Research Article
BibTex RIS Cite
Year 2024, , 391 - 401, 31.12.2024
https://doi.org/10.47481/jscmt.1607828

Abstract

References

  • 1. Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (Eds.), Handbook of Alkali-Activated Cements, Mortars, and Concretes, Pacheco-Torgal, F. Woodhead Publishing Limited. [CrossRef]
  • 2. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2022). Waste clay bricks as a geopolymer binder for pavement construction. Sustainability, 14, 6456. [CrossRef]
  • 3. Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 41-46. [CrossRef]
  • 4. Yang, Y., Lu, P., Shao, R., Zhao, Q., Yang, T., & Wu, C. (2024). A comprehensive review of multisource solid wastes in sustainable concrete: From material properties to engineering application. Construction and Building Materials, 435, 136775. [CrossRef]
  • 5. Kravchenko, E., Lazorenko, G., Jiang, X., & Leng, Z. (2024). Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustainable Materials and Technologies, 39, e00829. [CrossRef]
  • 6. Resmî Gazete. Hafriyat toprağı, inşaat ve yıkıntı atıklarının kontrolü yönetmeliği. https:// w w w. m e v z u a t . g o v. t r / m e v z u a t ? Me v z u a t -No=5401&MevzuatTur=7&MevzuatTertip=5 7. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., & Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368-376. [CrossRef]
  • 8. Rakhimova, N. R., & Rakhimov, R. Z. (2015). Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Materials and Design, 85, 324-331. [CrossRef]
  • 9. Zawrah, M. F., Feltin, N., Docourtieux, S., & Gado, R. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Safety and Environmental Protection, 103(A), 237-251. [CrossRef]
  • 10. Rovnaník, P., Řezník, B., & Rovnaníková, P. (2016). Blended alkali-activated fly ash / brick powder materials. Procedia Engineering, 151, 108-113. [CrossRef]
  • 11. Tuyan, M., Andiç-Çakir, O., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135, 242-252. [CrossRef]
  • 12. Silva, G., Castaneda, D., Kim, S., Castaneda, A., Bertolotti, B., Ortega-San-Martin, L., Nakamatsu, J., & Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, 633-643. [CrossRef]
  • 13. Ulugöl, H., Kul, A., Gurkan, Y., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280(1), 124358. [CrossRef]
  • 14. Alakara, E. H. (2022). İnşaat yıkıntı atıklarından elde edilen atık tuğlaların geopolimer harçlarda kullanımının incelenmesi. Gaziosmanpaşa Bilim Araştırma Dergisi, 11(3), 251-259.
  • 15. Pommer, V., Cerny, R., Keppert, M., & Vejmelkova, E. (2021). Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceramics International, 47(22), 31574-31582. [CrossRef]
  • 16. Liang, G., Luo, L., & Yao, W. (2022). Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resources, Conservation and Recycling, 185, 106523. [CrossRef]
  • 17. Maaze, M. R., & Shrivastava, S. (2024). Development and performance evaluation of recycled brick waste-based geopolymer brick for improved physio-mechanical, brick-bond and durability properties. Journal of Building Engineering, 97, 110701. [CrossRef]
  • 18. Roy, A., & Sadiqul Islam, G. M. (2024). Geopolymer using different size fractions of recycled brick-based mixed demolition waste. Cleaner Materials, 11, 100224. [CrossRef]
  • 19. Wang, F., Zhai, J., Kan, E., Norkulov, B., Ding, Y., Yu, J., & Yu, K. (2024). Value-added recycling of waste brick powder and waste sand to develop eco-friendly engineered geopolymer composite. Case Studies in Construction Materials, 21, e03590. [CrossRef]
  • 20. Borçato, A. G., Meeiros Jr, R. A., & Thiesen, M. (2024). Incorporation of clay brick wastes and calcium hydroxide into geopolymers: Compressive strength, microstructure, and efflorescence. Journal of Building Engineering, 88, 109259. [CrossRef]
  • 21. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2021). Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Construction and Building Materials, 305, 124787. [CrossRef]
  • 22. Reig, L. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106. [CrossRef]
  • 23. Pereira-de-Oliveira, L. A., Castro-Gomes, J. P., & Santos, P. M. S. (2012). The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Construction and Building Materials, 31, 197-203. [CrossRef]
  • 24. Turkish Standard Institution. (2008). Tras, Ankara, Türkiye. TS 25.
  • 25. Turkish Standard Institution. (2010). Methods of Testing Cement - Part 6: Determination of Fineness, Ankara, Türkiye. TS EN 196-6.
  • 26. Firdous, R., Stephan, D., & Djobo, J. N. Y. (2018). Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Construction and Building Materials, 190, 1251-1263. [CrossRef]
  • 27. Turkish Standard Institution. (2009). Methods of Testing Cement - Part 1: Determination of Strength, Ankara, Türkiye. TS EN 196-1.
  • 28. Liew, Y. M., Heah, C. Y., Mustafa, A. B. M., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595-629. [CrossRef]
  • 29. Lahoti, M., Narang, P., Tan, K. H., & Yang, E. H. (2017). Mix design factors and strength prediction of metakaolin-based geopolymer. Ceramics International, 43(14), 11433-11441. [CrossRef]
  • 30. Sun, Z., & Vollpracht, A. (2018). Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cement and Concrete Research, 103, 110-122. [CrossRef]
  • 31. Turkish Standard Institution. (2009). Natural Stone Test Methods - Determination of Sound Speed Propagation, Ankara, Türkiye. TS EN 14579.
  • 32. Bayless, D. (2016). Statistical rejection of “bad” data - Chauvenet’s Criterion. Word Press.
  • 33. Akman, S. (1978). Deney ve Ölçme Tekniğine Giriş. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 34. Robayo-Salazar, R. A., Rivera, J. F., & Mejía de Gutiérrez, R. (2017). Alkali-activated building materials made with recycled construction and demolition wastes. Construction and Building Materials, 149, 130-138. [CrossRef]
  • 35. Tchadjie, L. N., & Ekolu, S. O. (2018). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science, 53, 4709-4733. [CrossRef]
  • 36. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. [CrossRef]
  • 37. Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerization. Cement and Concrete Research, 38(4), 554-564. [CrossRef]
  • 38. Chen, W., Li, Y., Shen, P., & Shui, Z. (2013). Microstructural development of hydrating Portland cement paste at early ages investigated with non-destructive methods and numerical simulation. Journal of Nondestructive Evaluation, 32, 228-237. [CrossRef]
  • 39. Azarsa, P., & Gupta, R. (2017). Electrical resistivity of concrete for durability evaluation: A review. Advances in Materials Science and Engineering, 2017, 8453095. [CrossRef]
  • 40. Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., & Schutter, G. (2022). Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cement and Concrete Composites, 133, 104715. [CrossRef]
  • 41. Postacığlu, B. (1981). Cisimlerin Yapısı ve Özellikleri: İç Yapı ve Mekanik Özellikler. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 42. Haruna, S., Mohammed, B. S., Wahab, M. M. A., Kankia, M. U., Amran, M., & Gora, A. M. (2021). Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160. [CrossRef]

One-part alkali-activated mortars based on clay brick waste, natural pozzolan waste, and marble powder waste

Year 2024, , 391 - 401, 31.12.2024
https://doi.org/10.47481/jscmt.1607828

Abstract

In Türkiye, waste clay bricks (WCB) comprise significant construction and demolition waste. Most research is based on producing WCB-based two-part alkali-activated materials (AAM). Compared to their conventional, two-part alkali-activated counterparts, one-part AAM offers several advantages, such as being more practical, safe, and easy to use. Thus, they may be an excellent choice for commercial construction applications and on-site casting. However, research data on producing WCB-based one-part alkali-activated mortars is limited. The relatively low reactivity of WCB can be increased by replacing WCB with ground granulated blast-furnace slag (GGBS) and fly ash (FA). Unlike these by-products, Nevşehir pozzolan (NP) and marble powder (MP), which are produced as wastes during the stone-cutting process, may be evaluated to produce AAM. This study aims to assess the production possibilities of WCB-based one-part alkali-activated mortar, determine the optimum substitution ratios with NP and MP o improve the mechanical properties, and determine the effects of the curing period up to 365 days. Results showed that the optimum NP substitution ratio was 50%, which increased reaction development, microstructure compactness, and mechanical properties. The highest CS (UV) (3.70 km/s) and compressive strength (CS) (21.58 MPa) were obtained in 25WC-B:75MP-containing samples. The increase in properties with the curing period was especially high in the first 28 days.

References

  • 1. Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (Eds.), Handbook of Alkali-Activated Cements, Mortars, and Concretes, Pacheco-Torgal, F. Woodhead Publishing Limited. [CrossRef]
  • 2. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2022). Waste clay bricks as a geopolymer binder for pavement construction. Sustainability, 14, 6456. [CrossRef]
  • 3. Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 41-46. [CrossRef]
  • 4. Yang, Y., Lu, P., Shao, R., Zhao, Q., Yang, T., & Wu, C. (2024). A comprehensive review of multisource solid wastes in sustainable concrete: From material properties to engineering application. Construction and Building Materials, 435, 136775. [CrossRef]
  • 5. Kravchenko, E., Lazorenko, G., Jiang, X., & Leng, Z. (2024). Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustainable Materials and Technologies, 39, e00829. [CrossRef]
  • 6. Resmî Gazete. Hafriyat toprağı, inşaat ve yıkıntı atıklarının kontrolü yönetmeliği. https:// w w w. m e v z u a t . g o v. t r / m e v z u a t ? Me v z u a t -No=5401&MevzuatTur=7&MevzuatTertip=5 7. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., & Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368-376. [CrossRef]
  • 8. Rakhimova, N. R., & Rakhimov, R. Z. (2015). Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Materials and Design, 85, 324-331. [CrossRef]
  • 9. Zawrah, M. F., Feltin, N., Docourtieux, S., & Gado, R. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Safety and Environmental Protection, 103(A), 237-251. [CrossRef]
  • 10. Rovnaník, P., Řezník, B., & Rovnaníková, P. (2016). Blended alkali-activated fly ash / brick powder materials. Procedia Engineering, 151, 108-113. [CrossRef]
  • 11. Tuyan, M., Andiç-Çakir, O., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135, 242-252. [CrossRef]
  • 12. Silva, G., Castaneda, D., Kim, S., Castaneda, A., Bertolotti, B., Ortega-San-Martin, L., Nakamatsu, J., & Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, 633-643. [CrossRef]
  • 13. Ulugöl, H., Kul, A., Gurkan, Y., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280(1), 124358. [CrossRef]
  • 14. Alakara, E. H. (2022). İnşaat yıkıntı atıklarından elde edilen atık tuğlaların geopolimer harçlarda kullanımının incelenmesi. Gaziosmanpaşa Bilim Araştırma Dergisi, 11(3), 251-259.
  • 15. Pommer, V., Cerny, R., Keppert, M., & Vejmelkova, E. (2021). Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceramics International, 47(22), 31574-31582. [CrossRef]
  • 16. Liang, G., Luo, L., & Yao, W. (2022). Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resources, Conservation and Recycling, 185, 106523. [CrossRef]
  • 17. Maaze, M. R., & Shrivastava, S. (2024). Development and performance evaluation of recycled brick waste-based geopolymer brick for improved physio-mechanical, brick-bond and durability properties. Journal of Building Engineering, 97, 110701. [CrossRef]
  • 18. Roy, A., & Sadiqul Islam, G. M. (2024). Geopolymer using different size fractions of recycled brick-based mixed demolition waste. Cleaner Materials, 11, 100224. [CrossRef]
  • 19. Wang, F., Zhai, J., Kan, E., Norkulov, B., Ding, Y., Yu, J., & Yu, K. (2024). Value-added recycling of waste brick powder and waste sand to develop eco-friendly engineered geopolymer composite. Case Studies in Construction Materials, 21, e03590. [CrossRef]
  • 20. Borçato, A. G., Meeiros Jr, R. A., & Thiesen, M. (2024). Incorporation of clay brick wastes and calcium hydroxide into geopolymers: Compressive strength, microstructure, and efflorescence. Journal of Building Engineering, 88, 109259. [CrossRef]
  • 21. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2021). Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Construction and Building Materials, 305, 124787. [CrossRef]
  • 22. Reig, L. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106. [CrossRef]
  • 23. Pereira-de-Oliveira, L. A., Castro-Gomes, J. P., & Santos, P. M. S. (2012). The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Construction and Building Materials, 31, 197-203. [CrossRef]
  • 24. Turkish Standard Institution. (2008). Tras, Ankara, Türkiye. TS 25.
  • 25. Turkish Standard Institution. (2010). Methods of Testing Cement - Part 6: Determination of Fineness, Ankara, Türkiye. TS EN 196-6.
  • 26. Firdous, R., Stephan, D., & Djobo, J. N. Y. (2018). Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Construction and Building Materials, 190, 1251-1263. [CrossRef]
  • 27. Turkish Standard Institution. (2009). Methods of Testing Cement - Part 1: Determination of Strength, Ankara, Türkiye. TS EN 196-1.
  • 28. Liew, Y. M., Heah, C. Y., Mustafa, A. B. M., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595-629. [CrossRef]
  • 29. Lahoti, M., Narang, P., Tan, K. H., & Yang, E. H. (2017). Mix design factors and strength prediction of metakaolin-based geopolymer. Ceramics International, 43(14), 11433-11441. [CrossRef]
  • 30. Sun, Z., & Vollpracht, A. (2018). Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cement and Concrete Research, 103, 110-122. [CrossRef]
  • 31. Turkish Standard Institution. (2009). Natural Stone Test Methods - Determination of Sound Speed Propagation, Ankara, Türkiye. TS EN 14579.
  • 32. Bayless, D. (2016). Statistical rejection of “bad” data - Chauvenet’s Criterion. Word Press.
  • 33. Akman, S. (1978). Deney ve Ölçme Tekniğine Giriş. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 34. Robayo-Salazar, R. A., Rivera, J. F., & Mejía de Gutiérrez, R. (2017). Alkali-activated building materials made with recycled construction and demolition wastes. Construction and Building Materials, 149, 130-138. [CrossRef]
  • 35. Tchadjie, L. N., & Ekolu, S. O. (2018). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science, 53, 4709-4733. [CrossRef]
  • 36. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. [CrossRef]
  • 37. Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerization. Cement and Concrete Research, 38(4), 554-564. [CrossRef]
  • 38. Chen, W., Li, Y., Shen, P., & Shui, Z. (2013). Microstructural development of hydrating Portland cement paste at early ages investigated with non-destructive methods and numerical simulation. Journal of Nondestructive Evaluation, 32, 228-237. [CrossRef]
  • 39. Azarsa, P., & Gupta, R. (2017). Electrical resistivity of concrete for durability evaluation: A review. Advances in Materials Science and Engineering, 2017, 8453095. [CrossRef]
  • 40. Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., & Schutter, G. (2022). Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cement and Concrete Composites, 133, 104715. [CrossRef]
  • 41. Postacığlu, B. (1981). Cisimlerin Yapısı ve Özellikleri: İç Yapı ve Mekanik Özellikler. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 42. Haruna, S., Mohammed, B. S., Wahab, M. M. A., Kankia, M. U., Amran, M., & Gora, A. M. (2021). Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160. [CrossRef]
There are 41 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Kübra Ekiz Barış 0000-0002-3830-7185

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 21, 2024
Acceptance Date December 18, 2024
Published in Issue Year 2024

Cite

APA Ekiz Barış, K. (2024). One-part alkali-activated mortars based on clay brick waste, natural pozzolan waste, and marble powder waste. Journal of Sustainable Construction Materials and Technologies, 9(4), 391-401. https://doi.org/10.47481/jscmt.1607828

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr