Research Article
BibTex RIS Cite
Year 2024, , 211 - 220, 30.09.2024
https://doi.org/10.47481/jscmt.1554284

Abstract

References

  • 1. Tuladhar, R., Marshall, A., & Sivakugan, N. (2020). Use of recycled concrete aggregate for pavement construction. In Advances in construction and demolition waste recycling (pp. 181–197). Woodhead Publishing.
  • 2. Durga, C. S. S., Chava, V., Priyanka, M., Chaitanya, B. K., Rao, B. N. M., & Rao, T. M. (2021). Synergistic effects of GGBFS addition and oven drying on the physical and mechanical properties of fly ash-based geopolymer aggregates. J Sustain Constr Mater Technol, 9(2), 93–105.
  • 3. Ningampalli, R., Rao, M. S., & Desai, V. B. (2021). Flexural and cracking behavior of reinforced lightweight self-compacting concrete beams made with LECA aggregate. J Sustain Constr Mater Technol, 9(2), 159–169.
  • 4. Chaitanya, B. K., Sivakumar, I., Madhavi, Y., Cruze, D., Venkatesh, C., Naga Mahesh, Y., & Sri Durga, C. S. (2024). Microstructural and residual properties of self-compacting concrete containing waste copper slag as fine aggregate exposed to ambient and elevated temperatures. Infrastructures, 9(5), 85.
  • 5. Nwakaire, C. M., Yap, S. P., Onn, C. C., Yuen, C. W., & Ibrahim, H. A. (2020). Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Constr Build Mater, 235, 117444.
  • 6. Reza, F., Wilde, W. J., & Izevbekhai, B. (2018). Sustainability of using recycled concrete aggregates as coarse aggregate in concrete pavements. Transp Res Rec, 2672(27), 99–108.
  • 7. Tam, V. W., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Constr Build Mater, 172, 272–292.
  • 8. Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215.
  • 9. Zhang, B. (2024). Durability of sustainable geopolymer concrete: A critical review. Sustain Mater Technol, e00882.
  • 10. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25.
  • 11. Wasim, M., Ngo, T. D., & Law, D. (2021). A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure. Constr Build Mater, 291, 123381.
  • 12. Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete. SN Appl Sci, 2(5), 919.
  • 13. Mas, B., Cladera, A., Bestard, J., Muntaner, D., López, C. E., Piña, S., & Prades, J. (2012). Concrete with mixed recycled aggregates: Influence of the type of cement. Constr Build Mater, 34, 430–441.
  • 14. De Juan, M. S., & Gutiérrez, P. A. (2009). Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater, 23(2), 872–877.
  • 15. Kou, S. C., & Poon, C. S. (2010). Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. Cem Concr Compos, 32(8), 649–654.
  • 16. Letelier, V., Tarela, E., Muñoz, P., & Moriconi, G. (2017). Combined effects of recycled hydrated cement and recycled aggregates on the mechanical properties of concrete. Constr Build Mater, 132, 365–375.
  • 17. Ozbakkaloglu, T., Gholampour, A., & Xie, T. (2018). Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content. J Mater Civ Eng, 30(2), 04017275.
  • 18. Pepe, M., Toledo Filho, R. D., Koenders, E. A., & Martinelli, E. (2014). Alternative processing procedures for recycled aggregates in structural concrete. Constr Build Mater, 69, 124–132.
  • 19. Stambaugh, N. D., Bergman, T. L., & Srubar III, W. V. (2018). Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Constr Build Mater, 161, 236–245.
  • 20. Liang, C., Ma, H., Pan, Y., Ma, Z., Duan, Z., & He, Z. (2019). Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate. Constr Build Mater, 218, 506–518.
  • 21. Silva, S., Evangelista, L., & De Brito, J. (2021). Durability and shrinkage performance of concrete made with coarse multi-recycled concrete aggregates. Constr Build Mater, 272, 121645.
  • 22. ASTM C 618. (2008). Standard specification for coal FA and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken.
  • 23. ASTM C989, C989M-18a. (2018). Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken.
  • 24. ASTM C 33. (2023). Standard specification for concrete aggregates. ASTM International, West Conshohocken.
  • 25. BS 882. (1992). Standard specification for aggregates from natural sources for concrete.
  • 26. Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of lightweight concrete using geopolymer as binder. Mater Today Proc, 52, 2053–2056.
  • 27. Wu, L., Sun, Z., & Cao, Y. (2024). Modification of recycled aggregate and conservation and application of recycled aggregate concrete: A review. Constr Build Mater, 431, 136567.
  • 28. Nune, S., Murthy, N. D., & Rao, M. S. (2021, November). Studies on impact resistance of self-compacting concrete with mechanically treated recycled coarse aggregate. In IOP Conf Ser Mater Sci Eng (Vol. 1197, No. 1, p. 012051). IOP Publishing.
  • 29. BSI. (2008). BS EN 12620: Aggregates for concrete. BSI, Milton Keynes, UK.
  • 30. BIS 10262. (2019). Standard specification for concrete mix design. Bureau of Indian standards, New Delhi.
  • 31. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R., & Rao, B. N. M. (2023). Estimation of durability properties of self-healing concrete influenced by different Bacillus species. Res Eng Struct Mater, 9(4), 14891505.
  • 32. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., & Bellum, R. R. (2023). Crack healing and flexural behaviour of self-healing concrete influenced by different Bacillus species. Res Eng Struct Mater, 9(4), 14771488.
  • 33. IS 2386 (Part 4). (2002). Standard specification for method of tests for aggregates for concrete: Aggregate impact value test, aggregate crushing strength test, and abrasion test. Bureau of Indian standards, New Delhi, India.
  • 34. IS 2386 (Part 3). (2002). Standard specification for method of tests for aggregates for concrete: Water absorption. Bureau of Indian standards, New Delhi, India.
  • 35. IS 516-1959. (1959). Methods of tests for strength of concrete. Bureau of Indian Standards, New Delhi, India.
  • 36. Durga, C. S. S., Venkatesh, C., Bellum, R. R., Chaitanya, B. K., Rao, B. N. M., & Rao, T. M. (2024). Influence of Bacillus species on mechanical and microstructural properties of concrete. Multiscale Multidiscip Model Exp Des, 2024, 1–17.
  • 37. Chava, V., & Chereddy, S. S. D. (2023). Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Technol, 8(4), 297–306.
  • 38. Rao, T. M., Mahesh, K., Venkatesh, C., Durga, C. S. S., Reddy, B. R., Tejaswi, P. S., & Charandeepneelesh, R. (2023). Influence of magnetization of water on mechanical and durability properties of fly ash concrete. Mater Today Proc, 2023, 18.
  • 39. IS 1237-2012. (2012). Methods of tests for abrasion resistance of concrete flooring. Bureau of Indian Standards, New Delhi, India.
  • 40. ASTM C 1202. (2012). Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM International, West Conshohocken, PA.
  • 41. Ruben, N., Venkatesh, C., Durga, C. S. S., & Chand, M. S. R. (2021). Comprehensive study on performance of glass fibers-based concrete. Innov Infrastruct Solut, 6(2), 112.
  • 42. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Innov Infrastruct Solut, 6(1), 13.
  • 43. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174.
  • 44. BIS, IS 1124-1974. (1974). Specification for water absorption for concrete. Bureau of Indian Standards, New Delhi.
  • 45. Anirudh, M., Rekha, K. S., Venkatesh, C., & Nerella, R. (2021). Characterization of red mud-based cement mortar; mechanical and microstructure studies. Mater Today Proc, 43, 1587–1591.
  • 46. Venkatesh, C., Sri Rama Chand, M., Ruben, N., & Sonali Sri Durga, C. (2020). Strength characteristics of red mud and silica fume based concrete. In Smart technologies for sustainable development: Select proceedings of SMTS 2019 (pp. 387–393). Springer Singapore.
  • 47. Venkatesh, C., Mallikarjuna, V., Rao, G. M., Patil, S. K., Yashwanth, M. K., Venkata Siva Rama Prasad, C., & Sree Lakshmi Devi, G. (2024). Synergistic effects of graphene oxide and limestone calcined clay cement on mechanical properties and durability of concrete. J Build Pathol Rehabil, 9(2), 1–14.
  • 48. Verian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resour Conserv Recycl, 133, 30–49.
  • 49. McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. Int J Concr Struct Mater, 7, 61–69.
  • 50. Saravanakumar, P., Abhiram, K., & Manoj, B. (2016). Properties of treated recycled aggregates and its influence on concrete strength characteristics. Constr Build Mater, 111, 611–617.
  • 51. Wang, Z., & He, W. (2017). Regional energy intensity reduction potential in China: A non-parametric analysis approach. J Clean Prod, 149, 426–435.
  • 52. Xiao, J., Li, W., Fan, Y., & Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996–2011). Constr Build Mater, 31, 364–383.
  • 53. Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater, 65, 201–217.
  • 54. Wang, R., Yu, N., & Li, Y. (2020). Methods for improving the microstructure of recycled concrete aggregate: A review. Constr Build Mater, 242, 118164.
  • 55. Tam, V. W., Wattage, H., Le, K. N., Butera, A., & Soomro, M. (2021). Methods to improve microstructural properties of recycled concrete aggregate: A critical review. Constr Build Mater, 270, 121490.
  • 56. Pawluczuk, E., Kalinowska-Wichrowska, K., Jimenez, J. R., Fernández-Rodríguez, J. M., & Suescum-Morales, D. (2021). Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. J Build Eng, 44, 103317.
  • 57. Joseph, M., Boehme, L., Sierens, Z., & Vandewalle, L. (2015). Water absorption variability of recycled concrete aggregates. Mag Concr Res, 67(11), 592–597.
  • 58. Quattrone, M., Cazacliu, B., Angulo, S. C., Hamard, E., & Cothenet, A. (2016). Measuring the water absorption of recycled aggregates, what is the best practice for concrete production? Constr Build Mater, 123, 690–703.
  • 59. Belin, P., Habert, G., Thiery, M., & Roussel, N. (2014). Cement paste content and water absorption of recycled concrete coarse aggregates. Mater Struct, 47, 1451–1465.
  • 60. Nikmehr, B., & Al-Ameri, R. (2022). A state-of-the-art review on the incorporation of recycled concrete aggregates in geopolymer concrete. Recycling, 7(4), 51.
  • 61. Kumar, G., & Mishra, S. S. (2022). Effect of recycled concrete aggregate on mechanical, physical and durability properties of GGBS–fly ash-based geopolymer concrete. Innov Infrastruct Solut, 7(4), 237.
  • 62. Koushkbaghi, M., Alipour, P., Tahmouresi, B., Mohseni, E., Saradar, A., & Sarker, P. K. (2019). Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr Build Mater, 205, 519–528.
  • 63. Lim, Y. Y., & Pham, T. M. (2021). Effective utilisation of ultrafine slag to improve mechanical and durability properties of recycled aggregates geopolymer concrete. Clean Eng Technol, 5, 100330.

Sustainable Geopolymer Concrete for Pavements: Performance Evaluation of Recycled Concrete Aggregates in Fly Ash-Based Mixtures

Year 2024, , 211 - 220, 30.09.2024
https://doi.org/10.47481/jscmt.1554284

Abstract

This study investigates the feasibility of incorporating recycled concrete aggregates (RCA) into fly ash-based geopolymer concrete for sustainable pavement applications. The research evaluates RCA’s physical and mechanical properties compared to virgin coarse aggregates (VCA) and assesses the performance of geopolymer concrete mixtures with up to 40% RCA replacement. Aggregate characterization revealed that RCA exhibited higher water absorption (4.39%), crushing value (20.9%), impact value (28.2%), and abrasion value (26.1%) compared to VCA, yet these values remained within acceptable limits for pavement applications. Geopolymer concrete specimens were tested for compressive strength, water absorption, abrasion resistance, and chloride ion permeability. Results indicated that increasing RCA content led to a gradual decrease in compressive strength, from 40.16 MPa to 33.52 MPa, while water absorption increased from 5.2% to 6.8%. Abrasion resistance declined as RCA content rose, and chloride ion penetrability increased from 1687 to 2196 coulombs. However, mixtures with up to 20% RCA replacement met the strength and durability criteria required for pavement construction. This study demonstrates the potential for utilizing RCA in geopolymer concrete pavements, offering a sustainable solution for waste management and resource conservation in the construction industry.

References

  • 1. Tuladhar, R., Marshall, A., & Sivakugan, N. (2020). Use of recycled concrete aggregate for pavement construction. In Advances in construction and demolition waste recycling (pp. 181–197). Woodhead Publishing.
  • 2. Durga, C. S. S., Chava, V., Priyanka, M., Chaitanya, B. K., Rao, B. N. M., & Rao, T. M. (2021). Synergistic effects of GGBFS addition and oven drying on the physical and mechanical properties of fly ash-based geopolymer aggregates. J Sustain Constr Mater Technol, 9(2), 93–105.
  • 3. Ningampalli, R., Rao, M. S., & Desai, V. B. (2021). Flexural and cracking behavior of reinforced lightweight self-compacting concrete beams made with LECA aggregate. J Sustain Constr Mater Technol, 9(2), 159–169.
  • 4. Chaitanya, B. K., Sivakumar, I., Madhavi, Y., Cruze, D., Venkatesh, C., Naga Mahesh, Y., & Sri Durga, C. S. (2024). Microstructural and residual properties of self-compacting concrete containing waste copper slag as fine aggregate exposed to ambient and elevated temperatures. Infrastructures, 9(5), 85.
  • 5. Nwakaire, C. M., Yap, S. P., Onn, C. C., Yuen, C. W., & Ibrahim, H. A. (2020). Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Constr Build Mater, 235, 117444.
  • 6. Reza, F., Wilde, W. J., & Izevbekhai, B. (2018). Sustainability of using recycled concrete aggregates as coarse aggregate in concrete pavements. Transp Res Rec, 2672(27), 99–108.
  • 7. Tam, V. W., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Constr Build Mater, 172, 272–292.
  • 8. Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215.
  • 9. Zhang, B. (2024). Durability of sustainable geopolymer concrete: A critical review. Sustain Mater Technol, e00882.
  • 10. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25.
  • 11. Wasim, M., Ngo, T. D., & Law, D. (2021). A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure. Constr Build Mater, 291, 123381.
  • 12. Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Exploration of mechanical and durability characteristics of fly ash-GGBFS based green geopolymer concrete. SN Appl Sci, 2(5), 919.
  • 13. Mas, B., Cladera, A., Bestard, J., Muntaner, D., López, C. E., Piña, S., & Prades, J. (2012). Concrete with mixed recycled aggregates: Influence of the type of cement. Constr Build Mater, 34, 430–441.
  • 14. De Juan, M. S., & Gutiérrez, P. A. (2009). Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater, 23(2), 872–877.
  • 15. Kou, S. C., & Poon, C. S. (2010). Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. Cem Concr Compos, 32(8), 649–654.
  • 16. Letelier, V., Tarela, E., Muñoz, P., & Moriconi, G. (2017). Combined effects of recycled hydrated cement and recycled aggregates on the mechanical properties of concrete. Constr Build Mater, 132, 365–375.
  • 17. Ozbakkaloglu, T., Gholampour, A., & Xie, T. (2018). Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content. J Mater Civ Eng, 30(2), 04017275.
  • 18. Pepe, M., Toledo Filho, R. D., Koenders, E. A., & Martinelli, E. (2014). Alternative processing procedures for recycled aggregates in structural concrete. Constr Build Mater, 69, 124–132.
  • 19. Stambaugh, N. D., Bergman, T. L., & Srubar III, W. V. (2018). Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Constr Build Mater, 161, 236–245.
  • 20. Liang, C., Ma, H., Pan, Y., Ma, Z., Duan, Z., & He, Z. (2019). Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate. Constr Build Mater, 218, 506–518.
  • 21. Silva, S., Evangelista, L., & De Brito, J. (2021). Durability and shrinkage performance of concrete made with coarse multi-recycled concrete aggregates. Constr Build Mater, 272, 121645.
  • 22. ASTM C 618. (2008). Standard specification for coal FA and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken.
  • 23. ASTM C989, C989M-18a. (2018). Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken.
  • 24. ASTM C 33. (2023). Standard specification for concrete aggregates. ASTM International, West Conshohocken.
  • 25. BS 882. (1992). Standard specification for aggregates from natural sources for concrete.
  • 26. Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of lightweight concrete using geopolymer as binder. Mater Today Proc, 52, 2053–2056.
  • 27. Wu, L., Sun, Z., & Cao, Y. (2024). Modification of recycled aggregate and conservation and application of recycled aggregate concrete: A review. Constr Build Mater, 431, 136567.
  • 28. Nune, S., Murthy, N. D., & Rao, M. S. (2021, November). Studies on impact resistance of self-compacting concrete with mechanically treated recycled coarse aggregate. In IOP Conf Ser Mater Sci Eng (Vol. 1197, No. 1, p. 012051). IOP Publishing.
  • 29. BSI. (2008). BS EN 12620: Aggregates for concrete. BSI, Milton Keynes, UK.
  • 30. BIS 10262. (2019). Standard specification for concrete mix design. Bureau of Indian standards, New Delhi.
  • 31. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R., & Rao, B. N. M. (2023). Estimation of durability properties of self-healing concrete influenced by different Bacillus species. Res Eng Struct Mater, 9(4), 14891505.
  • 32. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., & Bellum, R. R. (2023). Crack healing and flexural behaviour of self-healing concrete influenced by different Bacillus species. Res Eng Struct Mater, 9(4), 14771488.
  • 33. IS 2386 (Part 4). (2002). Standard specification for method of tests for aggregates for concrete: Aggregate impact value test, aggregate crushing strength test, and abrasion test. Bureau of Indian standards, New Delhi, India.
  • 34. IS 2386 (Part 3). (2002). Standard specification for method of tests for aggregates for concrete: Water absorption. Bureau of Indian standards, New Delhi, India.
  • 35. IS 516-1959. (1959). Methods of tests for strength of concrete. Bureau of Indian Standards, New Delhi, India.
  • 36. Durga, C. S. S., Venkatesh, C., Bellum, R. R., Chaitanya, B. K., Rao, B. N. M., & Rao, T. M. (2024). Influence of Bacillus species on mechanical and microstructural properties of concrete. Multiscale Multidiscip Model Exp Des, 2024, 1–17.
  • 37. Chava, V., & Chereddy, S. S. D. (2023). Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Technol, 8(4), 297–306.
  • 38. Rao, T. M., Mahesh, K., Venkatesh, C., Durga, C. S. S., Reddy, B. R., Tejaswi, P. S., & Charandeepneelesh, R. (2023). Influence of magnetization of water on mechanical and durability properties of fly ash concrete. Mater Today Proc, 2023, 18.
  • 39. IS 1237-2012. (2012). Methods of tests for abrasion resistance of concrete flooring. Bureau of Indian Standards, New Delhi, India.
  • 40. ASTM C 1202. (2012). Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM International, West Conshohocken, PA.
  • 41. Ruben, N., Venkatesh, C., Durga, C. S. S., & Chand, M. S. R. (2021). Comprehensive study on performance of glass fibers-based concrete. Innov Infrastruct Solut, 6(2), 112.
  • 42. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Innov Infrastruct Solut, 6(1), 13.
  • 43. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174.
  • 44. BIS, IS 1124-1974. (1974). Specification for water absorption for concrete. Bureau of Indian Standards, New Delhi.
  • 45. Anirudh, M., Rekha, K. S., Venkatesh, C., & Nerella, R. (2021). Characterization of red mud-based cement mortar; mechanical and microstructure studies. Mater Today Proc, 43, 1587–1591.
  • 46. Venkatesh, C., Sri Rama Chand, M., Ruben, N., & Sonali Sri Durga, C. (2020). Strength characteristics of red mud and silica fume based concrete. In Smart technologies for sustainable development: Select proceedings of SMTS 2019 (pp. 387–393). Springer Singapore.
  • 47. Venkatesh, C., Mallikarjuna, V., Rao, G. M., Patil, S. K., Yashwanth, M. K., Venkata Siva Rama Prasad, C., & Sree Lakshmi Devi, G. (2024). Synergistic effects of graphene oxide and limestone calcined clay cement on mechanical properties and durability of concrete. J Build Pathol Rehabil, 9(2), 1–14.
  • 48. Verian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resour Conserv Recycl, 133, 30–49.
  • 49. McNeil, K., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. Int J Concr Struct Mater, 7, 61–69.
  • 50. Saravanakumar, P., Abhiram, K., & Manoj, B. (2016). Properties of treated recycled aggregates and its influence on concrete strength characteristics. Constr Build Mater, 111, 611–617.
  • 51. Wang, Z., & He, W. (2017). Regional energy intensity reduction potential in China: A non-parametric analysis approach. J Clean Prod, 149, 426–435.
  • 52. Xiao, J., Li, W., Fan, Y., & Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996–2011). Constr Build Mater, 31, 364–383.
  • 53. Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater, 65, 201–217.
  • 54. Wang, R., Yu, N., & Li, Y. (2020). Methods for improving the microstructure of recycled concrete aggregate: A review. Constr Build Mater, 242, 118164.
  • 55. Tam, V. W., Wattage, H., Le, K. N., Butera, A., & Soomro, M. (2021). Methods to improve microstructural properties of recycled concrete aggregate: A critical review. Constr Build Mater, 270, 121490.
  • 56. Pawluczuk, E., Kalinowska-Wichrowska, K., Jimenez, J. R., Fernández-Rodríguez, J. M., & Suescum-Morales, D. (2021). Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. J Build Eng, 44, 103317.
  • 57. Joseph, M., Boehme, L., Sierens, Z., & Vandewalle, L. (2015). Water absorption variability of recycled concrete aggregates. Mag Concr Res, 67(11), 592–597.
  • 58. Quattrone, M., Cazacliu, B., Angulo, S. C., Hamard, E., & Cothenet, A. (2016). Measuring the water absorption of recycled aggregates, what is the best practice for concrete production? Constr Build Mater, 123, 690–703.
  • 59. Belin, P., Habert, G., Thiery, M., & Roussel, N. (2014). Cement paste content and water absorption of recycled concrete coarse aggregates. Mater Struct, 47, 1451–1465.
  • 60. Nikmehr, B., & Al-Ameri, R. (2022). A state-of-the-art review on the incorporation of recycled concrete aggregates in geopolymer concrete. Recycling, 7(4), 51.
  • 61. Kumar, G., & Mishra, S. S. (2022). Effect of recycled concrete aggregate on mechanical, physical and durability properties of GGBS–fly ash-based geopolymer concrete. Innov Infrastruct Solut, 7(4), 237.
  • 62. Koushkbaghi, M., Alipour, P., Tahmouresi, B., Mohseni, E., Saradar, A., & Sarker, P. K. (2019). Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr Build Mater, 205, 519–528.
  • 63. Lim, Y. Y., & Pham, T. M. (2021). Effective utilisation of ultrafine slag to improve mechanical and durability properties of recycled aggregates geopolymer concrete. Clean Eng Technol, 5, 100330.
There are 63 citations in total.

Details

Primary Language English
Subjects Transportation Engineering, Construction Materials
Journal Section Research Articles
Authors

B. Naga Malleswara Rao This is me 0000-0002-5543-168X

Chereddy Sonali Sri Durga This is me 0000-0003-0942-9252

Chava Venkatesh 0000-0003-0028-7702

T. Muralidhara Rao This is me 0000-0002-7768-3298

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date May 19, 2024
Acceptance Date September 14, 2024
Published in Issue Year 2024

Cite

APA Rao, B. N. M., Durga, C. S. S., Venkatesh, C., Rao, T. M. (2024). Sustainable Geopolymer Concrete for Pavements: Performance Evaluation of Recycled Concrete Aggregates in Fly Ash-Based Mixtures. Journal of Sustainable Construction Materials and Technologies, 9(3), 211-220. https://doi.org/10.47481/jscmt.1554284

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr