Research Article
BibTex RIS Cite
Year 2024, , 335 - 345, 31.12.2024
https://doi.org/10.47481/jscmt.1600562

Abstract

References

  • 1. Robert, U. W., Etuk, S. E., Emah, J. B., Agbasi, O. E., & Iboh, U. A. (2022). Thermophysical and mechan- ical properties of clay-based composites developed with hydrothermally calcined waste paper ash nano- material for building purposes. Int J Thermophys, 43(5), 1-20. [CrossRef]
  • 2. Tsega, E., Mosisa, A., & Fuga, F. (2017). Effects of fir- ing time and temperature on physical properties of fired clay bricks. Am J Civ Eng, 5(1), 21-26. [CrossRef]
  • 3. Rondonane, H. T., Mbeny, J. A., Bayiga, E. C., & Ndjigui, P. D. (2020). Characterization and applica- tion tests of kaolinite clays from Aboudeia (South- eastern Chad) in fired bricks making. Sci Afr, 7, e00294. [CrossRef]
  • 4. Garzõn, E., Cano, M., O'Kelly, B. C., & Sãnchez-So- to, P. J. (2015). Phyllite clay-cement composites hav- ing improved engineering properties and material applications. Appl Clay Sci, 114, 229-233. [CrossRef]
  • 5. Santos, L. M. A., Neto, J. A. S., & Azerẽdo, A. F. N. (2020). Soil characterisation for adobe mixtures containing Portland cement as a stabiliser. Revista Matẽria, 25(1), 1-10. [CrossRef]
  • 6. Ihuah, P. W. (2015). Building materials costs increas- es and sustainability in real estate development in Ni- geria. Afr J Econ Sustain Dev, 4(3), 218-233. [CrossRef]
  • 7. Dunuweera, S. P., & Rajapakse, R. M. G. (2018). Cement types, composition, uses and advantages of nanocement, environmental impact on cement pro- duction, and possible solutions. Adv Mater Sci Eng, 2018, 4158682. [CrossRef]
  • 8. Etuk, S. E., Robert, U. W., Emah, J. B., & Agbasi, O. E. (2021). Dielectric properties of eggshell mem- brane of some select bird species. Arab J Sci Eng, 46, 769-777. [CrossRef]
  • 9. Etuk, S. E., Agbasi, O. E., Abdulrazzaq, Z. T., & Rob- ert, U. W. (2018). Investigation of thermophysical properties of Alates (swarmers) termites wing as po- tential raw material for insulation. Int J Sci World, 6(1), 1-7. [CrossRef]
  • 9. Binici, H., Gemci, R., Aksogan, O., & Kaplan, H. (2010). Insulation properties of bricks made with cotton and textile ash wastes. Int J Mater Res, 101(7), 894-899. [CrossRef]
  • 10. Agbede, O., & Joel, M. (2011). Effect of rice husk ash (RHA) on the properties of Ibaji burnt clay bricks. Am J Sci Ind Res, 2(4), 674-677. [CrossRef]
  • 11. Reddy, K. S., Vivek, P. S., & Chambrelin, K. S. (2017). Stabilization of expansive soil using bagasse ash. Int J Civ Eng Technol, 8(4), 1730-1736.
  • 12. Sankar, V. S., Raj, P. D. A., & Raman, S. J. (2019). Stabilization of expansive soil by using agricultural waste. Int J Eng Adv Technol, 8(3S), 154-157.
  • 13. Mandal, S., & Singh, J. P. (2016). Stabilization of soil using ground granulated blast furnace slag and fly ash. Int J Innov Res Sci Eng Technol, 5(12), 21121- 21126.
  • 14. Nath, B. D., Molla, M. K. A., & Sarkar, G. (2017). Study on strength behavior of organic soil stabilized with fly ash. Int Scholarly Res Notices, 2017, 5786541. [CrossRef]
  • 15. Dayalan, J. (2016). Comparative study on stabili- zation of soil with ground granulated blast furnace slag (GGBS) and fly ash. Int Res J Eng Technol, 3, 2198-2204. [CrossRef]
  • 16. Ubi, S. E., Nyak, E. E., & Agbor, R. B. (2022). En- hancement of soil stability with groundnut shell ash. J Civ Eng Res, 12(1), 1-7.
  • 17. Arthi, A. J. J., Aarthi, G., Kumar, V. V., & Vishnupr- riya, U. (2023). Stabilization of clay using groundnut shell ash and sugarcane bagasse ash. Key Eng Mater, 960(1), 197-204. [CrossRef]
  • 18. Sathiparan, N., Anburuvel, A., Selvam, V. V., & Vithurshan, P. A. (2023). Potential use of groundnut shell ash in sustainable stabilized earth blocks. Con- str Build Mater, 393, 132058. [CrossRef]
  • 19. Sujatha, E. R., Dharini, K., & Bharathi, V. (2016). In- fluence of groundnut shell ash on strength and du- rability properties of clay. Geomech Geoeng, 11(1), 20-27. [CrossRef]
  • 20. Ajeigbe, H. A., Waliyar, F., Echekwu, C. A., Ayuba, K., Motagi, B. N., Eniayeju, D., & Inuwa, A. (2014). A farmer's guide to groundnut production in Nigeri- an. International Crops Research Institute for the Semi-Arid Tropics.
  • 21. Sakoalia, K. D., Adu-Agyem, J., Amenuke, D. A., & Deffor, B. (2019). Groundnut shell (powder) as an alternative sculpture material for fine art: The case of Salaga Senior High School, Ghana. J Arts Humanit, 8(4), 30-43.
  • 22. Udeh, B. A. (2018). Bio-waste transesterification al- ternative for biodiesel production: A combined ma- nipulation of lipase enzyme action and lignocellulosic fermented ethanol. Asian J Biotechnol Bioresour Technol, 3(3), 1-9. [CrossRef]
  • 23. Sowmya, T. A., Gayavajitha, E., Kanimozhi, R., & Subalakshmi, R. (2018). Removal of toxic metals from industrial wastewater using groundnut shell. Int J Pure Appl Math, 119(15), 629-634.
  • 24. Kanokon, N., Andrea, S., & Peter, B. (2018). Influ- ence of KOH on the carbon nanostructure of peanut shell. Resol Discov, 3(2), 29-32. [CrossRef]
  • 25. ASTM D7928. (2017). Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM International.
  • 26.Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U. S., Abdulrazzaq, Z. T., Anonaba, A. U., & Ojo, 27. O. T. (2021). On the hygrothermal properties of sandcrete blocks produced with sawdust as partial replacement of sand. J Mech Behav Mater, 30(1), 144-155. [CrossRef]
  • 28. Bediako, M., & Amankwah, E. O. (2015). Analysis of chemical composition of cement in Ghana: A key to understand the behaviour of cement. Adv Mater Sci Eng, 2015, 1-5. [CrossRef]
  • 29. Inegbenebor, A. I., Inegbenebor, A. O., Mordi, R. C., Kalada, N., Falomo, A., & Sanyaolu, P. (2016). Determination of the chemical compositions of clay deposits from some part of South West Nigeria for industrial applications. Int J Appl Sci Biotechnol, 4(1), 21-26. [CrossRef]
  • 30. Adeniran, A. O., Akankpo, A. O., Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2022). Comparative study of electrical resistance of disc-shaped compacts fab- ricated using calcined clam shell, periwinkle shell, and oyster shell nanopowder. Kragujevac J Sci, 44, 25-36. [CrossRef]
  • 31. Robert, U. W., Etuk, S. E., Agbasi, O. E., Iboh, U. A., & Ekpo, S. S. (2020). Temperature-dependent electrical characteristics of disc-shaped compacts fabricated using calcined eggshell nanopowder and dry cassava starch. Powder Metall Prog, 20(1), 12-20. [CrossRef]
  • 32. Munifah, S. S., Wiendartun, W., & Aminudim, A. (2018). Design of temperature measuring instru- ment using NTC thermistor of Fe₂TiO₅ based on microcontroller ATmega 328. J Phys Conf Ser, 1280, 022052. [CrossRef]
  • 33. Ekong, S. A., Oyegoke, D. A., Edema, A. A., & Rob- ert, U. W. (2022). Density and water absorption co- efficient of sandcrete blocks produced with waste paper ash as partial replacement of cement. Adv Ma- ter Sci, 22(4), 85-97. [CrossRef]
  • 34. Robert, U. W., Etuk, S. E., & Agbasi, O. E. (2019). Bulk volume determination by modified water displace- ment method. Iraqi J Sci, 60(8), 1704-1710. [CrossRef]
  • 35. Ekpenyong, N. E., Ekong, S. A., Nathaniel, E. U., Thomas, J. E., Okorie, U. S., Robert, U. W., Akpabio, I. A., & Ekanem, N. U. (2023). Thermal response and mechanical properties of groundnut shells' compos- ite boards. Res J Sci Technol, 3(1), 42-57.
  • 36. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi, O. E., Akpan, S. S., & Inyang, N. J. (2023). Paper-sawdust composites: Fabrication and comparison in terms of heat transfer and strength properties. Struct Envi- ron, 15(1), 38-48. [CrossRef]
  • 37. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Okorie, U. S. (2021). Quick determination of thermal conductivity of thermal insulators using a modified Lee-Charlton's disc apparatus technique. Int J Ther- mophys, 42(8), 1-20. [CrossRef]
  • 38. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U. S., Ekpenyong, N. E., & Anonaba, A. U. (2022). On the modification of Lee-Charlton's disc apparatus technique for thermal conductivity determination. Res J Sci Technol, 2(3), 1-17.
  • 39. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2020). Design and performance evaluation of a device for determination of specific heat capacity of thermal insula- tors. Beni-Suef Univ J Basic Appl Sci, 9(1), 1-7. [CrossRef]
  • 40. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2022). Thermophysical properties of oil empty fruit bunch peduncle for use as a mulching material. J Oil Palm Res, 35, 448-455. [CrossRef]
  • 41. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2021). Investigation of heat transfer and mechanical properties of Saccharum officinarum leaf boards. Int J Energy Water Resour, 6(1), 95-102. [CrossRef]
  • 42. Umoren, G. P., Udo, A. O., & Udo, I. E. (2023). Suit- ability of Lagenaria breviflora rind-filled plaster of Paris ceilings for building design. Res J Sci Technol, 3(2), 1-14.
  • 43. Etuk, S. E., Robert, U. W., Agbasi, O. E., & Ekpo, S. S. (2022). A study on thermophysical properties of clay from Agbani: Its assessment as potential walling material for naturally-cooled building design. Epitoanyag-J Silicate Based Compos Mater, 74(3), 93-96. [CrossRef]
  • 44. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S. A., Nathaniel, E. U., Anonaba, A. U., & Nnana, L. A. (2021). Valorisation of waste carton paper, melon seed husks, and groundnut shells to thermal insulation panels for structural applications. Polytechnica, 4, 97-106. [CrossRef]
  • 45. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U.S., & Lashin, A. (2021). Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand. J King Saud Univ Eng Sci, 2021, 10.005. [CrossRef]
  • 46. Robert, U. W., Etuk, S. E., Iboh, U. A., Umoren, G. P., Agbasi, O. E., & Abdulrazzaq, Z. T. (2020). Ther- mal and mechanical properties of fabricated plaster of Paris filled with groundnut seed coat and waste newspaper materials for structural application. Építôanyag-J Silicate Based Compos Mater, 72(2), 72- 78. [CrossRef]
  • 47. ASTM C67/67M. (2021). Standard test methods for sampling and testing brick and structural clay tile. ASTM International.
  • 48. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S. A., Abdulrazzaq, Z. T., & Anonaba, A. U. (2021). Investigation of thermal and strength properties of composite panels fabricated with plaster of Paris for insulation in buildings. Int J Thermophys, 42(2), 1-18. [CrossRef]
  • 49. Lu, H., Guo, X., Liu, Y., & Gong, X. (2015). Effects of particle size on flow mode and flow characteris- tics of pulverised coal. Kona Powder Part I, 32, 143-153. [CrossRef]
  • 50. USP. (2007). Powder flow. In USP 30-NF 25. United States Pharmacopeial Convention.
  • 51. Velasco, P. M., Ortíz, M. P. M., Giró, M. A. M., & Velasco, L. M. (2014). Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr Build Mater, 63, 97-107. [CrossRef]
  • 52. ASTM C618. (2023). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International.
  • 53. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi, O. E., Ekpenyong, N. E., Akpan, S. S., & Umana, E. A. (2022). Electrical characteristics of dry cement-based composites modified with coconut husk ash nanomaterial. Adv Mater Sci, 22(2), 65-80. [CrossRef]
  • 54. Alssoun, B. M., Hwang, S., & Khayat, K. H. (2015). Influence of aggregate characteristics on workability of superworkable concrete. Mater Struct, 49(1), 597-609. [CrossRef]
  • 55. Kang, M., & Weibin, L. (2018). Effect of the recycled aggregate concrete. Adv Mater Sci Eng, 2018, 2428576. [CrossRef]
  • 56. British Standards Institution. (1975). BS 2028: Precast concrete blocks. London.
  • 57. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Ekong, S. A. (2020). Properties of sandcrete block produced with coconut husk as partial replacement of sand. J Build Mater Struct, 7(1), 95-104. [CrossRef]
  • 58. Ekpe, S. D., & Akpabio, G. T. (1994). Comparison of the thermal properties of soil sample for passively cooled building design. Turk J Phys, 18, 117-122.
  • 59 .Robert, U. W., Etuk, S. E., Agbasi, O. E., Umoren, G. P., Akpan, S. S., & Nnanna, L. A. (2021). Hydrothermally-calcined waste paper ash nanomaterial as an alternative to cement for clay soil modification for building purposes. Acta Polytechnica, 61(6), 749-761. [CrossRef]
  • 60. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Umoren, G. P. (2020). Comparison of clay soils of different colors existing under the same conditions in a location. Imam J Appl Sci, 5, 68-73. [CrossRef]
  • 61. Afkhami, B., Akbarian, B., Beheshti, N., Kalaee, A. H., & Shabani, B. (2015). Energy consumption as sessment in a cement production plant. Sustain Energy Technol, 10, 84-89. [CrossRef]

Thermophysical, strength, and electrical properties of clay modified with groundnut shell ash for building purposes

Year 2024, , 335 - 345, 31.12.2024
https://doi.org/10.47481/jscmt.1600562

Abstract

This study investigated the effects of Groundnut Shell Ash (GSA) on clay samples for making sustainable and low-cost building materials. The clay GSA composites' physical, chemical, thermal, and mechanical properties were evaluated to assess their suitability for construction. The results revealed that the addition of GSA to the clay matrix had a significant impact on various properties of the samples. The physical characterization showed that GSA was finer and lighter than clay, making the composites more flowable. Chemical analysis indicated that clay and GSA were rich in SiO2, Al2O3, and Fe2O3, with the clay exhibiting high SiO2 content suitable for brick manufacturing. The composites had lower electrical resistance and higher conductivity with more GSA, which could enable temperature monitoring. Thermophysical testing demonstrated that the composites had better thermal insulation properties with more GSA, as shown by higher specific heat capacity and lower thermal diffusivity. The composites absorbed more water with more GSA, indicating higher porosity due to finer particles. The composites had similar bulk density to sandcrete blocks, implying adequate load capacity. Mechanical testing revealed lower flexural strength but higher abrasion resistance with more GSA. The optimal GSA content for strength was 10.0%. More GSA resulted in more voids and weaker bonds. The study provided insights for further research and development.

References

  • 1. Robert, U. W., Etuk, S. E., Emah, J. B., Agbasi, O. E., & Iboh, U. A. (2022). Thermophysical and mechan- ical properties of clay-based composites developed with hydrothermally calcined waste paper ash nano- material for building purposes. Int J Thermophys, 43(5), 1-20. [CrossRef]
  • 2. Tsega, E., Mosisa, A., & Fuga, F. (2017). Effects of fir- ing time and temperature on physical properties of fired clay bricks. Am J Civ Eng, 5(1), 21-26. [CrossRef]
  • 3. Rondonane, H. T., Mbeny, J. A., Bayiga, E. C., & Ndjigui, P. D. (2020). Characterization and applica- tion tests of kaolinite clays from Aboudeia (South- eastern Chad) in fired bricks making. Sci Afr, 7, e00294. [CrossRef]
  • 4. Garzõn, E., Cano, M., O'Kelly, B. C., & Sãnchez-So- to, P. J. (2015). Phyllite clay-cement composites hav- ing improved engineering properties and material applications. Appl Clay Sci, 114, 229-233. [CrossRef]
  • 5. Santos, L. M. A., Neto, J. A. S., & Azerẽdo, A. F. N. (2020). Soil characterisation for adobe mixtures containing Portland cement as a stabiliser. Revista Matẽria, 25(1), 1-10. [CrossRef]
  • 6. Ihuah, P. W. (2015). Building materials costs increas- es and sustainability in real estate development in Ni- geria. Afr J Econ Sustain Dev, 4(3), 218-233. [CrossRef]
  • 7. Dunuweera, S. P., & Rajapakse, R. M. G. (2018). Cement types, composition, uses and advantages of nanocement, environmental impact on cement pro- duction, and possible solutions. Adv Mater Sci Eng, 2018, 4158682. [CrossRef]
  • 8. Etuk, S. E., Robert, U. W., Emah, J. B., & Agbasi, O. E. (2021). Dielectric properties of eggshell mem- brane of some select bird species. Arab J Sci Eng, 46, 769-777. [CrossRef]
  • 9. Etuk, S. E., Agbasi, O. E., Abdulrazzaq, Z. T., & Rob- ert, U. W. (2018). Investigation of thermophysical properties of Alates (swarmers) termites wing as po- tential raw material for insulation. Int J Sci World, 6(1), 1-7. [CrossRef]
  • 9. Binici, H., Gemci, R., Aksogan, O., & Kaplan, H. (2010). Insulation properties of bricks made with cotton and textile ash wastes. Int J Mater Res, 101(7), 894-899. [CrossRef]
  • 10. Agbede, O., & Joel, M. (2011). Effect of rice husk ash (RHA) on the properties of Ibaji burnt clay bricks. Am J Sci Ind Res, 2(4), 674-677. [CrossRef]
  • 11. Reddy, K. S., Vivek, P. S., & Chambrelin, K. S. (2017). Stabilization of expansive soil using bagasse ash. Int J Civ Eng Technol, 8(4), 1730-1736.
  • 12. Sankar, V. S., Raj, P. D. A., & Raman, S. J. (2019). Stabilization of expansive soil by using agricultural waste. Int J Eng Adv Technol, 8(3S), 154-157.
  • 13. Mandal, S., & Singh, J. P. (2016). Stabilization of soil using ground granulated blast furnace slag and fly ash. Int J Innov Res Sci Eng Technol, 5(12), 21121- 21126.
  • 14. Nath, B. D., Molla, M. K. A., & Sarkar, G. (2017). Study on strength behavior of organic soil stabilized with fly ash. Int Scholarly Res Notices, 2017, 5786541. [CrossRef]
  • 15. Dayalan, J. (2016). Comparative study on stabili- zation of soil with ground granulated blast furnace slag (GGBS) and fly ash. Int Res J Eng Technol, 3, 2198-2204. [CrossRef]
  • 16. Ubi, S. E., Nyak, E. E., & Agbor, R. B. (2022). En- hancement of soil stability with groundnut shell ash. J Civ Eng Res, 12(1), 1-7.
  • 17. Arthi, A. J. J., Aarthi, G., Kumar, V. V., & Vishnupr- riya, U. (2023). Stabilization of clay using groundnut shell ash and sugarcane bagasse ash. Key Eng Mater, 960(1), 197-204. [CrossRef]
  • 18. Sathiparan, N., Anburuvel, A., Selvam, V. V., & Vithurshan, P. A. (2023). Potential use of groundnut shell ash in sustainable stabilized earth blocks. Con- str Build Mater, 393, 132058. [CrossRef]
  • 19. Sujatha, E. R., Dharini, K., & Bharathi, V. (2016). In- fluence of groundnut shell ash on strength and du- rability properties of clay. Geomech Geoeng, 11(1), 20-27. [CrossRef]
  • 20. Ajeigbe, H. A., Waliyar, F., Echekwu, C. A., Ayuba, K., Motagi, B. N., Eniayeju, D., & Inuwa, A. (2014). A farmer's guide to groundnut production in Nigeri- an. International Crops Research Institute for the Semi-Arid Tropics.
  • 21. Sakoalia, K. D., Adu-Agyem, J., Amenuke, D. A., & Deffor, B. (2019). Groundnut shell (powder) as an alternative sculpture material for fine art: The case of Salaga Senior High School, Ghana. J Arts Humanit, 8(4), 30-43.
  • 22. Udeh, B. A. (2018). Bio-waste transesterification al- ternative for biodiesel production: A combined ma- nipulation of lipase enzyme action and lignocellulosic fermented ethanol. Asian J Biotechnol Bioresour Technol, 3(3), 1-9. [CrossRef]
  • 23. Sowmya, T. A., Gayavajitha, E., Kanimozhi, R., & Subalakshmi, R. (2018). Removal of toxic metals from industrial wastewater using groundnut shell. Int J Pure Appl Math, 119(15), 629-634.
  • 24. Kanokon, N., Andrea, S., & Peter, B. (2018). Influ- ence of KOH on the carbon nanostructure of peanut shell. Resol Discov, 3(2), 29-32. [CrossRef]
  • 25. ASTM D7928. (2017). Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM International.
  • 26.Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U. S., Abdulrazzaq, Z. T., Anonaba, A. U., & Ojo, 27. O. T. (2021). On the hygrothermal properties of sandcrete blocks produced with sawdust as partial replacement of sand. J Mech Behav Mater, 30(1), 144-155. [CrossRef]
  • 28. Bediako, M., & Amankwah, E. O. (2015). Analysis of chemical composition of cement in Ghana: A key to understand the behaviour of cement. Adv Mater Sci Eng, 2015, 1-5. [CrossRef]
  • 29. Inegbenebor, A. I., Inegbenebor, A. O., Mordi, R. C., Kalada, N., Falomo, A., & Sanyaolu, P. (2016). Determination of the chemical compositions of clay deposits from some part of South West Nigeria for industrial applications. Int J Appl Sci Biotechnol, 4(1), 21-26. [CrossRef]
  • 30. Adeniran, A. O., Akankpo, A. O., Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2022). Comparative study of electrical resistance of disc-shaped compacts fab- ricated using calcined clam shell, periwinkle shell, and oyster shell nanopowder. Kragujevac J Sci, 44, 25-36. [CrossRef]
  • 31. Robert, U. W., Etuk, S. E., Agbasi, O. E., Iboh, U. A., & Ekpo, S. S. (2020). Temperature-dependent electrical characteristics of disc-shaped compacts fabricated using calcined eggshell nanopowder and dry cassava starch. Powder Metall Prog, 20(1), 12-20. [CrossRef]
  • 32. Munifah, S. S., Wiendartun, W., & Aminudim, A. (2018). Design of temperature measuring instru- ment using NTC thermistor of Fe₂TiO₅ based on microcontroller ATmega 328. J Phys Conf Ser, 1280, 022052. [CrossRef]
  • 33. Ekong, S. A., Oyegoke, D. A., Edema, A. A., & Rob- ert, U. W. (2022). Density and water absorption co- efficient of sandcrete blocks produced with waste paper ash as partial replacement of cement. Adv Ma- ter Sci, 22(4), 85-97. [CrossRef]
  • 34. Robert, U. W., Etuk, S. E., & Agbasi, O. E. (2019). Bulk volume determination by modified water displace- ment method. Iraqi J Sci, 60(8), 1704-1710. [CrossRef]
  • 35. Ekpenyong, N. E., Ekong, S. A., Nathaniel, E. U., Thomas, J. E., Okorie, U. S., Robert, U. W., Akpabio, I. A., & Ekanem, N. U. (2023). Thermal response and mechanical properties of groundnut shells' compos- ite boards. Res J Sci Technol, 3(1), 42-57.
  • 36. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi, O. E., Akpan, S. S., & Inyang, N. J. (2023). Paper-sawdust composites: Fabrication and comparison in terms of heat transfer and strength properties. Struct Envi- ron, 15(1), 38-48. [CrossRef]
  • 37. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Okorie, U. S. (2021). Quick determination of thermal conductivity of thermal insulators using a modified Lee-Charlton's disc apparatus technique. Int J Ther- mophys, 42(8), 1-20. [CrossRef]
  • 38. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U. S., Ekpenyong, N. E., & Anonaba, A. U. (2022). On the modification of Lee-Charlton's disc apparatus technique for thermal conductivity determination. Res J Sci Technol, 2(3), 1-17.
  • 39. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2020). Design and performance evaluation of a device for determination of specific heat capacity of thermal insula- tors. Beni-Suef Univ J Basic Appl Sci, 9(1), 1-7. [CrossRef]
  • 40. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2022). Thermophysical properties of oil empty fruit bunch peduncle for use as a mulching material. J Oil Palm Res, 35, 448-455. [CrossRef]
  • 41. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2021). Investigation of heat transfer and mechanical properties of Saccharum officinarum leaf boards. Int J Energy Water Resour, 6(1), 95-102. [CrossRef]
  • 42. Umoren, G. P., Udo, A. O., & Udo, I. E. (2023). Suit- ability of Lagenaria breviflora rind-filled plaster of Paris ceilings for building design. Res J Sci Technol, 3(2), 1-14.
  • 43. Etuk, S. E., Robert, U. W., Agbasi, O. E., & Ekpo, S. S. (2022). A study on thermophysical properties of clay from Agbani: Its assessment as potential walling material for naturally-cooled building design. Epitoanyag-J Silicate Based Compos Mater, 74(3), 93-96. [CrossRef]
  • 44. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S. A., Nathaniel, E. U., Anonaba, A. U., & Nnana, L. A. (2021). Valorisation of waste carton paper, melon seed husks, and groundnut shells to thermal insulation panels for structural applications. Polytechnica, 4, 97-106. [CrossRef]
  • 45. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U.S., & Lashin, A. (2021). Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand. J King Saud Univ Eng Sci, 2021, 10.005. [CrossRef]
  • 46. Robert, U. W., Etuk, S. E., Iboh, U. A., Umoren, G. P., Agbasi, O. E., & Abdulrazzaq, Z. T. (2020). Ther- mal and mechanical properties of fabricated plaster of Paris filled with groundnut seed coat and waste newspaper materials for structural application. Építôanyag-J Silicate Based Compos Mater, 72(2), 72- 78. [CrossRef]
  • 47. ASTM C67/67M. (2021). Standard test methods for sampling and testing brick and structural clay tile. ASTM International.
  • 48. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S. A., Abdulrazzaq, Z. T., & Anonaba, A. U. (2021). Investigation of thermal and strength properties of composite panels fabricated with plaster of Paris for insulation in buildings. Int J Thermophys, 42(2), 1-18. [CrossRef]
  • 49. Lu, H., Guo, X., Liu, Y., & Gong, X. (2015). Effects of particle size on flow mode and flow characteris- tics of pulverised coal. Kona Powder Part I, 32, 143-153. [CrossRef]
  • 50. USP. (2007). Powder flow. In USP 30-NF 25. United States Pharmacopeial Convention.
  • 51. Velasco, P. M., Ortíz, M. P. M., Giró, M. A. M., & Velasco, L. M. (2014). Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr Build Mater, 63, 97-107. [CrossRef]
  • 52. ASTM C618. (2023). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International.
  • 53. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi, O. E., Ekpenyong, N. E., Akpan, S. S., & Umana, E. A. (2022). Electrical characteristics of dry cement-based composites modified with coconut husk ash nanomaterial. Adv Mater Sci, 22(2), 65-80. [CrossRef]
  • 54. Alssoun, B. M., Hwang, S., & Khayat, K. H. (2015). Influence of aggregate characteristics on workability of superworkable concrete. Mater Struct, 49(1), 597-609. [CrossRef]
  • 55. Kang, M., & Weibin, L. (2018). Effect of the recycled aggregate concrete. Adv Mater Sci Eng, 2018, 2428576. [CrossRef]
  • 56. British Standards Institution. (1975). BS 2028: Precast concrete blocks. London.
  • 57. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Ekong, S. A. (2020). Properties of sandcrete block produced with coconut husk as partial replacement of sand. J Build Mater Struct, 7(1), 95-104. [CrossRef]
  • 58. Ekpe, S. D., & Akpabio, G. T. (1994). Comparison of the thermal properties of soil sample for passively cooled building design. Turk J Phys, 18, 117-122.
  • 59 .Robert, U. W., Etuk, S. E., Agbasi, O. E., Umoren, G. P., Akpan, S. S., & Nnanna, L. A. (2021). Hydrothermally-calcined waste paper ash nanomaterial as an alternative to cement for clay soil modification for building purposes. Acta Polytechnica, 61(6), 749-761. [CrossRef]
  • 60. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Umoren, G. P. (2020). Comparison of clay soils of different colors existing under the same conditions in a location. Imam J Appl Sci, 5, 68-73. [CrossRef]
  • 61. Afkhami, B., Akbarian, B., Beheshti, N., Kalaee, A. H., & Shabani, B. (2015). Energy consumption as sessment in a cement production plant. Sustain Energy Technol, 10, 84-89. [CrossRef]
There are 61 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Joseph Bassey Emah 0000-0002-8502-3441

Abayomi Edema 0000-0002-0179-651X

Sylvester Andrew Ekong This is me 0000-0003-0361-6575

David Adeniran Oyegoke This is me 0000-0002-2050-325X

Ubong Robert 0000-0001-9979-7176

Funke Olawumi Fasuyi This is me 0009-0005-9074-3442

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date June 3, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2024

Cite

APA Emah, J. B., Edema, A., Ekong, S. A., Oyegoke, D. A., et al. (2024). Thermophysical, strength, and electrical properties of clay modified with groundnut shell ash for building purposes. Journal of Sustainable Construction Materials and Technologies, 9(4), 335-345. https://doi.org/10.47481/jscmt.1600562

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr