Research Article
BibTex RIS Cite

SCAPS-1D Yazılımını Kullanarak Tersine Çevrilmiş Düzlemsel Perovskit Güneş Hücresinin Simülasyonu

Year 2024, Volume: 2 Issue: 1, 64 - 73, 30.06.2024
https://doi.org/10.63063/jsat.1484940

Abstract

Güneş enerjisi, elektrik üretiminde en çok tercih edilen yenilenebilir kaynaklardan biri olarak öne çıkmaktadır. Fotovoltaik teknolojiden yararlanmak, artan enerji ihtiyacını karşılamanın yanı sıra, fosil yakıtlara olan bağımlılığı azaltarak küresel iklim değişikliğiyle mücadelede de hayati bir rol oynamaktadır. Perovskit güneş hücreleri, optoelektronik özellikleri, yüksek verimleri ve düşük üretim maliyetleri nedeniyle son yıllarda büyük ilgi toplamıştır. Sayısal simülasyon, karmaşık sistemleri modellemek ve bilim ve mühendisliğin çeşitli alanlarındaki davranışlarını tahmin etmek için kullanılan güçlü bir araçtır. Fotovoltaik cihazların modellenmesinde ve simülasyonunda genellikle tek boyutlu güneş hücresi kapasitans simülatörü (SCAPS-1D) kullanılmaktadır. SCAPS-1D tarafından gerçekleştirilen simülasyon, çeşitli perovskit güneş hücrelerinin performansının değerlendirilmesinde ve iyileştirilmesinde önemli bir rol oynamaktadır. Bu çalışmada, perovskit güneş hücresinde soğurucu perovskit katmanı olarak CH3NH3PbI3-XClx, deşik iletim katmanı olarak NiOx ve elektron iletim katmanı olarak PCBM içeren tersine çevrilmiş düzlemsel (p-i-n) yapısında tasarlandı. Tasarlanan tersine çevrilmiş düzlemsel perovskit güneş hücresinin fotovoltaik parametreleri, SCAPS-1D yazılımı kullanılarak aydınlatma altındaki (AM 1.5G 100 mW/cm2) akım-gerilim karakteristiklerinden elde edilmiştir. Perovskit güneş hücresindeki tüm katmanların kalınlığı simülasyon programı kullanılarak optimize edilmiştir ve değişen çalışma sıcaklıklarının ters düzlemsel perovskit güneş hücrelerinin güç dönüşüm verimliliği ve diğer fotovoltaik parametreleri üzerindeki etkisi simülasyon yoluyla araştırılmıştır.

References

  • S. Lin, T. Zhang, H. Yang, and Y. Li, “Progress and Perspectives of Solar Cells: A Critical Review”, Energy & Fuels vol. 38 no.2, pp .761-788, 2024.
  • N. Kant, P. Singh, “Review of next generation photovoltaic solar cell technology and comparative materialistic development”, Materials Today: Proceedings, vol. 56 no. 6, pp. 3460-3470, 2022.
  • M. Burgelman, P. Nollet and S. Degrave, "Modelling polycrystalline semiconductor solar cells", Thin Solid Films, vol. 361-362, pp. 527-532, 2000.
  • K. Decock, P. Zabierowski and M. Burgelman, "Modeling metastabilities in chalopyrite-based thin film solar cells", Journal of Applied Physics, vol. 111 pp. 043703, 2012.
  • K. Decock, S. Khelifi and M. Burgelman, "Modelling multivalent defects in thin film solar cells", Thin Solid Films, 519, pp. 7481-7484, 2011.
  • M. Grätzel, “The light and shade of perovskite solar cells” Nature Materials, vol. 13, no.9, pp. 838–842, 2014.
  • F. Cao, L.Bian, L. Li, “Perovskite solar cells with high-efficiency exceeding 25%: A review”, Energy Mater. Devices, vol. 2, pp. 9370018, 2024.
  • Z. Song, S.C. Watthage, A.B. Phillips, & M. J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications”, Journal of Photonics for Energy, vol. 6-2, pp. 22001, 2016.
  • A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
  • National Renewable Energy Laboratory (NREL), 2024.
  • P. K. Kung, M.H. Li, P. Y. Lin, Y. H. Chiang, C. R. Chan, T. F. Guo and P. Chen., “A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells”, Adv. Mater. Interfaces., vol. 5, pp. 1800882, 2018.
  • M. Liu, M.B. Johnston, H. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, vol. 501, pp. 395–398, 2013.
  • Q. Zhou, Z. Jin, H. Li, et al., “Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities”, Sci. Rep., vol. 6, pp. 21257, 2016.
  • D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu, and S. Priya, “Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers”, Nano Letters, vol. 19 no. 5, pp. 3313-3320, 2019.
  • P. Calado, I. Gelmetti, B. Hilton, et al., “Driftfusion: an open source code for simulating ordered semiconductor devices with mixed ionic-electronic conducting materials in one dimension”, J Comput Electron, vol. 21, pp. 960–991, 2022.
  • M. A. Green, “Solar cell fill factors: General graph and empirical expressions”, Solid-State Electronics, vol. 24, pp. 788-789, 1981.
  • H.J. Park, H. Son, B.S. Jeong, “SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells”, Inorganics, vol. 12, pp. 123, 2024.
  • M. Burgelman, “Models for the optical absorption () of materials in SCAPS”, University of Gent, 2018, Belgium.
  • W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells”, J. Appl. Phys., vol. 32, pp. 510-519, 1961.
  • T. Markvart, “Shockley: Queisser detailed balance limit after 60 years”, Wiley Interdisciplinary Reviews: Energy and Environment, vol. 11(4), pp. 430, 2022.
  • E. Raza, Z. Ahmad, F. Aziz, M. Asif, A. Ahmed, K. Riaz, J. Bhadra, N. J. Al-Thani, “Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance”, Solar Energy, vol. 225, pp. 842-850, 2021.
  • S. Mehmood, Y. Xia, F. Qu, M. He, “Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation”, Energies, vol. 16, no. 21, pp. 7438, 2023.
  • M. Alla, V. Manjunath, N. Chawki, D. Singh, S. C. Yadav, M. Rouchdi, F. Boubker, “Optimized CH3NH3PbI3-XClX based perovskite solar cell with theoretical efficiency exceeding 30%”, Optical Materials, vol. 124, pp. 112044, 2022.
  • M. Ayad, M. Fathi, A. Mellit, “Study and performance analysis of Perovskite solar cell structure based on organic and inorganic thin films”, Optik, vol. 233, pp. 166619, 2021.
  • S.Z. Haider, H. Anwar, S. Manzoor, A.G. Ismail, M. Wang, “A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material”, Current Applied Physics, vol. 20, no. 9, pp. 1080-1089, 2020.
  • D.Araújo, V. Helene and Nogueira, A.F. Tristão, J.C. Santos, L José, "Fullerene-C60 and PCBM as interlayers in regular and inverted lead-free PSCs using CH3NH3SnI3: an analysis of device performance and defect density dependence by SCAPS-1D", RSC Adv., vol. 14, no. 16, pp. 10930-10941, 2024.
  • T. Kirchartz, L. Krückemeier, E.L. Unger, “Research Update: Recombination and open-circuit voltage in lead-halide perovskites”, APL Mater., vol. 6(10), pp. 100702, 2018.
  • E.A Nyiekaa, T.A. Aika, E. Danladi, et al. “Simulation and optimization of 30.17% high performance N-type TCO-free inverted perovskite solar cell using inorganic transport materials”, Sci Rep, vol. 14, pp. 12024, 2024.
  • S. Valizadeh, A. Shokri, A. S.-Dodaran, N. Fough, F. M.-Sukki, “Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures”, Results in Physics, vol. 57, pp. 107351, 2024.
  • G. Siefer and A.W. Bett, “Analysis of temperature coefficients for III–V multi junction concentrator cells” Prog. Photovolt: Res. Appl., vol. 22, pp. 515–524, 2014.

Simulation of Inverted Planar Perovskite Solar Cell Using SCAPS-1D Software

Year 2024, Volume: 2 Issue: 1, 64 - 73, 30.06.2024
https://doi.org/10.63063/jsat.1484940

Abstract

Solar energy stands out as one of the most preferred renewable sources in electricity production. Harnessing photovoltaic technology not only meets increasing energy needs but also plays a vital role in combating global climate change by reducing dependence on fossil fuels. Perovskite solar cells have garnered immense interest in recent years due to their optoelectronics properties, high efficiency and low production costs. Numerical simulation is a powerful tool used to model complex systems and predict their behavior in various fields of science and engineering. Solar cell capacitance simulator in one dimension (SCAPS-1D) is used in the modeling and simulation of photovoltaic devices. The simulation performed by SCAPS-1D plays an important role in evaluating and improving the performance of various types of perovskite solar cells. In this study, the perovskite solar cell was designed in the inverted planar p-i-n structure containing CH3NH3PbI3-XClx as the absorber perovskite layer, NiOx as the hole conduction layer and PCBM as the electron conduction layer. The photovoltaic parameters of the designed inverted planar perovskite solar cells were obtained through current-voltage characteristics under illumination (AM-1.5G 100 mW/cm2) using SCAPS-1D software. Optimization of the thickness of all layers in the structure was performed, and the impact of varying operating temperatures on the power conversion efficiency and other photovoltaic parameters of inverted planar perovskite solar cells was investigated through simulation.In this study, the perovskite solar cell was designed in the inverted planar p-i-n structure containing CH3NH3PbI3-XClx as the absorber perovskite layer, NiOx as the hole conduction layer and PCBM as the electron conduction layer. The photovoltaic parameters of the designed inverted planar perovskite solar cells were obtained through current-voltage characteristics under illumination (AM-1.5G 100 mW/cm2) using SCAPS-1D software. Optimization of the thickness of all layers in the structure was performed, and the impact of varying operating temperatures on the power conversion efficiency and other photovoltaic parameters of inverted planar perovskite solar cells was investigated through simulation.

References

  • S. Lin, T. Zhang, H. Yang, and Y. Li, “Progress and Perspectives of Solar Cells: A Critical Review”, Energy & Fuels vol. 38 no.2, pp .761-788, 2024.
  • N. Kant, P. Singh, “Review of next generation photovoltaic solar cell technology and comparative materialistic development”, Materials Today: Proceedings, vol. 56 no. 6, pp. 3460-3470, 2022.
  • M. Burgelman, P. Nollet and S. Degrave, "Modelling polycrystalline semiconductor solar cells", Thin Solid Films, vol. 361-362, pp. 527-532, 2000.
  • K. Decock, P. Zabierowski and M. Burgelman, "Modeling metastabilities in chalopyrite-based thin film solar cells", Journal of Applied Physics, vol. 111 pp. 043703, 2012.
  • K. Decock, S. Khelifi and M. Burgelman, "Modelling multivalent defects in thin film solar cells", Thin Solid Films, 519, pp. 7481-7484, 2011.
  • M. Grätzel, “The light and shade of perovskite solar cells” Nature Materials, vol. 13, no.9, pp. 838–842, 2014.
  • F. Cao, L.Bian, L. Li, “Perovskite solar cells with high-efficiency exceeding 25%: A review”, Energy Mater. Devices, vol. 2, pp. 9370018, 2024.
  • Z. Song, S.C. Watthage, A.B. Phillips, & M. J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications”, Journal of Photonics for Energy, vol. 6-2, pp. 22001, 2016.
  • A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
  • National Renewable Energy Laboratory (NREL), 2024.
  • P. K. Kung, M.H. Li, P. Y. Lin, Y. H. Chiang, C. R. Chan, T. F. Guo and P. Chen., “A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells”, Adv. Mater. Interfaces., vol. 5, pp. 1800882, 2018.
  • M. Liu, M.B. Johnston, H. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, vol. 501, pp. 395–398, 2013.
  • Q. Zhou, Z. Jin, H. Li, et al., “Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities”, Sci. Rep., vol. 6, pp. 21257, 2016.
  • D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu, and S. Priya, “Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers”, Nano Letters, vol. 19 no. 5, pp. 3313-3320, 2019.
  • P. Calado, I. Gelmetti, B. Hilton, et al., “Driftfusion: an open source code for simulating ordered semiconductor devices with mixed ionic-electronic conducting materials in one dimension”, J Comput Electron, vol. 21, pp. 960–991, 2022.
  • M. A. Green, “Solar cell fill factors: General graph and empirical expressions”, Solid-State Electronics, vol. 24, pp. 788-789, 1981.
  • H.J. Park, H. Son, B.S. Jeong, “SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells”, Inorganics, vol. 12, pp. 123, 2024.
  • M. Burgelman, “Models for the optical absorption () of materials in SCAPS”, University of Gent, 2018, Belgium.
  • W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells”, J. Appl. Phys., vol. 32, pp. 510-519, 1961.
  • T. Markvart, “Shockley: Queisser detailed balance limit after 60 years”, Wiley Interdisciplinary Reviews: Energy and Environment, vol. 11(4), pp. 430, 2022.
  • E. Raza, Z. Ahmad, F. Aziz, M. Asif, A. Ahmed, K. Riaz, J. Bhadra, N. J. Al-Thani, “Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance”, Solar Energy, vol. 225, pp. 842-850, 2021.
  • S. Mehmood, Y. Xia, F. Qu, M. He, “Investigating the Performance of Efficient and Stable Planer Perovskite Solar Cell with an Effective Inorganic Carrier Transport Layer Using SCAPS-1D Simulation”, Energies, vol. 16, no. 21, pp. 7438, 2023.
  • M. Alla, V. Manjunath, N. Chawki, D. Singh, S. C. Yadav, M. Rouchdi, F. Boubker, “Optimized CH3NH3PbI3-XClX based perovskite solar cell with theoretical efficiency exceeding 30%”, Optical Materials, vol. 124, pp. 112044, 2022.
  • M. Ayad, M. Fathi, A. Mellit, “Study and performance analysis of Perovskite solar cell structure based on organic and inorganic thin films”, Optik, vol. 233, pp. 166619, 2021.
  • S.Z. Haider, H. Anwar, S. Manzoor, A.G. Ismail, M. Wang, “A theoretical study for high-performance inverted p-i-n architecture perovskite solar cells with cuprous iodide as hole transport material”, Current Applied Physics, vol. 20, no. 9, pp. 1080-1089, 2020.
  • D.Araújo, V. Helene and Nogueira, A.F. Tristão, J.C. Santos, L José, "Fullerene-C60 and PCBM as interlayers in regular and inverted lead-free PSCs using CH3NH3SnI3: an analysis of device performance and defect density dependence by SCAPS-1D", RSC Adv., vol. 14, no. 16, pp. 10930-10941, 2024.
  • T. Kirchartz, L. Krückemeier, E.L. Unger, “Research Update: Recombination and open-circuit voltage in lead-halide perovskites”, APL Mater., vol. 6(10), pp. 100702, 2018.
  • E.A Nyiekaa, T.A. Aika, E. Danladi, et al. “Simulation and optimization of 30.17% high performance N-type TCO-free inverted perovskite solar cell using inorganic transport materials”, Sci Rep, vol. 14, pp. 12024, 2024.
  • S. Valizadeh, A. Shokri, A. S.-Dodaran, N. Fough, F. M.-Sukki, “Investigation of efficiency and temperature dependence in RbGeBr3-based perovskite solar cell structures”, Results in Physics, vol. 57, pp. 107351, 2024.
  • G. Siefer and A.W. Bett, “Analysis of temperature coefficients for III–V multi junction concentrator cells” Prog. Photovolt: Res. Appl., vol. 22, pp. 515–524, 2014.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Photovoltaic Devices (Solar Cells)
Journal Section Research Articles
Authors

Fatih Ongül 0000-0001-5123-1325

Publication Date June 30, 2024
Submission Date May 15, 2024
Acceptance Date June 4, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

IEEE F. Ongül, “SCAPS-1D Yazılımını Kullanarak Tersine Çevrilmiş Düzlemsel Perovskit Güneş Hücresinin Simülasyonu”, JSAT, vol. 2, no. 1, pp. 64–73, 2024, doi: 10.63063/jsat.1484940.

https://jsat.ardahan.edu.tr