraika OS, Ahmad M, Mahmud R, Asmawi MZ. Bioassay-Guided Antidiabetic Study of Phaleria macrocarpa Fruit Extract. Molecules 2012;17:4986. https://doi.org/10.3390/MOLECULES17054986.
  • [13] Altaf R, Asmawi MZ Bin, Dewa A, Sadikun A, Umar MI. Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacogn Rev. 2013;7:73. https://doi.org/10.4103/0973-7847.112853.
  • [14] Chong AQ, Lau SW, Chin NL, Talib RA, Basha RK. Fermented Beverage Benefits: A Comprehensive Review and Comparison of Kombucha and Kefir Microbiome. Microorganisms 2023;11. https://doi.org/10.3390/MICROORGANISMS11051344.
  • [15] Batista P, Penas MR, Pintado M, Oliveira-Silva P. Kombucha: Perceptions and Future Prospects. Foods. 2022;11(13):1977. https://doi.org/10.3390/FOODS11131977.
  • [16] Antolak H, Piechota D, Kucharska A. Kombucha Tea-A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants (Basel) 2021;10(10):1541. https://doi.org/10.3390/ANTIOX10101541.
  • [17] Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:1118761. https://doi.org/10.3389/FNUT.2023.1118761.
  • [18] Borges A, Jose H, Homem V, Simoes M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics (Basel). 2020;9(2):48. https://doi.org/10.3390/ANTIBIOTICS9020048.
  • [19] Abd-Gani SS, Ezzuddin NNN, Zaidan UH, Halmi MIE, Abd-Halim AN. Flavonoid Content of Phaleria macrocarpa Fruit and Its Proximate Compositions. Malaysian Appl Biol. 2023;52:119.125. https://doi.org/10.55230/MABJOURNAL.V52I4.M024.
  • [20] Mahzir MKA, Abd-Gani SS, Zaidan UH, Halmi MIE. Development of Phaleria macrocarpa (Scheff.) Boerl Fruits Using Response Surface Methodology Focused on Phenolics, Flavonoids and Antioxidant Properties. Molecules. 2018;23(4):724. https://doi.org/10.3390/MOLECULES23040724.
  • [21] Zubaidah E, Afgani CA, Kalsum U, Srianta I, Blanc PJ. Comparison of in vivo antidiabetes activity of snake fruit Kombucha, black tea Kombucha and metformin. Biocatal Agric Biotechnol 2019;17:465.469. https://doi.org/10.1016/J.BCAB.2018.12.026.
  • [22] Kim H, Hur S, Lim J, Jin K, Yang TH, Keehm I-S, Kim SW, Kim T, Kim D. Enhancement of the phenolic compounds and antioxidant activities of Kombucha prepared using specific bacterial and yeast. Food Biosci 2023;56:103431. https://doi.org/10.1016/J.FBIO.2023.103431.
  • [23] Silva KA, Uekane TM, Miranda JF de, Ruiz LF, Motta JCB da, Silva CB, de Souza Pitangui N, Martins Gonzalez AG, Fernandes FF, Lima AR. Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. Biocatal Agric Biotechnol. 2021;34:102032. https://doi.org/10.1016/J.BCAB.2021.102032
  • [24] Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S, Chakraborty W, Koley H, Gachhui R. Antibacterial activity of polyphenolic fraction of Kombucha against enteric bacterial pathogens. Curr Microbiol. 2016;73(6):885-896. https://doi.org/10.1007/S00284-016-1136-3/METRICS.
  • [25] Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Busselberg D. Flavonoids and their anti-diabetic effects: Cellular Mechanisms and effects to .mprove blood sugar levels. Biomolecules 2019;9:430. https://doi.org/10.3390/BIOM9090430.
  • [26] Eff ARY, Huri HZ, Radji M, Mun'im A, Suyatna FD, Eden Y. Angiotensin converting enzyme (ACE) inhibitors activity from purified compounds Fructus Phaleria macrocarpa (Scheff) Boerl. BMC Complement Med Ther. 2023;23(1):56. https://doi.org/10.1186/S12906-023-03889-X.
  • [27] Maharani M, Lajuna L, Yuniwati C, Sabrida O, Sutrisno S. Phytochemical characteristics from Phaleria macrocarpa and its inhibitory activity on the peritoneal damage of endometriosis. J Ayurveda Integr Med. 2021;12:229.233. https://doi.org/10.1016/J.JAIM.2020.06.002.
  • [28] Mia MAR, Ahmed QU, Ferdosh S, Helaluddin ABM, Awal MS, Sarian MN, Sarker MZI, Zakaria ZA. In Vitro, In Silico and Network Pharmacology Mechanistic Approach to Investigate the ƒ¿-Glucosidase Inhibitors Identified by Q-ToF-LCMS from Phaleria macrocarpa Fruit Subcritical CO2 Extract. Metabolites. 2022;12(12):1267. https://doi.org/10.3390/METABO12121267.
  • [29] Othman SNAM, Sarker SD, Nahar L, Basar N. The ethnomedicinal, phytochemical and pharmacological properties of Phaleria macrocarpa (Scheff). Boerl. TANG [HUMANITAS MEDICINE] 2014;4:22.1-22.12. https://doi.org/10.5667/TANG.2014.0018.
  • [30] Akar Z, Kucuk M, Do.an H. A new colorimetric DPPH. scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem. 2017;32:640.647. https://doi.org/10.1080/14756366.2017.1284068.
  • [31] Faried A, Kurnia D, Faried LS, Usman N, Miyazaki T, Kato H, et al. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol. 2007;30:605.613. https://doi.org/10.3892/IJO.30.3.605.
  • [32] Hendra R, Ahmad S, Oskoueian E, Sukari A, Shukor MY. Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit. BMC Complement Altern Med 2011;11:110. https://doi.org/10.1186/1472-6882-11-110.
  • [33] Golovkina DA, Zhurishkina EV, Ayrapetyan ON, Komissarov AE, Krylova AS, Vinogradova EN, Toshchakov SV, Ermilov FK, Barsegyan AM, Kulminskaya AA, Lapina IM. Effect of Brown Algae and Lichen Extracts on the SCOBY Microbiome and Kombucha Properties. Foods. 2022;12(1):47. https://doi.org/10.3390/FOODS12010047/S1.
  • [34] American Diabetes Association. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes 2024. Diabetes Care 2024;47:S20–42. https://doi.org/10.2337/DC13-S011.
  • [35] Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. Nucleus 2022;65:399. https://doi.org/10.1007/S13237-022-00405-3.
  • [36] Mendelson C, Sparkes S, Merenstein DJ, Christensen C, Sharma V, Desale S, Auchtung JM, Kok CR, Hallen-Adams HE, Hutkins R. Kombucha tea as an anti-hyperglycemic agent in humans with diabetes - a randomized controlled pilot investigation. Front Nutr. 2023;10:1190248. https://doi.org/10.3389/FNUT.2023.1190248.
  • [37] Bortolomedi BM, Paglarini CS, Brod FCA. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem. 2022;385:132719. https://doi.org/10.1016/J.FOODCHEM.2022.132719.
  • [38] Jangra A, Arora MK, Kisku A, Sharma S. The multifaceted role of mangiferin in health and diseases: a review. Adv Tradit Med. 2021;21:619–643. https://doi.org/10.1007/S13596-020-00471-5/METRICS.
  • [39] Zhang Q, Kong X, Yuan H, Guan H, Li Y, Niu Y. Mangiferin Improved Palmitate-Induced-Insulin Resistance by Promoting Free Fatty Acid Metabolism in HepG2 and C2C12 Cells via PPARα: Mangiferin Improved Insulin Resistance. J Diabetes Res. 2019;2019:2052675. https://doi.org/10.1155/2019/2052675.
  • [40] Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305–312. https://doi.org/10.1016/J.BIOPHA.2017.10.001.
  • [41] Shen W, Xu Y, Lu YH. Inhibitory effects of Citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. J Agric Food Chem. 2012;60:9609–9619. https://doi.org/10.1021/JF3032556/SUPPL_FILE/JF3032556_SI_001.PDF.
  • [42] Qi Z, Xu Y, Liang Z, Li S, Wang J, Wei Y, Dong B. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol Med Rep. 2015;12(5):7093-101. https://doi.org/10.3892/MMR.2015.4232.
  • [43] Ismed F, Desti WN, Arifa N, Rustini R, Putra DP. TLC-Bioautographic and LC-MS/MS detection of antimicrobial compounds from four semipolar extracts of Cladonia Species. Adv Health Sci Res. 2021;40. https://doi.org/10.2991/AHSR.K.211105.008.
  • [44] Christodoulou MC, Orellana Palacios JC, Hesami G, Jafarzadeh S, Lorenzo JM, Domínguez R, Moreno A, Hadidi M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants (Basel). 2022;11(11):2213. https://doi.org/10.3390/ANTIOX11112213.
  • [45] Wang Z, Wu Z, Zuo G, Lim SS, Yan H. Defatted Seeds of Oenothera biennis as a Potential Functional Food Ingredient for Diabetes. Foods. 2021;10(3):538. https://doi.org/10.3390/FOODS10030538.
  • [46] Yan G, Zheng P, Weng S, Zhang Y, Xu W, Luo J, et al. Comparison of Chemical Compositions and Antioxidant Activities of Fresh and Dried Rosa roxburghii Tratt Fruit. Nat Prod Commun. 2022; 17(4). https://doi.org/10.1177/1934578X221095350.
  • [47] He J, Tian C, Ouyang H, Adelakun TA, Yu B, Chang Y, Pan G, Jiang L, Gao X. Determination of swertianolin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr. 2014;28(10):1418-1422. https://doi.org/10.1002/BMC.3184.
There are 47 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Mesa Sukmadani Rusdi This is me 0000-0003-1703-5480

Sofiyetti Sofiyetti This is me 0009-0008-9023-1481

M. Rifqi Efendi 0000-0002-6321-0318

Fathnur Sani K This is me 0000-0003-1992-2489

Publication Date November 2, 2025
Submission Date October 13, 2024
Acceptance Date January 31, 2025
Published in Issue Year 2025 Volume: 29 Issue: 6

Cite

APA Rusdi, M. S., Sofiyetti, S., Efendi, M. R., Sani K, F. (2025). Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities. Journal of Research in Pharmacy, 29(6), 2336-2348. https://doi.org/10.12991/jrespharm.1797835
AMA Rusdi MS, Sofiyetti S, Efendi MR, Sani K F. Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities. J. Res. Pharm. November 2025;29(6):2336-2348. doi:10.12991/jrespharm.1797835
Chicago Rusdi, Mesa Sukmadani, Sofiyetti Sofiyetti, M. Rifqi Efendi, and Fathnur Sani K. “Kombucha Analog from Mahkota Dewa (Phaleria Macrocarpa (Scheff) Boerl) Fruit: Standardization of Polyphenolic Compounds, Study of Antioxidant and Antihyperglycemic Activities”. Journal of Research in Pharmacy 29, no. 6 (November 2025): 2336-48. https://doi.org/10.12991/jrespharm.1797835.
EndNote Rusdi MS, Sofiyetti S, Efendi MR, Sani K F (November 1, 2025) Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities. Journal of Research in Pharmacy 29 6 2336–2348.
IEEE M. S. Rusdi, S. Sofiyetti, M. R. Efendi, and F. Sani K, “Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities”, J. Res. Pharm., vol. 29, no. 6, pp. 2336–2348, 2025, doi: 10.12991/jrespharm.1797835.
ISNAD Rusdi, Mesa Sukmadani et al. “Kombucha Analog from Mahkota Dewa (Phaleria Macrocarpa (Scheff) Boerl) Fruit: Standardization of Polyphenolic Compounds, Study of Antioxidant and Antihyperglycemic Activities”. Journal of Research in Pharmacy 29/6 (November2025), 2336-2348. https://doi.org/10.12991/jrespharm.1797835.
JAMA Rusdi MS, Sofiyetti S, Efendi MR, Sani K F. Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities. J. Res. Pharm. 2025;29:2336–2348.
MLA Rusdi, Mesa Sukmadani et al. “Kombucha Analog from Mahkota Dewa (Phaleria Macrocarpa (Scheff) Boerl) Fruit: Standardization of Polyphenolic Compounds, Study of Antioxidant and Antihyperglycemic Activities”. Journal of Research in Pharmacy, vol. 29, no. 6, 2025, pp. 2336-48, doi:10.12991/jrespharm.1797835.
Vancouver Rusdi MS, Sofiyetti S, Efendi MR, Sani K F. Kombucha analog from Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) fruit: Standardization of polyphenolic compounds, study of antioxidant and antihyperglycemic activities. J. Res. Pharm. 2025;29(6):2336-48.