Review Article
BibTex RIS Cite

Green building future: algal application technology

Year 2024, , 199 - 210, 24.06.2024
https://doi.org/10.47481/jscmt.1348260

Abstract

In the context of rising global energy demands driven by population growth and urbanization, the construction industry significantly contributes to greenhouse gas emissions during the construction phase and subsequent energy consumption. Fossil fuel dependency for heating and energy needs exacerbates climate change, necessitating urgent solutions. Algal technology emerges as a promising strategy for green building practices, addressing energy efficiency and emissions reduction. Algae's unique ability to absorb carbon dioxide (CO2) through photosynthesis is harnessed by deploying photobioreactors on building exteriors. Studies indicate that each kilogram of dry algae consumes 1.83 kg of CO2 while offering applications as organic fertilizer, oil, and protein sources. This technology not only diminishes CO2 emissions but also transforms wastewater and generates bioenergy, catering to building energy requirements. Algal technology's economic and environmental significance becomes evident through carbon capture, energy generation, and circular waste management, aligning with sustainability principles. This study highlights the potential of algal technology to shape the future of environmentally conscious construction practices, providing avenues for reduced emissions, efficient energy utilization, and sustainable development.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Çelekli, A., Yeşildağ, İ., Yaygır, S., & Zariç, Ö. E. (2023). Effects of urbanization on bioclimatic comfort conditions. Acta Biol Turc, 36(4), 1–10.
  • Dincer, I., & Rosen, M. A. (2001). Energy, environment and sustainable development. Appl Energy, 64(1–4), 427–429. [CrossRef]
  • Singer, S. F. (1985). Global environmental problems. Eos Trans AGU, 66(15), 164–165. [CrossRef]
  • Mudakkar, S. R., Zaman, K., Khan, M. M., & Ahmad, M. (2013). Energy for economic growth, industrialization, environment and natural resources: Living with just enough. Renew Sustain Energy Rev, 25, 580–595. [CrossRef]
  • World Health Organization. (2016). Ambient air pollution: a global assessment of exposure and burden of disease. Clean Air J, 26(2). [CrossRef]
  • Yu, X., Wu, Z., Zheng, H., Li, M., & Tan, T. (2020). How does urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J Environ Manag, 260, 110061. [CrossRef]
  • Say, C., & Wood, A. (2008). Sustainable rating systems around the world. CTBUH J, 2008(2), 18–29.
  • Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew Sustain Energy Rev, 52, 1107–1122. [CrossRef]
  • Wang, Z., Zeng, J., & Chen, W. (2022). Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ Sci Pollut Res, 29(30), 45507–45526. [CrossRef]
  • Sedighi, M., Pourmoghaddam Qhazvini, P., & Amidpour, M. (2023). Algae-powered buildings: A review of an innovative, sustainable approach in the built environment. Sustainability, 15(4), 3729. [CrossRef]
  • Zariç, Ö. E., Yeşildağ, İ., Yaygır, S., & Çelekli, A. Removal of harmful dyes using some algae. https://zenodo.org/records/8190776
  • Çelekli, A., & Zariç, Ö. E. (2024). Plasma-enhanced microalgal cultivation: A sustainable approach for biofuel and biomass productionA. In Shahzad & M. He (Eds.), Emerging Applications of Plasma Science in Allied Technologies (pp. 243-263). IGI Global. [CrossRef]
  • Corliss, J. O. (2002). Biodiversity and biocomplexity of the protists and an overview of their significant roles in the maintenance of our biosphere. Acta Protozool, 41(3), 199–219.
  • Round, F. E. (1984). The ecology of algae. Cambridge University Press.
  • Çelekli, A., & Zariç, Ö. E. (11–13 October, 2023). Assessing the environmental impact of functional foods. 6th International Eurasian Conference on Biological and Chemical Sciences. Ankara, Türkiye.
  • Chew, K. W., Khoo, K. S., Foo, H. T., Chia, S. R., Walvekar, R., & Lim, S. S. (2021). Algae utilization and its role in the development of green cities. Chemosphere, 268, 129322. [CrossRef]
  • Benedetti, M., Vecchi, V., Barera, S., & Dall'Osto, L. (2018). Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb Cell Fact, 17(1), 173. [CrossRef]
  • Sepehri, F. (2016). Lighting and energy supply for heating in building using algae power. J Fundam Appl Sci, 8(3), 10211036 [CrossRef]
  • Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. K. S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett, 32(8), 1019–1030. [CrossRef]
  • Hossain, N., & Mahlia, T. M. I. (2019). Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol, 39(6), 835–859.
  • Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renew Sustain Energy Rev, 81, 1175–1191. [CrossRef]
  • Talaei, M., Mahdavinejad, M., & Azari, R. (2020). Thermal and energy performance of algae bioreactive façades: A review. J Build Eng, 28, 101011. [CrossRef]
  • Çelekli, A., & Zariç, Ö. E. (2023). From emissions to environmental impact: Understanding the carbon footprint. Int J Environ Geoinf 10(4), 146–156. [CrossRef]
  • Zariç, Ö. E., Çelekli, A., & Yaygır, S. (2024). Lakes of Turkey: Comprehensive review of Lake Çıldır. Aquat Sci Eng, 39(1), 54–63.
  • Çelekli, A., & Zariç, Ö. E. (2023). Utilization of herbaria in ecological studies: Biodiversity and landscape monitoring. Advance Online Publication. [CrossRef]
  • Çelekli, A., & Zariç, Ö. E. (2024). Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis. Life Sci Space Res, 41, 181–190. [CrossRef]
  • Çelekli, A., & Zariç, Ö. E. (11–13 October, 2023). Hydrobiology and ecology in the context of climate change: The future of aquatic ecosystems. 6th International Eurasian Conference on Biological and Chemical Sciences. Ankara, Türkiye.
  • Murthy, G. S. (2011). Overview and assessment of algal biofuels production technologies. In Biofuels. Elsevier. [CrossRef]
  • Ramaraj, R., Tsai, D. D.W., & Chen, P. H. (2015). Carbon dioxide fixation of freshwater microalgae growth on natural water medium. Ecol Eng, 75, 86–92. [CrossRef]
  • Kükdamar, İ. (2018). Cephelerde fotobiyoreaktör kullanımının binaların sürdürülebilirliğine etkisi. Tesis Mühen, 2018(166), 34–48.
  • Tran, T. H., & Hoang, N. D. (2016). Predicting colonization growth of algae on mortar surface with artificial neural network. J Comput Civ Eng, 30(6), 4016030. [CrossRef]
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renew Sustain. Energy Rev, 14(1), 217–232. [CrossRef]
  • Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour Technol, 102(22), 10163–10172. [CrossRef]
  • Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. H., Alhajeri, N. S., & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ Chem Lett, 20(5), 2797–2851. [CrossRef]
  • Buchheister, C. Bioenergy façade 2.0 presented at Glasstec. https://www.arup.com/news-and-events/bioenergy-facade-20-presented-at-glasstec
  • Loomans, T. (2013). The world's first algae-powered building opens in Hamburg. Inhabitat.
  • Walker, T. L., Purton, S., Becker, D. K., & Collet, C. (2005). Microalgae as bioreactors. Plant Cell Rep, 24(11), 629–641. [CrossRef]
  • Rai, M. P., Nigam, S., & Sharma, R. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy, 58, 251–257. [CrossRef]
  • Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev, 58, 180–197. [CrossRef]
  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev, 14(2), 557–577. [CrossRef]
  • Farronan, B., Carrasco, R., Flores, J. W. V., Olivera, C. C., Lopez, J., & Alfaro, E. G. B. (2021). Microalgae scenedesmus sp as a clean technology in reducing greenhouse gas carbon dioxide. Chem Eng Trans, 86, 445–450.
  • Sarkar, A. (2020). Algae-based carbon capture system: Modelling photosynthesis for carbon dioxide reduction. https://static1.squarespace.com/static/5a63b41dd74cff19f40ee749/t/5e31e9f088a3d80c62aa294d/1580329460627/Aaron+Sarkar.pdf
  • Tran, N. A. T., Seymour, J. R., Siboni, N., Evenhuis, C. R., & Tamburic, B. (2017). Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. Algal Res, 26, 302–311. [CrossRef]
  • AlgaeBase. (2024). Listing the world's algae. http://algaebase.org/
  • UTEX. (2024). UTEX culture collection of Algae at UT-Austin. https://utex.org/
  • Nordic Microalgae. (2024). Nannochloropsis granulata Karlson & Potter, 1996. https://nordicmicroalgae.org/taxon/nannochloropsis-granulata/
  • Nowicka-Krawczyk, P., Komar, M., & Gutarowska, B. (2022). Towards understanding the link between the deterioration of building materials and the nature of aerophytic green algae. Sci Total Environ, 802, 149856. [CrossRef]
  • Chisti, Y. (2006). Microalgae as sustainable cell factories. Environ Eng Manag J, 5(3), 261–274. [CrossRef]
  • Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnung, J. H., Posten, Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnergy Res, 1(1), 20–43. [CrossRef]
  • Rezvani, F., & Rostami, K. (2023). Photobioreactors for utility-scale applications: Effect of gas–liquid mass transfer coefficient and other critical parameters. Environ Sci Pollut Res, 30(31), 76263–76282. [CrossRef]
  • Zittelli, G. C., Rodolfi, L., Bassi, N., Biondi, N., & Tredici, M. R. (2013). Photobioreactors for microalgal biofuel production. In Algae for biofuels and energy (pp. 115–131). Springer. [CrossRef]
  • Ferris, D. (2013). Algae Haus. https://www.sierraclub.org/sierra/2013-6-november-december/innovate/algae-haus.
  • Poerbo, H. W., Martokusumo, W., Koerniawan, M. D., Ardiani, N. A., & Krisanti, S. (2018). Algae facade as green building method: Application of algae as a method to meet the green building regulation. IOP Conf Ser Earth Environ Sci, 99(1), 012012. [CrossRef]
  • Kendrick, M. (2011). Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage [Doctoral Thesis, Loughborough University].
  • Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res, 49(8), 3516–3526. [CrossRef]
  • Peter, A. P., et al. (2022). Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renew Sustain Energy Rev, 154, 111852. [CrossRef]
  • Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production–A review. Renew Sustain Energy Rev, 16(4), 2347–2353. [CrossRef]
  • Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renew Sustain Energy Rev, 4(2), 157–175. [CrossRef]
  • Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol, 102(8), 4945–4953. [CrossRef]
  • Huseien, G. F., & Shah, K. W. (2021). Potential applications of 5g network technology for climate change control: A scoping review of Singapore. Sustainability (Switzerland), 13(17), 9720. [CrossRef]
  • Ahmad, A., Banat, F., Alsafar, H., & Hasan, S. W. (2022). Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci Total Environ, 806, 150585. [CrossRef]
  • Gondi, R., Kavitha, S., Kannah Y. R., Karthikeyan, O. P., Kumar, G., Tyagi, K. V., Banu, J. R. (2022). Algal-based system for removal of emerging pollutants from wastewater: A review. Bioresour Technol, 344, 126245. [CrossRef]
  • Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi J Biol Sci, 19(3), 257–275. [CrossRef]
  • Wilkinson, S. J., & Stoller, P. (2018). Algae building technology energy efficient retrofit potential in Sydney housing. Proceedings of the 10th International Conference in Sustainability on Energy and Buildings. In Kaparaju, P., Howlett, R., Littlewood, J., Ekanyake, C., Vlacic, L. (eds) Sustainability in Energy and Buildings. Springer. [CrossRef]
  • Yulistyorini, A. (2017). A mini review on the integration of resource recovery from wastewater into sustainability of the green building through phycoremediation. AIP Conf Proc, 1887(1), 020048 [CrossRef]
  • Ahmad, I., Abdullah, N., Koji, I., Mohamad, S. E., Al-Dailami, A., Yuzir, A. (2022). Role of algae in built environment and green cities: A holistic approach towards sustainability. Int J Built Environ Sustain, 9(2–3), 69–80. [CrossRef]
  • Chan, A. P. C., Darko, A., & Ameyaw, E. E. (2017). Strategies for promoting green building technologies adoption in the construction industry-An international study. Sustainability (Switzerland), 9(6), 969. [CrossRef]
  • Talebi, A. F., Tabatabaei, M., Aghbashlo, M., Movahed, S., Hajjari, M., Golabchi, M. (2020). Algae-powered buildings: A strategy to mitigate climate change and move toward circular economy. In S. Patnaik, S. Sen, M. S. Mahmoud. (Eds.), Smart village technology (pp. 353–365). Springer. [CrossRef]
  • Khan, S. A., Sharma, G. K., Malla, F. A., Kumar, A., Rashmi, Gupta, N. (2019). Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J Cleaner Prod, 211, 1412–1419. [CrossRef]
  • Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., El-Shershaby, N. A. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi J Biol Sci, 29(5), 3083–3096. [CrossRef]
  • Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renew. Sustain Energy Rev, 90, 316–335. [CrossRef]
  • Topuz, O. K. (2016). Algal oil: A novel source of omega-3 fatty acids for human nutrition. Sci Bull Ser F Biotechnol, 20, 178–183.
  • Çelekli, A., Özbal, B., & Bozkurt, H. (2024). Challenges in functional food products with the incorporation of some microalgae. Foods, 13(5), 725. [CrossRef]
  • Zhang, S., Qamar, S. A., Junaid, M., Munir, B., Badar, Q., & Bilal, M. (2022). Algal polysaccharides-based nanoparticles for targeted drug delivery applications. Starch-Stärke, 74(7–8), 2200014. [CrossRef]
Year 2024, , 199 - 210, 24.06.2024
https://doi.org/10.47481/jscmt.1348260

Abstract

Project Number

-

References

  • Çelekli, A., Yeşildağ, İ., Yaygır, S., & Zariç, Ö. E. (2023). Effects of urbanization on bioclimatic comfort conditions. Acta Biol Turc, 36(4), 1–10.
  • Dincer, I., & Rosen, M. A. (2001). Energy, environment and sustainable development. Appl Energy, 64(1–4), 427–429. [CrossRef]
  • Singer, S. F. (1985). Global environmental problems. Eos Trans AGU, 66(15), 164–165. [CrossRef]
  • Mudakkar, S. R., Zaman, K., Khan, M. M., & Ahmad, M. (2013). Energy for economic growth, industrialization, environment and natural resources: Living with just enough. Renew Sustain Energy Rev, 25, 580–595. [CrossRef]
  • World Health Organization. (2016). Ambient air pollution: a global assessment of exposure and burden of disease. Clean Air J, 26(2). [CrossRef]
  • Yu, X., Wu, Z., Zheng, H., Li, M., & Tan, T. (2020). How does urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J Environ Manag, 260, 110061. [CrossRef]
  • Say, C., & Wood, A. (2008). Sustainable rating systems around the world. CTBUH J, 2008(2), 18–29.
  • Li, K., & Lin, B. (2015). Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew Sustain Energy Rev, 52, 1107–1122. [CrossRef]
  • Wang, Z., Zeng, J., & Chen, W. (2022). Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ Sci Pollut Res, 29(30), 45507–45526. [CrossRef]
  • Sedighi, M., Pourmoghaddam Qhazvini, P., & Amidpour, M. (2023). Algae-powered buildings: A review of an innovative, sustainable approach in the built environment. Sustainability, 15(4), 3729. [CrossRef]
  • Zariç, Ö. E., Yeşildağ, İ., Yaygır, S., & Çelekli, A. Removal of harmful dyes using some algae. https://zenodo.org/records/8190776
  • Çelekli, A., & Zariç, Ö. E. (2024). Plasma-enhanced microalgal cultivation: A sustainable approach for biofuel and biomass productionA. In Shahzad & M. He (Eds.), Emerging Applications of Plasma Science in Allied Technologies (pp. 243-263). IGI Global. [CrossRef]
  • Corliss, J. O. (2002). Biodiversity and biocomplexity of the protists and an overview of their significant roles in the maintenance of our biosphere. Acta Protozool, 41(3), 199–219.
  • Round, F. E. (1984). The ecology of algae. Cambridge University Press.
  • Çelekli, A., & Zariç, Ö. E. (11–13 October, 2023). Assessing the environmental impact of functional foods. 6th International Eurasian Conference on Biological and Chemical Sciences. Ankara, Türkiye.
  • Chew, K. W., Khoo, K. S., Foo, H. T., Chia, S. R., Walvekar, R., & Lim, S. S. (2021). Algae utilization and its role in the development of green cities. Chemosphere, 268, 129322. [CrossRef]
  • Benedetti, M., Vecchi, V., Barera, S., & Dall'Osto, L. (2018). Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb Cell Fact, 17(1), 173. [CrossRef]
  • Sepehri, F. (2016). Lighting and energy supply for heating in building using algae power. J Fundam Appl Sci, 8(3), 10211036 [CrossRef]
  • Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. K. S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett, 32(8), 1019–1030. [CrossRef]
  • Hossain, N., & Mahlia, T. M. I. (2019). Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol, 39(6), 835–859.
  • Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renew Sustain Energy Rev, 81, 1175–1191. [CrossRef]
  • Talaei, M., Mahdavinejad, M., & Azari, R. (2020). Thermal and energy performance of algae bioreactive façades: A review. J Build Eng, 28, 101011. [CrossRef]
  • Çelekli, A., & Zariç, Ö. E. (2023). From emissions to environmental impact: Understanding the carbon footprint. Int J Environ Geoinf 10(4), 146–156. [CrossRef]
  • Zariç, Ö. E., Çelekli, A., & Yaygır, S. (2024). Lakes of Turkey: Comprehensive review of Lake Çıldır. Aquat Sci Eng, 39(1), 54–63.
  • Çelekli, A., & Zariç, Ö. E. (2023). Utilization of herbaria in ecological studies: Biodiversity and landscape monitoring. Advance Online Publication. [CrossRef]
  • Çelekli, A., & Zariç, Ö. E. (2024). Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis. Life Sci Space Res, 41, 181–190. [CrossRef]
  • Çelekli, A., & Zariç, Ö. E. (11–13 October, 2023). Hydrobiology and ecology in the context of climate change: The future of aquatic ecosystems. 6th International Eurasian Conference on Biological and Chemical Sciences. Ankara, Türkiye.
  • Murthy, G. S. (2011). Overview and assessment of algal biofuels production technologies. In Biofuels. Elsevier. [CrossRef]
  • Ramaraj, R., Tsai, D. D.W., & Chen, P. H. (2015). Carbon dioxide fixation of freshwater microalgae growth on natural water medium. Ecol Eng, 75, 86–92. [CrossRef]
  • Kükdamar, İ. (2018). Cephelerde fotobiyoreaktör kullanımının binaların sürdürülebilirliğine etkisi. Tesis Mühen, 2018(166), 34–48.
  • Tran, T. H., & Hoang, N. D. (2016). Predicting colonization growth of algae on mortar surface with artificial neural network. J Comput Civ Eng, 30(6), 4016030. [CrossRef]
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renew Sustain. Energy Rev, 14(1), 217–232. [CrossRef]
  • Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour Technol, 102(22), 10163–10172. [CrossRef]
  • Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. H., Alhajeri, N. S., & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ Chem Lett, 20(5), 2797–2851. [CrossRef]
  • Buchheister, C. Bioenergy façade 2.0 presented at Glasstec. https://www.arup.com/news-and-events/bioenergy-facade-20-presented-at-glasstec
  • Loomans, T. (2013). The world's first algae-powered building opens in Hamburg. Inhabitat.
  • Walker, T. L., Purton, S., Becker, D. K., & Collet, C. (2005). Microalgae as bioreactors. Plant Cell Rep, 24(11), 629–641. [CrossRef]
  • Rai, M. P., Nigam, S., & Sharma, R. (2013). Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy, 58, 251–257. [CrossRef]
  • Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam M. K., Loh, P. K., & Vellayan, V. (2016). Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev, 58, 180–197. [CrossRef]
  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev, 14(2), 557–577. [CrossRef]
  • Farronan, B., Carrasco, R., Flores, J. W. V., Olivera, C. C., Lopez, J., & Alfaro, E. G. B. (2021). Microalgae scenedesmus sp as a clean technology in reducing greenhouse gas carbon dioxide. Chem Eng Trans, 86, 445–450.
  • Sarkar, A. (2020). Algae-based carbon capture system: Modelling photosynthesis for carbon dioxide reduction. https://static1.squarespace.com/static/5a63b41dd74cff19f40ee749/t/5e31e9f088a3d80c62aa294d/1580329460627/Aaron+Sarkar.pdf
  • Tran, N. A. T., Seymour, J. R., Siboni, N., Evenhuis, C. R., & Tamburic, B. (2017). Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. Algal Res, 26, 302–311. [CrossRef]
  • AlgaeBase. (2024). Listing the world's algae. http://algaebase.org/
  • UTEX. (2024). UTEX culture collection of Algae at UT-Austin. https://utex.org/
  • Nordic Microalgae. (2024). Nannochloropsis granulata Karlson & Potter, 1996. https://nordicmicroalgae.org/taxon/nannochloropsis-granulata/
  • Nowicka-Krawczyk, P., Komar, M., & Gutarowska, B. (2022). Towards understanding the link between the deterioration of building materials and the nature of aerophytic green algae. Sci Total Environ, 802, 149856. [CrossRef]
  • Chisti, Y. (2006). Microalgae as sustainable cell factories. Environ Eng Manag J, 5(3), 261–274. [CrossRef]
  • Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnung, J. H., Posten, Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnergy Res, 1(1), 20–43. [CrossRef]
  • Rezvani, F., & Rostami, K. (2023). Photobioreactors for utility-scale applications: Effect of gas–liquid mass transfer coefficient and other critical parameters. Environ Sci Pollut Res, 30(31), 76263–76282. [CrossRef]
  • Zittelli, G. C., Rodolfi, L., Bassi, N., Biondi, N., & Tredici, M. R. (2013). Photobioreactors for microalgal biofuel production. In Algae for biofuels and energy (pp. 115–131). Springer. [CrossRef]
  • Ferris, D. (2013). Algae Haus. https://www.sierraclub.org/sierra/2013-6-november-december/innovate/algae-haus.
  • Poerbo, H. W., Martokusumo, W., Koerniawan, M. D., Ardiani, N. A., & Krisanti, S. (2018). Algae facade as green building method: Application of algae as a method to meet the green building regulation. IOP Conf Ser Earth Environ Sci, 99(1), 012012. [CrossRef]
  • Kendrick, M. (2011). Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage [Doctoral Thesis, Loughborough University].
  • Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res, 49(8), 3516–3526. [CrossRef]
  • Peter, A. P., et al. (2022). Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renew Sustain Energy Rev, 154, 111852. [CrossRef]
  • Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production–A review. Renew Sustain Energy Rev, 16(4), 2347–2353. [CrossRef]
  • Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renew Sustain Energy Rev, 4(2), 157–175. [CrossRef]
  • Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol, 102(8), 4945–4953. [CrossRef]
  • Huseien, G. F., & Shah, K. W. (2021). Potential applications of 5g network technology for climate change control: A scoping review of Singapore. Sustainability (Switzerland), 13(17), 9720. [CrossRef]
  • Ahmad, A., Banat, F., Alsafar, H., & Hasan, S. W. (2022). Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci Total Environ, 806, 150585. [CrossRef]
  • Gondi, R., Kavitha, S., Kannah Y. R., Karthikeyan, O. P., Kumar, G., Tyagi, K. V., Banu, J. R. (2022). Algal-based system for removal of emerging pollutants from wastewater: A review. Bioresour Technol, 344, 126245. [CrossRef]
  • Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi J Biol Sci, 19(3), 257–275. [CrossRef]
  • Wilkinson, S. J., & Stoller, P. (2018). Algae building technology energy efficient retrofit potential in Sydney housing. Proceedings of the 10th International Conference in Sustainability on Energy and Buildings. In Kaparaju, P., Howlett, R., Littlewood, J., Ekanyake, C., Vlacic, L. (eds) Sustainability in Energy and Buildings. Springer. [CrossRef]
  • Yulistyorini, A. (2017). A mini review on the integration of resource recovery from wastewater into sustainability of the green building through phycoremediation. AIP Conf Proc, 1887(1), 020048 [CrossRef]
  • Ahmad, I., Abdullah, N., Koji, I., Mohamad, S. E., Al-Dailami, A., Yuzir, A. (2022). Role of algae in built environment and green cities: A holistic approach towards sustainability. Int J Built Environ Sustain, 9(2–3), 69–80. [CrossRef]
  • Chan, A. P. C., Darko, A., & Ameyaw, E. E. (2017). Strategies for promoting green building technologies adoption in the construction industry-An international study. Sustainability (Switzerland), 9(6), 969. [CrossRef]
  • Talebi, A. F., Tabatabaei, M., Aghbashlo, M., Movahed, S., Hajjari, M., Golabchi, M. (2020). Algae-powered buildings: A strategy to mitigate climate change and move toward circular economy. In S. Patnaik, S. Sen, M. S. Mahmoud. (Eds.), Smart village technology (pp. 353–365). Springer. [CrossRef]
  • Khan, S. A., Sharma, G. K., Malla, F. A., Kumar, A., Rashmi, Gupta, N. (2019). Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J Cleaner Prod, 211, 1412–1419. [CrossRef]
  • Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., El-Shershaby, N. A. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi J Biol Sci, 29(5), 3083–3096. [CrossRef]
  • Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renew. Sustain Energy Rev, 90, 316–335. [CrossRef]
  • Topuz, O. K. (2016). Algal oil: A novel source of omega-3 fatty acids for human nutrition. Sci Bull Ser F Biotechnol, 20, 178–183.
  • Çelekli, A., Özbal, B., & Bozkurt, H. (2024). Challenges in functional food products with the incorporation of some microalgae. Foods, 13(5), 725. [CrossRef]
  • Zhang, S., Qamar, S. A., Junaid, M., Munir, B., Badar, Q., & Bilal, M. (2022). Algal polysaccharides-based nanoparticles for targeted drug delivery applications. Starch-Stärke, 74(7–8), 2200014. [CrossRef]
There are 74 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Review Articles
Authors

Abuzer Çelekli 0000-0002-2448-4957

İrem Yeşildağ 0009-0004-5242-083X

Özgür Eren Zariç 0000-0001-5293-871X

Project Number -
Early Pub Date June 15, 2024
Publication Date June 24, 2024
Submission Date August 22, 2023
Acceptance Date April 19, 2024
Published in Issue Year 2024

Cite

APA Çelekli, A., Yeşildağ, İ., & Zariç, Ö. E. (2024). Green building future: algal application technology. Journal of Sustainable Construction Materials and Technologies, 9(2), 199-210. https://doi.org/10.47481/jscmt.1348260

Cited By

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr