Research Article
BibTex RIS Cite

Practical and Theoretical Comparison of Leaks in Drinking Water Systems

Year 2023, , 55 - 66, 31.12.2023
https://doi.org/10.5281/zenodo.10445009

Abstract

In drinking water systems, leaks and failures occur in pipes that provide water transmission due to various factors. One of the main factors in the damage of pipes is pressure fluctuation. In order to eliminate this fluctuation, pressure management is applied with different pressure regulation methods. In addition to reducing leakages, pressure management also has cost elements. In order to meet this cost, the condition of the water distribution system should be analyzed before pressure management, which pressure regulation method will be preferred should be decided and how much water loss will be prevented as a result of pressure management application should be calculated. In this study, leakages were calculated theoretically with the Fixed and Variable Area Discharges (FAVAD) equation, which establishes a relationship between leakage and pressure in the isolated measurement area where pressure regulation is applied, and compared with the field application. Pressure regulation methods that do not give results close to practice were identified by analysis and a new calculation method was developed for these methods. The results in the field application were compared with the developed method and it was tested that it gives results close to the field. This method is considered to be one of the deciding factors in the calculation of leakage in different pressure methods.

References

  • K. B. Adedeji, Y. Hamam, B. T. Abe, and A. M. Abu-Mahfouz, “Towards Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water Piping Networks: An Overview,” IEEE Access, vol. 5, pp. 20272–20285, 2017, doi: 10.1109/ACCESS.2017.2752802.
  • J. Thornton, R. Sturm, and G. K. P.E., Water Loss Control , 2nd edition. New York: The McGraw-Hill Companies, 2008.
  • J. Thornton and A. O. Lambert, “Pressure management extends infrastructure life and reduces unnecessary energy costs,” 2007.
  • M. Farley et al., “The Manager’s Non-Revenue Water Handbook A Guide to Understanding Water Losses,” 2008.
  • M. Firat, S. Yilmaz, A. Ateş, and Ö. Özdemir, “Determination of Economic Leakage Level with Optimization Algorithm in Water Distribution Systems,” Water Economics and Policy, vol. 07, no. 03, Jul. 2021, doi: 10.1142/S2382624X21500144.
  • F. J. Tardelli, “Controle E Redução De Perdas Nos Sıstemas Públıcos De Abastecımento De Água Posıcıonamento E Contrıbuıções Técnıcas Da Abes,” 2015.
  • T. AL-Washali, S. Sharma, and M. Kennedy, “Methods of Assessment of Water Losses in Water Supply Systems: a Review,” Water Resources Management, vol. 30, no. 14, pp. 4985–5001, Nov. 2016, doi: 10.1007/s11269-016-1503-7.
  • N. Samir, R. Kansoh, W. Elbarki, and A. Fleifle, “Pressure control for minimizing leakage in water distribution systems,” Alexandria Engineering Journal, vol. 56, no. 4, pp. 601–612, Dec. 2017, doi: 10.1016/j.aej.2017.07.008.
  • AWWA, Water Audits and Loss Control Programs-M36, Fourth Edition. Denver: American Water Works Association, 2016.
  • A. Lambert and J. Thornton, “Pressure : Bursts Relationships : Influence of Pipe Materials, Validation of Scheme Results and Implications of Extended Asset Life,” Water Loss , vol. 2, no. 11, 2012.
  • L. S. Araujo, H. Ramos, and S. T. Coelho, “Pressure Control for Leakage Minimisation in Water Distribution Systems Management,” Water Resources Management, vol. 20, no. 1, pp. 133–149, Feb. 2006, doi: 10.1007/s11269-006-4635-3.
  • B. Ulanicki, P. L. M. Bounds, J. P. Rance, and L. Reynolds, “Open and closed loop pressure control for leakage reduction,” Urban Water, vol. 2, no. 2, pp. 105–114, Jun. 2000, doi: 10.1016/S1462-0758(00)00048-0.
  • R. S. Mckenzie and W. Wegelin, Implementation of pressure management in municipal water supply systems. IWA 0309, 2009.
  • A. O. Lambert, T. G. Brown, M. Takizawa, and D. Weimer, “A review of performance indicators for real losses from water supply systems,” Journal of Water Supply: Research and Technology—AQUA, vol. 48, no. 6, pp. 227–237, Sep. 1999, doi: 10.2166/aqua.1999.0025.
  • B. Charalambous, D. Foufeas, and N. Petroulias, “Leak detection and water loss management,” 2014.
  • F. J. Salguero, R. Cobacho, and M. A. Pardo, “Unreported leaks location using pressure and flow sensitivity in water distribution networks,” Water Supply, vol. 19, no. 1, pp. 11–18, Feb. 2019, doi: 10.2166/ws.2018.048.
  • V. Kanakoudis and K. Gonelas, “The Optimal Balance Point between NRW Reduction Measures, Full Water Costing and Water Pricing in Water Distribution Systems. Alternative Scenarios Forecasting the Kozani’s WDS Optimal Balance Point,” Procedia Eng, vol. 119, pp. 1278–1287, 2015, doi: 10.1016/j.proeng.2015.08.996.
  • S. Yilmaz, M. Firat, A. Ateş, and Ö. Özdemir, “Analyzing the economic water loss level with a discrete stochastic optimization algorithm by considering budget constraints,” Journal of Water Supply: Research and Technology-Aqua, vol. 71, no. 7, pp. 835–848, Jul. 2022, doi: 10.2166/aqua.2022.060.
  • M. John Henry, Pressure dependent leakage. World Water and Environmental Engineering, 1994.
  • S. Ahopelto and R. Vahala, “Cost–Benefit Analysis of Leakage Reduction Methods in Water Supply Networks,” Water (Basel), vol. 12, no. 1, p. 195, Jan. 2020, doi: 10.3390/w12010195.
  • S. Yilmaz, A. Ateş, M. Firat, Ö. Özdemir, and H. Cinal, “Determination of economic loss levels in water distribution systems with different network conditions by a district stochastic optimization algorithm,” Water Supply, vol. 23, no. 3, pp. 1349–1361, Mar. 2023, doi: 10.2166/ws.2023.047.
  • N. A. Barton, S. H. Hallett, S. R. Jude, and T. H. Tran, “An evolution of statistical pipe failure models for drinking water networks: a targeted review,” Water Supply, vol. 22, no. 4. IWA Publishing, pp. 3784–3813, Apr. 01, 2022. doi: 10.2166/ws.2022.019.
  • M. Girard and R. A. Stewart, “Implementation of Pressure and Leakage Management Strategies on the Gold Coast, Australia: Case Study,” J Water Resour Plan Manag, vol. 133, no. 3, pp. 210–217, May 2007, doi: 10.1061/(ASCE)0733-9496(2007)133:3(210).
  • “Malatya Su ve Kanalizasyon İdaresi Genel Müdürlüğü (MASKİ),” Malatya, 2022.

İçme Suyu Sistemlerinde Sızıntıların Uygulamalı ve Teorik Olarak Karşılaştırılması

Year 2023, , 55 - 66, 31.12.2023
https://doi.org/10.5281/zenodo.10445009

Abstract

İçme suyu sistemlerinde çeşitli unsurlara bağlı olarak su iletimini sağlayan borularda sızıntı ve arızalar meydana gelmektedir. Boruların hasar görmesindeki temel etkenlerden biri basınç dalgalanmasıdır. Bu dalgalanmanın giderilmesi için farklı basınç düzenleme yöntemleriyle basınç yönetimi uygulaması yapılmaktadır. Basınç yönetimi uygulamasının sızıntıların azaltılmasının yanında maliyet unsurları da vardır. Bu maliyeti karşılaması için basınç yönetimi öncesi su dağıtım sisteminin durumu analiz edilmeli, hangi basınç düzenleme yöntemi tercih edileceğine karar verilmeli ve basınç yönetimi uygulaması sonucu ne kadar su kaybı önleneceği hesaplanmalıdır. Bu çalışmada basınç düzenlemesi yapılan izole ölçüm bölgesinde sızıntı ve basınç arasında ilişki kuran Fixed and Variable Area Discharges (FAVAD) denklemiyle sızıntılar teorik olarak hesaplanmış ve saha uygulamasıyla karşılaştırılmıştır. Uygulamaya yakın sonuç vermeyen basınç düzenleme yöntemleri analizlerle tespit edilmiştir ve bu yöntemler için yeni bir hesaplama yöntemi geliştirilmiştir. Geliştirilen yöntemle saha uygulamasındaki sonuçlar karşılaştırılmış ve sahaya yakın sonuçlar verdiği test edilmiştir. Bu yöntemin farklı basınç yöntemlerinde sızıntıların hesaplanması konusunda karar verici unsurlardan biri olması düşünülmektedir.

References

  • K. B. Adedeji, Y. Hamam, B. T. Abe, and A. M. Abu-Mahfouz, “Towards Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water Piping Networks: An Overview,” IEEE Access, vol. 5, pp. 20272–20285, 2017, doi: 10.1109/ACCESS.2017.2752802.
  • J. Thornton, R. Sturm, and G. K. P.E., Water Loss Control , 2nd edition. New York: The McGraw-Hill Companies, 2008.
  • J. Thornton and A. O. Lambert, “Pressure management extends infrastructure life and reduces unnecessary energy costs,” 2007.
  • M. Farley et al., “The Manager’s Non-Revenue Water Handbook A Guide to Understanding Water Losses,” 2008.
  • M. Firat, S. Yilmaz, A. Ateş, and Ö. Özdemir, “Determination of Economic Leakage Level with Optimization Algorithm in Water Distribution Systems,” Water Economics and Policy, vol. 07, no. 03, Jul. 2021, doi: 10.1142/S2382624X21500144.
  • F. J. Tardelli, “Controle E Redução De Perdas Nos Sıstemas Públıcos De Abastecımento De Água Posıcıonamento E Contrıbuıções Técnıcas Da Abes,” 2015.
  • T. AL-Washali, S. Sharma, and M. Kennedy, “Methods of Assessment of Water Losses in Water Supply Systems: a Review,” Water Resources Management, vol. 30, no. 14, pp. 4985–5001, Nov. 2016, doi: 10.1007/s11269-016-1503-7.
  • N. Samir, R. Kansoh, W. Elbarki, and A. Fleifle, “Pressure control for minimizing leakage in water distribution systems,” Alexandria Engineering Journal, vol. 56, no. 4, pp. 601–612, Dec. 2017, doi: 10.1016/j.aej.2017.07.008.
  • AWWA, Water Audits and Loss Control Programs-M36, Fourth Edition. Denver: American Water Works Association, 2016.
  • A. Lambert and J. Thornton, “Pressure : Bursts Relationships : Influence of Pipe Materials, Validation of Scheme Results and Implications of Extended Asset Life,” Water Loss , vol. 2, no. 11, 2012.
  • L. S. Araujo, H. Ramos, and S. T. Coelho, “Pressure Control for Leakage Minimisation in Water Distribution Systems Management,” Water Resources Management, vol. 20, no. 1, pp. 133–149, Feb. 2006, doi: 10.1007/s11269-006-4635-3.
  • B. Ulanicki, P. L. M. Bounds, J. P. Rance, and L. Reynolds, “Open and closed loop pressure control for leakage reduction,” Urban Water, vol. 2, no. 2, pp. 105–114, Jun. 2000, doi: 10.1016/S1462-0758(00)00048-0.
  • R. S. Mckenzie and W. Wegelin, Implementation of pressure management in municipal water supply systems. IWA 0309, 2009.
  • A. O. Lambert, T. G. Brown, M. Takizawa, and D. Weimer, “A review of performance indicators for real losses from water supply systems,” Journal of Water Supply: Research and Technology—AQUA, vol. 48, no. 6, pp. 227–237, Sep. 1999, doi: 10.2166/aqua.1999.0025.
  • B. Charalambous, D. Foufeas, and N. Petroulias, “Leak detection and water loss management,” 2014.
  • F. J. Salguero, R. Cobacho, and M. A. Pardo, “Unreported leaks location using pressure and flow sensitivity in water distribution networks,” Water Supply, vol. 19, no. 1, pp. 11–18, Feb. 2019, doi: 10.2166/ws.2018.048.
  • V. Kanakoudis and K. Gonelas, “The Optimal Balance Point between NRW Reduction Measures, Full Water Costing and Water Pricing in Water Distribution Systems. Alternative Scenarios Forecasting the Kozani’s WDS Optimal Balance Point,” Procedia Eng, vol. 119, pp. 1278–1287, 2015, doi: 10.1016/j.proeng.2015.08.996.
  • S. Yilmaz, M. Firat, A. Ateş, and Ö. Özdemir, “Analyzing the economic water loss level with a discrete stochastic optimization algorithm by considering budget constraints,” Journal of Water Supply: Research and Technology-Aqua, vol. 71, no. 7, pp. 835–848, Jul. 2022, doi: 10.2166/aqua.2022.060.
  • M. John Henry, Pressure dependent leakage. World Water and Environmental Engineering, 1994.
  • S. Ahopelto and R. Vahala, “Cost–Benefit Analysis of Leakage Reduction Methods in Water Supply Networks,” Water (Basel), vol. 12, no. 1, p. 195, Jan. 2020, doi: 10.3390/w12010195.
  • S. Yilmaz, A. Ateş, M. Firat, Ö. Özdemir, and H. Cinal, “Determination of economic loss levels in water distribution systems with different network conditions by a district stochastic optimization algorithm,” Water Supply, vol. 23, no. 3, pp. 1349–1361, Mar. 2023, doi: 10.2166/ws.2023.047.
  • N. A. Barton, S. H. Hallett, S. R. Jude, and T. H. Tran, “An evolution of statistical pipe failure models for drinking water networks: a targeted review,” Water Supply, vol. 22, no. 4. IWA Publishing, pp. 3784–3813, Apr. 01, 2022. doi: 10.2166/ws.2022.019.
  • M. Girard and R. A. Stewart, “Implementation of Pressure and Leakage Management Strategies on the Gold Coast, Australia: Case Study,” J Water Resour Plan Manag, vol. 133, no. 3, pp. 210–217, May 2007, doi: 10.1061/(ASCE)0733-9496(2007)133:3(210).
  • “Malatya Su ve Kanalizasyon İdaresi Genel Müdürlüğü (MASKİ),” Malatya, 2022.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Merve Akdemir 0000-0002-8982-6698

Salih Yılmaz 0000-0002-3206-1225

Early Pub Date December 30, 2023
Publication Date December 31, 2023
Submission Date October 16, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2023

Cite

IEEE M. Akdemir and S. Yılmaz, “İçme Suyu Sistemlerinde Sızıntıların Uygulamalı ve Teorik Olarak Karşılaştırılması”, JSAT, vol. 1, no. 2, pp. 55–66, 2023, doi: 10.5281/zenodo.10445009.