Research Article
BibTex RIS Cite

Effect of Mineral Admixtures and Curing Regimes on Properties of Self-Compacting Concrete

Year 2024, , 25 - 35, 26.03.2024
https://doi.org/10.47481/jscmt.1383493

Abstract

This study investigated the influence of mineral admixtures (fly ash, silica fume, metakaolin) and curing conditions (water immersion, polyethylene glycol, gunny bags, accelerated curing) on the properties of self-compacting concrete (SCC). The rheological properties, compressive strength, chloride penetration resistance, and microstructure were evaluated. Incorporating mineral admixtures improved the workability, strength (up to 53% increase), and durability of SCC compared to plain mixes, with 20% metakaolin replacement optimal. Water immersion curing enhanced the compressive strength (3–15% increase) and chloride resistance (up to 30% decrease in migration coefficient) owing to improved hydration and microstructural refinement. Mineral admixtures reduced the sensitivity of SCC to the curing method. Microstructural analysis showed higher density and additional C-S-H phases with mineral admixtures under wet curing. The study demonstrates that optimized SCC containing appropriate supplementary cementitious materials and proper external curing can achieve high performance.

Ethical Statement

The authors has no conflict of interest

Supporting Institution

CVR College of Engineering

Project Number

Effect of Mineral Admixtures and Curing Regimes on Properties of Self-Compacting Concrete

References

  • de Souza, A. M., de Carvalho, J. M. F., Santos, C. F. R., Ferreira, F. A., Pedroti, L. G., & Peixoto, R. A. F. (2022). An analytical review of the strategies to improve the eco-efficiency of self-compacting concrete using industrial waste. Constr Build Mater, 347, 128634. [CrossRef]
  • Faraj, R. H., Mohammed, A. A., & Omer, K. M. (2022). Self-compacting concrete composites modified with nanoparticles: A comprehensive review, analysis, and modeling. J Build Eng, 50, 104170. [CrossRef]
  • Gupta, N., Siddique, R., & Belarbi, R. (2021). Sustainable and greener self-compacting concrete incorporating industrial by-products: A review. J Clean Prod, 284, 124803. [CrossRef]
  • Dey, S., Kumar, V. P., Goud, K. R., & Basha, S. K. J. (2021). State of art review on self-compacting concrete using mineral admixtures. J Build Pathol Rehabil, 6(1), 18. [CrossRef]
  • Madhavi, C., Reddy, V. S., Rao, M. S., Shrihari, S., Kadhim, S. I., & Sharma, S. (2023). The effect of elevated temperature on self-compacting concrete: Physical and mechanical properties. E3S Web Conf, 391, 01212. [CrossRef]
  • Rao, T. V., Seshagiri Rao, M. V., & Rao, P. J. (2021, March 1). Strength properties of double blend and triple blend self-compacting concrete subjected to different curing methods. IOP Conf Ser Mater Sci Eng, 1126(1), 012085. [CrossRef]
  • Klemczak, B., Gołaszewski, J., Smolana, A., Gołaszewska, M., & Cygan, G. (2023). Shrinkage behaviour of self-compacting concrete with a high volume of fly ash and slag experimental tests and analytical assessment. Constr Build Mater, 400, 132608. [CrossRef]
  • Rao, M. D., Dey, S., & Rao, B. P. (2023). Characterization of fiber reinforced self-compacting concrete by fly ash and cement. Chem Inorg Mater, 1, 100010. [CrossRef]
  • Karthiga, N., Siddharth, M. A., Kannan, V., & Dhanusree, C. (2023). Experimental investigation of self-compacting concrete (SCC) using fly ash. Mater Today Proc, 2023, 2023.04.582
  • Luo, Y., Zhang, Q., Wang, D., Yang, L., Gao, X., Liu, Y., & Xue, G. (2023). Mechanical and microstructural properties of MK-FA-GGBFS-based self-compacting geopolymer concrete composites. J Build Eng, 77, 107452. [CrossRef]
  • Singh, A., Mehta, P. K., & Kumar, R. (2022). Performance of binary admixtures (Fly ash and Silica fume) on self-compacting concrete. Mater Today Proc, 58, 970–977. [CrossRef]
  • Jameel, G. S., İpek, S., Ahmed, A. D., Güneyisi, E., & Güneyisi, E. M. (2023). Rheological behavior and key properties of metakaolin and nano-SiO2 blended fibrous self-compacting concretes. Constr Build Mater, 368, 130372. [CrossRef]
  • Rojo-López, G., González-Fonteboa, B., Martínez-Abella, F., & González-Taboada, I. (2022). Rheology, durability, and mechanical performance of sustainable self-compacting concrete with metakaolin and limestone filler. Case Stud Constr Mater, 17, e01143. [CrossRef]
  • Suprakash, A. S., Karthiyaini, S., & Shanmugasundaram, M. (2021). Future and scope for development of calcium and silica rich supplementary blends on properties of self-compacting concrete - a comparative review. J Mater Res Technol, 15, 5662–5681. [CrossRef]
  • Devi, K., Aggarwal, P., & Saini, B. (2020). Admixtures used in self-compacting concrete: A review. Iran J Sci Technol Trans Civ Eng, 44, 377–403. [CrossRef]
  • Frhaan, W. K. M., Bakar, H. B. A., Hilal, N., & Al-Hadithi, A. I. (2020). Effect of silica fume and super-plasticizer on mechanical properties of self-compacting concrete: A review. IOP Conf Ser Mater Sci Eng, 978(1), 012052. [CrossRef]
  • Albiajawi, M. I., EMBONG, R., & Muthusamy, K. (2021). Influence of mineral admixtures on the properties of self-compacting concrete: An overview. Constr, 1(2), 62–75. [CrossRef]
  • Danish, P., & Ganesh, G. M. (2021). Study on influence of metakaolin and waste marble powder on self-compacting concrete – a state of the art review. Mater Today Proc, 44, 1428–1436. [CrossRef]
  • Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174. [CrossRef]
  • Ramkumar, K. B., Rajkumar, P. K., Ahmmad, S. N., & Jegan, M. (2020). A review on performance of self-compacting concrete – use of mineral admixtures and steel fibres with artificial neural network application. Constr Build Mater, 261, 120215. [CrossRef]
  • Kumar, K. R., Shyamala, G., Awoyera, P. O., Vedhasakthi, K., & Olalusi, O. B. (2021). Cleaner production of self-compacting concrete with selected industrial rejects-an overview. Silicon, 13, 28092820. [CrossRef]
  • Massana, J., Reyes, E., Bernal, J., León, N., & Sánchez-Espinosa, E. (2018). Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete. Constr Build Mater, 165, 93103. [CrossRef]
  • Güneyisi, E., Gesoğlu, M., & Algin, Z. (2013). Performance of self-compacting concrete (SCC) with high-volume supplementary cementitious materials (SCMs). Eco-Eff Concr, 2023, 198217. [CrossRef]
  • Devadass, T. (2019). Experimental study on replacement of fine aggregate in concrete with dissimilar curing conditions. Case Stud Constr Mater, 11, e00245. [CrossRef]
  • Wang, Y., Wang, S., Wang, T., Song, T., Wu, X., Guo, L., Xie, W., Qiu, P., Dong, Q., & Li, Q. (2023). A green nanocomposite membrane for concrete moisturizing, with excellent barrier properties and aging resistance. Mater Today Commun, 35, 105553. [CrossRef]
  • Saravanakumar, R., Elango, K. S., Piradheep, G., Rasswanth, S., & Siva, C. (2023). Effect of super absorbent polymers in properties of self-curing concrete - a state of art of review. Mater Today Proc, 2023, 05.117. [CrossRef]
  • Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Almeshal, I. (2022). Influence of different curing methods on the compressive strength of ultra-high-performance concrete: A comprehensive review. Case Stud Constr Mater, 17, e01390. [CrossRef]
  • Athira, V. S., Bahurudeen, A., Saljas, M., & Jayachandran, K. (2021). Influence of different curing methods on mechanical and durability properties of alkali activated binders. Constr Build Mater, 299, 123963. [CrossRef]
  • Ekolu, S. O. (2016). A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr Build Mater, 127, 306320. [CrossRef]
  • Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., & Rajesh Kumar, G. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res, 30(10), 451468. [CrossRef]
  • ASTM C150/C150M-16e1. (2016). Standard specification for Portland cement. ASTM International, West Conshohocken, PA.
  • BIS, IS 383-2016. (2016). Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards, New Delhi.
  • BIS, IS 10262-2019 (2019) Specification for concrete mix proportioning. Bureau of Indian Standards, New Delhi.
  • EFNARC. (2002). Specification and guidelines for self-compacting concrete. European Federation of Specialist Construction Chemicals and Concrete Systems, Syderstone, Norfolk, UK.
  • ASTM C192/C192M-15. (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken, PA.
  • ASTM C684-99. (2017). Standard test method for making, accelerated curing, and testing concrete compression test specimens. ASTM International, West Conshohocken, PA.
  • IRC 15-2017. (2017). Specification for gunny bag membrane curing for concrete pavement. Bureau of Indian Standards, New Delhi.
  • Madduru, S. R. C., Pancharathi, R. K., Giri, P. S. N. R., Kumar, G. R. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res, 30(10), 451–468. [CrossRef]
  • BIS, IS 516: 1959. (1959). Specification for determining compressive strength of concrete. Bureau of Indian Standards, New Delhi.
  • ASTM C 1202. (2012). Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM International, West Conshohocken, PA.
  • NT BUILD 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Nordtest, Finland.
  • Chava, V., & Chereddy, S. S. D. (2023). Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Technol, 8(4), 297306. [CrossRef]
  • Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25. [CrossRef]
  • Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215. [CrossRef]
  • Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of light weight concrete using geopolymer as binder. Mater Today Proc, 52, 20532056. [CrossRef]
  • Ruben, N., Venkatesh, C., Durga, C. S. S., & Chand, M. S. R. (2021). Comprehensive study on performance of glass fibers-based concrete. Innov Infrastruct Solut, 6(2), 112. [CrossRef]
  • Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Innov Infrastruct Solut, 6(1), 13. [CrossRef]
  • Anirudh, M., Rekha, K. S., Venkatesh, C., & Nerella, R. (2021). Characterization of red mud-based cement mortar; mechanical and microstructure studies. Mater Today Proc, 43, 1587-1591. [CrossRef]
  • Rao, T. M., Mahesh, K., Venkatesh, C., Durga, C. S. S., Reddy, B. R., Tejaswi, P. S., & Charandeepneelesh, R. (2023). Influence of magnetization of water on mechanical and durability properties of fly ash concrete. Mater Today Proc, 2023, 194.
  • Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R. (2023). Crack healing and flexural behavior of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 14771488. [CrossRef]
  • Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R., Rao, B. N. M. (2023). Estimation of durability properties of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 14891505. [CrossRef]
  • Venkatesh, C., Sri Rama Chand, M., Ruben, N., & Sonali Sri Durga, C. (2020). Strength characteristics of red mud and silica fume-based concrete. In Smart Technologies for Sustainable Development: Select Proceedings of SMTS 2019 (pp. 387-393). Springer Singapore. [CrossRef]
Year 2024, , 25 - 35, 26.03.2024
https://doi.org/10.47481/jscmt.1383493

Abstract

Project Number

Effect of Mineral Admixtures and Curing Regimes on Properties of Self-Compacting Concrete

References

  • de Souza, A. M., de Carvalho, J. M. F., Santos, C. F. R., Ferreira, F. A., Pedroti, L. G., & Peixoto, R. A. F. (2022). An analytical review of the strategies to improve the eco-efficiency of self-compacting concrete using industrial waste. Constr Build Mater, 347, 128634. [CrossRef]
  • Faraj, R. H., Mohammed, A. A., & Omer, K. M. (2022). Self-compacting concrete composites modified with nanoparticles: A comprehensive review, analysis, and modeling. J Build Eng, 50, 104170. [CrossRef]
  • Gupta, N., Siddique, R., & Belarbi, R. (2021). Sustainable and greener self-compacting concrete incorporating industrial by-products: A review. J Clean Prod, 284, 124803. [CrossRef]
  • Dey, S., Kumar, V. P., Goud, K. R., & Basha, S. K. J. (2021). State of art review on self-compacting concrete using mineral admixtures. J Build Pathol Rehabil, 6(1), 18. [CrossRef]
  • Madhavi, C., Reddy, V. S., Rao, M. S., Shrihari, S., Kadhim, S. I., & Sharma, S. (2023). The effect of elevated temperature on self-compacting concrete: Physical and mechanical properties. E3S Web Conf, 391, 01212. [CrossRef]
  • Rao, T. V., Seshagiri Rao, M. V., & Rao, P. J. (2021, March 1). Strength properties of double blend and triple blend self-compacting concrete subjected to different curing methods. IOP Conf Ser Mater Sci Eng, 1126(1), 012085. [CrossRef]
  • Klemczak, B., Gołaszewski, J., Smolana, A., Gołaszewska, M., & Cygan, G. (2023). Shrinkage behaviour of self-compacting concrete with a high volume of fly ash and slag experimental tests and analytical assessment. Constr Build Mater, 400, 132608. [CrossRef]
  • Rao, M. D., Dey, S., & Rao, B. P. (2023). Characterization of fiber reinforced self-compacting concrete by fly ash and cement. Chem Inorg Mater, 1, 100010. [CrossRef]
  • Karthiga, N., Siddharth, M. A., Kannan, V., & Dhanusree, C. (2023). Experimental investigation of self-compacting concrete (SCC) using fly ash. Mater Today Proc, 2023, 2023.04.582
  • Luo, Y., Zhang, Q., Wang, D., Yang, L., Gao, X., Liu, Y., & Xue, G. (2023). Mechanical and microstructural properties of MK-FA-GGBFS-based self-compacting geopolymer concrete composites. J Build Eng, 77, 107452. [CrossRef]
  • Singh, A., Mehta, P. K., & Kumar, R. (2022). Performance of binary admixtures (Fly ash and Silica fume) on self-compacting concrete. Mater Today Proc, 58, 970–977. [CrossRef]
  • Jameel, G. S., İpek, S., Ahmed, A. D., Güneyisi, E., & Güneyisi, E. M. (2023). Rheological behavior and key properties of metakaolin and nano-SiO2 blended fibrous self-compacting concretes. Constr Build Mater, 368, 130372. [CrossRef]
  • Rojo-López, G., González-Fonteboa, B., Martínez-Abella, F., & González-Taboada, I. (2022). Rheology, durability, and mechanical performance of sustainable self-compacting concrete with metakaolin and limestone filler. Case Stud Constr Mater, 17, e01143. [CrossRef]
  • Suprakash, A. S., Karthiyaini, S., & Shanmugasundaram, M. (2021). Future and scope for development of calcium and silica rich supplementary blends on properties of self-compacting concrete - a comparative review. J Mater Res Technol, 15, 5662–5681. [CrossRef]
  • Devi, K., Aggarwal, P., & Saini, B. (2020). Admixtures used in self-compacting concrete: A review. Iran J Sci Technol Trans Civ Eng, 44, 377–403. [CrossRef]
  • Frhaan, W. K. M., Bakar, H. B. A., Hilal, N., & Al-Hadithi, A. I. (2020). Effect of silica fume and super-plasticizer on mechanical properties of self-compacting concrete: A review. IOP Conf Ser Mater Sci Eng, 978(1), 012052. [CrossRef]
  • Albiajawi, M. I., EMBONG, R., & Muthusamy, K. (2021). Influence of mineral admixtures on the properties of self-compacting concrete: An overview. Constr, 1(2), 62–75. [CrossRef]
  • Danish, P., & Ganesh, G. M. (2021). Study on influence of metakaolin and waste marble powder on self-compacting concrete – a state of the art review. Mater Today Proc, 44, 1428–1436. [CrossRef]
  • Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174. [CrossRef]
  • Ramkumar, K. B., Rajkumar, P. K., Ahmmad, S. N., & Jegan, M. (2020). A review on performance of self-compacting concrete – use of mineral admixtures and steel fibres with artificial neural network application. Constr Build Mater, 261, 120215. [CrossRef]
  • Kumar, K. R., Shyamala, G., Awoyera, P. O., Vedhasakthi, K., & Olalusi, O. B. (2021). Cleaner production of self-compacting concrete with selected industrial rejects-an overview. Silicon, 13, 28092820. [CrossRef]
  • Massana, J., Reyes, E., Bernal, J., León, N., & Sánchez-Espinosa, E. (2018). Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete. Constr Build Mater, 165, 93103. [CrossRef]
  • Güneyisi, E., Gesoğlu, M., & Algin, Z. (2013). Performance of self-compacting concrete (SCC) with high-volume supplementary cementitious materials (SCMs). Eco-Eff Concr, 2023, 198217. [CrossRef]
  • Devadass, T. (2019). Experimental study on replacement of fine aggregate in concrete with dissimilar curing conditions. Case Stud Constr Mater, 11, e00245. [CrossRef]
  • Wang, Y., Wang, S., Wang, T., Song, T., Wu, X., Guo, L., Xie, W., Qiu, P., Dong, Q., & Li, Q. (2023). A green nanocomposite membrane for concrete moisturizing, with excellent barrier properties and aging resistance. Mater Today Commun, 35, 105553. [CrossRef]
  • Saravanakumar, R., Elango, K. S., Piradheep, G., Rasswanth, S., & Siva, C. (2023). Effect of super absorbent polymers in properties of self-curing concrete - a state of art of review. Mater Today Proc, 2023, 05.117. [CrossRef]
  • Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Almeshal, I. (2022). Influence of different curing methods on the compressive strength of ultra-high-performance concrete: A comprehensive review. Case Stud Constr Mater, 17, e01390. [CrossRef]
  • Athira, V. S., Bahurudeen, A., Saljas, M., & Jayachandran, K. (2021). Influence of different curing methods on mechanical and durability properties of alkali activated binders. Constr Build Mater, 299, 123963. [CrossRef]
  • Ekolu, S. O. (2016). A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr Build Mater, 127, 306320. [CrossRef]
  • Sri Rama Chand, M., Rathish Kumar, P., Swamy Naga Ratna Giri, P., & Rajesh Kumar, G. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res, 30(10), 451468. [CrossRef]
  • ASTM C150/C150M-16e1. (2016). Standard specification for Portland cement. ASTM International, West Conshohocken, PA.
  • BIS, IS 383-2016. (2016). Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards, New Delhi.
  • BIS, IS 10262-2019 (2019) Specification for concrete mix proportioning. Bureau of Indian Standards, New Delhi.
  • EFNARC. (2002). Specification and guidelines for self-compacting concrete. European Federation of Specialist Construction Chemicals and Concrete Systems, Syderstone, Norfolk, UK.
  • ASTM C192/C192M-15. (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken, PA.
  • ASTM C684-99. (2017). Standard test method for making, accelerated curing, and testing concrete compression test specimens. ASTM International, West Conshohocken, PA.
  • IRC 15-2017. (2017). Specification for gunny bag membrane curing for concrete pavement. Bureau of Indian Standards, New Delhi.
  • Madduru, S. R. C., Pancharathi, R. K., Giri, P. S. N. R., Kumar, G. R. (2018). Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res, 30(10), 451–468. [CrossRef]
  • BIS, IS 516: 1959. (1959). Specification for determining compressive strength of concrete. Bureau of Indian Standards, New Delhi.
  • ASTM C 1202. (2012). Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM International, West Conshohocken, PA.
  • NT BUILD 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Nordtest, Finland.
  • Chava, V., & Chereddy, S. S. D. (2023). Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Technol, 8(4), 297306. [CrossRef]
  • Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25. [CrossRef]
  • Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215. [CrossRef]
  • Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of light weight concrete using geopolymer as binder. Mater Today Proc, 52, 20532056. [CrossRef]
  • Ruben, N., Venkatesh, C., Durga, C. S. S., & Chand, M. S. R. (2021). Comprehensive study on performance of glass fibers-based concrete. Innov Infrastruct Solut, 6(2), 112. [CrossRef]
  • Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Innov Infrastruct Solut, 6(1), 13. [CrossRef]
  • Anirudh, M., Rekha, K. S., Venkatesh, C., & Nerella, R. (2021). Characterization of red mud-based cement mortar; mechanical and microstructure studies. Mater Today Proc, 43, 1587-1591. [CrossRef]
  • Rao, T. M., Mahesh, K., Venkatesh, C., Durga, C. S. S., Reddy, B. R., Tejaswi, P. S., & Charandeepneelesh, R. (2023). Influence of magnetization of water on mechanical and durability properties of fly ash concrete. Mater Today Proc, 2023, 194.
  • Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R. (2023). Crack healing and flexural behavior of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 14771488. [CrossRef]
  • Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R., Rao, B. N. M. (2023). Estimation of durability properties of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 14891505. [CrossRef]
  • Venkatesh, C., Sri Rama Chand, M., Ruben, N., & Sonali Sri Durga, C. (2020). Strength characteristics of red mud and silica fume-based concrete. In Smart Technologies for Sustainable Development: Select Proceedings of SMTS 2019 (pp. 387-393). Springer Singapore. [CrossRef]
There are 52 citations in total.

Details

Primary Language English
Subjects Construction Materials, Material Production Technologies
Journal Section Research Articles
Authors

Venkatesh Chava 0000-0003-0028-7702

Seshagiri Rao M.v. This is me 0000-0003-4224-6343

Praveen Kumar Munugala This is me 0009-0008-1942-8345

Sonali Sri Durga Chereddy This is me 0000-0003-0942-9252

Project Number Effect of Mineral Admixtures and Curing Regimes on Properties of Self-Compacting Concrete
Early Pub Date March 26, 2024
Publication Date March 26, 2024
Submission Date October 30, 2023
Acceptance Date December 16, 2023
Published in Issue Year 2024

Cite

APA Chava, V., M.v., S. R., Munugala, P. K., Chereddy, S. S. D. (2024). Effect of Mineral Admixtures and Curing Regimes on Properties of Self-Compacting Concrete. Journal of Sustainable Construction Materials and Technologies, 9(1), 25-35. https://doi.org/10.47481/jscmt.1383493

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr