Research Article
BibTex RIS Cite
Year 2024, , 374 - 390, 31.12.2024
https://doi.org/10.47481/jscmt.1607846

Abstract

References

  • 1. Andrew, R. M. (2020). A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth Syst Sci Data, 12(2), 1437–1465. [CrossRef]
  • 2. Amer, I., Kohail, M., El-Feky, M. S., Rashad, A., & Khalaf, M. A. (2021). Characterization of alkali-activated hybrid slag/cement concrete. Ain Shams Eng J, 12(1), 135–144. [CrossRef]
  • 3. Provis, J. L. (2014). Green concrete or red herring? Future of alkali-activated materials. Adv Appl Ceram, 113(8), 472–477. [CrossRef]
  • 4. Rashad, A. M., Bai, Y., Basheer, P. M., Collier, N. C., & Milestone, N. B. (2012). Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res, 42(2), 333–343. [CrossRef]
  • 5. Bahafid, S., Ghabezloo, S., Duc, M., Faure, P., & Sulem, J. (2017). Effect of the hydration temperature on the microstructure of Class G cement: CSH composition and density. Cem Concr Res, 95, 270–281. [CrossRef]
  • 6. Ma, H., Zhu, H., Yi, C., Fan, J., Chen, H., Xu, X., & Wang, T. (2019). Preparation and reaction mechanism characterization of alkali-activated coal gangue-slag materials. Materials, 12(14), 2250. [CrossRef]
  • 7. Zhang, H. Y., Kodur, V., Wu, B., Cao, L., & Wang, F. (2016). Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr Build Mater, 109, 17–24. [CrossRef]
  • 8. Marie, I. (2017). Thermal conductivity of hybrid recycled aggregate-Rubberized concrete. Constr Build Mater, 133, 516–524. [CrossRef]
  • 9. Ullattil, S. G., & Ramakrishnan, R. M. (2018). Defect-rich brown TiO2-x porous flower aggregates: Selective photocatalytic reversibility for organic dye degradation. ACS Appl Nano Mater, 1(8), 4045–4052. [CrossRef]
  • 10. Real, S., & Bogas, J. A. (2017). Oxygen permeability of structural lightweight aggregate concrete. Constr Build Mater, 137, 21–34. [CrossRef]
  • 11. Davidovits, J., & Sawyer, J. L. (1985). Early high-strength mineral polymer. US4509985A.
  • 12. Kuehl, H. (1908). Slag cement and process of making the same. US900939A.
  • 13. Rivera, J., Castro, F., Fernández-Jiménez, A., & Cristelo, N. (2021). Alkali-activated cements from urban, mining and agro-industrial waste: State-of-the-art and opportunities. Waste and Biomass Valorization, 12, 2665–2683. [CrossRef]
  • 14. Al-Kutti, W., Nasir, M., Johari, M. A. M., Islam, A. S., Manda, A. A., & Blaisi, N. I. (2018). An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Constr Build Mater, 159, 567–577. [CrossRef]
  • 15. EAS, K. (2000). Kenya standard test method for determination of cement strength.
  • 16. Alexander, M. G., Ballim, Y., & Mackechnie J. (2018). Durability index testing procedure manual version 4.5.1. https://tinyurl.com/evkvcakb
  • 17. Moore, A. J., Bakera, A. T., & Alexander, M. G. (2020). Water sorptivity and porosity testing of concrete. Concrete Beton Technical Note, 162, 13–16.
  • 18. University of Cape Town. (2015). Concrete durability index testing - Oxygen permeability test. SANS 3001-CO3-2.
  • 19. Kenya Bureau of Standards. (2017). Kenya’s standard test method for oxide specification of hydraulic cement. KS EAS 18-1.
  • 20. Samson, E., Marchand, J., & Snyder, K. A. (2003). Calculation of ionic diffusion coefficients on the basis of migration test results. Materials and Structures, 36, 156–165. [CrossRef]
  • 21. Castellote, M., Andrade, C., & Alonso, C. (2000). Phenomenological mass-balance-based model of migration tests in stationary conditions: Application to non-steady-state tests. Cem Concr Res, 30(12), 1885–1893. [CrossRef]
  • 22. Crank, J. (1975). The mathematics of diffusion. Clarendon Press.
  • 23. Monteiro, P. J., Geng, G., Marchon, D., Li, J., Alapati, P., Kurtis, K. E., & Qomi, M. J. A. (2019). Advances in characterizing and understanding the microstructure of cementitious materials. Cem Concr Res, 124, 105806. [CrossRef]
  • 24. Abdellatief, M., Elemam, W. E., Alanazi, H., & Tahwia, A. M. (2023). Production and optimization of sustainable cement brick incorporating clay brick wastes using response surface method. Ceram Int, 49(6), 9395–9411. [CrossRef]
  • 25. Assi, L. N., Deaver, E. E., & Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer concrete. Constr Build Mater, 167, 372–380. [CrossRef]
  • 26. Schackow, A., Correia, S. L., & Effting, C. (2020). Microstructural and physical characterization of solid wastes from clay bricks for reuse with cement. Environ Eng Manag J, 19(4), 565–576. [CrossRef]
  • 27. Zhou, H., Chen, Y., Li, H., Xu, Z., Dong, H., & Wang, W. (2022). Effect of particles micro characteristics destroyed by ball milling on fly ash electrostatic separation. Advanced Powder Technology, 33(3), 103449. [CrossRef]
  • 28. Arslan, V. (2021). A study on the dissolution kinetics of iron oxide leaching from clays by oxalic acid. Physicochemical Problems of Mineral Processing, 57(3), 97–111. [CrossRef]
  • 29. Hou, P., Kawashima, S., Kong, D., Corr, D. J., Qian, J., & Shah, S. P. (2013). Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Composites Part B Engineering, 45(1), 440–448. [CrossRef]
  • 30. Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., & Khaidir, R. E. M. (2020). The physical and optical studies of crystalline silica derived from the green synthesis of coconut husk ash. Appl Sci, 10(6), 2128. [CrossRef]
  • 31. Tayade, R. A., & Kanojiya, M. A. C. (2022). The case study of isothermal adsorption of phenol, O-cresol on natural charcoal’s and applications. Int J Res Appl Sci Eng Technol, 10(12), 1718–1731. [CrossRef]
  • 32. Onwona-Agyeman, B., Lyczko, N., Minh, D. P., Nzihou, A., & Yaya, A. (2020). Characterization of some selected Ghanaian clay minerals for potential industrial applications. J Ceram Process Res, 21(1), 35–41. [CrossRef]
  • 33. de Sousa, L. L., Salomão, R., & Arantes, V. L. (2017). Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system. Ceram Int, 43(1), 1362–1370. [CrossRef]
  • 34. Garg, N., & Skibsted, J. (2016). Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem Concr Res, 79, 101–111. [CrossRef]
  • 35. Kang, S. H., Hong, S. G., & Moon, J. (2019). The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem Concr Res, 115, 389–400. [CrossRef]
  • 36. Opálková Šišková, A., Dvorák, T., Šimonová Baranyaiová, T., Šimon, E., Eckstein Andicsová, A., Švajdlenková, H., & Nosko, M. (2020). Simple and eco-friendly route from agro-food waste to water pollutants removal. Materials, 13(23), 5424. [CrossRef]
  • 37. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 3, 1–10. [CrossRef]
  • 38. Scrivener, K. L., & Nonat, A. (2011). Hydration of cementitious materials, present and future. Cem Concr Res, 41(7), 651–665. [CrossRef]
  • 39. Khushnood, R. A. O., & Arsalan, R. (2015). High performance self-compacting cementitious materials using nano/micro carbonaceous inerts [Doctoral thesis], Politecnico di Torino.
  • 40. Barboza-Chavez, A. C., Gómez-Zamorano, L. Y., & Acevedo-Dávila, J. L. (2020). Synthesis and characterization of a hybrid cement based on fly ash, metakaolin, and Portland cement clinker. Materials, 13(5), 1084. [CrossRef]
  • 41. Samarakoon, M. H., Ranjith, P. G., Rathnaweera, T. D., & Perera, M. S. A. (2019). Recent advances in alkaline cement binders: A review. J Clean Prod, 227, 70–87. [CrossRef]
  • 42. Musyimi, N. F., Karanja, T. J., Wachira, M. J., & Mulwa, M. O. (2016). Pozzolanicity and compressive strength performance of Kibwezi bricks based cement. IOSR J Appl Chem, 9(2), 28–32.
  • 43. Hanein, T., Thienel, K. C., Zunino, F., Marsh, A. T., Maier, M., Wang, B., & Martirena-Hernandez, F. (2022). Clay calcination technology: State-of-the-art review by the RILEM TC 282-CCL. Mater Struct, 55(1), 3. [CrossRef]
  • 44. Chernyshova, N., Lesovik, V., Fediuk, R., & Timokhin, R. (2020). Enhancement of fresh properties and performances of the eco-friendly gypsum-cement composite (EGCC). Constr Build Mater, 260, 120462. [CrossRef]
  • 45. Bakera, A. T., & Alexander, M. G. (2018). Properties of Western Cape concretes with metakaolin. In MATEC Web of Conferences (Vol. 199, p. 11011). EDP Sciences. [CrossRef]
  • 46. Kearsley, E. P., & Wainwright, P. J. (2001). Porosity and permeability of foamed concrete. Cem Concr Res, 31(5), 805–812. [CrossRef]
  • 47. Marangu, J. M., Thiong’o, J. K., & Wachira, J. M. (2019). Review of carbonation resistance in hydrated cement-based materials. J Chem, 2019(1), 8489671. [CrossRef]
  • 48. Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. D. M. R. (2009). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem Concr Res, 39(2), 110–115. [CrossRef]
  • 49. van Deventer, J. S., San Nicolas, R., Ismail, I., Bernal, S. A., Brice, D. G., & Provis, J. L. (2015). Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sustain Cem Mater, 4(2), 116–128. [CrossRef]
  • 50. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability, and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater, 66, 163–171. [CrossRef]
  • 51. Fang, S., Lam, E. S. S., Li, B., & Wu, B. (2020). Effect of alkali contents, moduli, and curing time on engineering properties of alkali-activated slag. Constr Build Mater, 249, 118799. [CrossRef]
  • 52. Monticelli, C., Natali, M. E., Balbo, A., Chiavari, C., Zanotto, F., Manzi, S., & Bignozzi, M. C. (2016). Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical, and chemical characterization. Cem Concr Res, 80, 60–68. [CrossRef]
  • 53. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: New analytical perspectives. Mater Constr, 64(315), e022. [CrossRef]
  • 54. Angulo-Ramírez, D. E., Valencia-Saavedra, W. G., & Mejía de Gutiérrez, R. (2020). Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption, and chloride permeability. Ing Investig, 40(2), 72–80. [CrossRef]
  • 55. Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the CASH gel formed in alkali-activated slag cements. J Eur Ceram Soc, 31(12), 2043–2056. [CrossRef]
  • 56. Embong, R., Kusbiantoro, A., Shafiq, N., & Nuruddin, M. F. (2016). Strength and microstructural properties of fly ash-based geopolymer concrete containing high-calcium and water-absorptive aggregate. J Clean Prod, 112, 816–822. [CrossRef]
  • 57. Gijbels, K., Pontikes, Y., Samyn, P., Schreurs, S., & Schroeyers, W. (2020). Effect of NaOH content on hydration, mineralogy, porosity, and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cem Concr Res, 132, 106054. [CrossRef]
  • 58. Verma, P., Chowdhury, R., & Chakrabarti, A. (2021). Role of graphene-based materials (GO) in improving physicochemical properties of cementitious nano-composites: A review. J Mater Sci, 56(35), 19329–19358. [CrossRef]
  • 59. Balun, B., & Karataş, M. (2021). Influence of curing conditions on pumice-based alkali-activated composites incorporating Portland cement. J Build Eng, 43, 102605. [CrossRef]
  • 60. Bernal, S. A., San Nicolas, R., Myers, R. J., de Gutiérrez, R. M., Puertas, F., van Deventer, J. S., & Provis, J. L. (2014). MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res, 57, 33–43. [CrossRef]
  • 61. Mithun, B. M., & Narasimhan, M. C. (2016). Performance of alkali-activated slag concrete mixes incorporating copper slag as fine aggregate. J Clean Prod, 112, 837–844. [CrossRef]
  • 62. Yang, K., Yang, C., Magee, B., Nanukuttan, S., & Ye, J. (2016). Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete. Cem Concr Res, 73, 19–28. [CrossRef]
  • 63. Albitar, M., Ali, M. M., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Constr Build Mater, 136, 374–385. [CrossRef]
  • 64. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos, 45, 125–135. [CrossRef]
  • 65. Ngui Musyimi, F., Wachira, J. M., Thiong’o, J. K., & Marangu, J. M. (2019). Performance of ground clay brick mortars in simulated chloride and sulphate media. J Eng, 2019(1), 6430868. [CrossRef]
  • 66. Mutitu, D. K., Karanja, J. K., & Wachira, J. M. (2014). Diffusivity of chloride and sulphate ions into mortar cubes made using ordinary Portland and Portland Pozzolana cements. IOSR J Appl Chem, 7(2), 67–73. [CrossRef]
  • 67. Wang, J., Basheer, P. M., Nanukuttan, S. V., & Bai, Y. (2014). Influence of compressive loading on chloride ingress through concrete. In Civil Engineering Research Association of Ireland (CERAI) Proceedings, Spain.
  • 68. Marangu, J. M., Thiong’o, J. K., & Wachira, J. M. (2018). Chloride ingress in chemically activated calcined clay‐based cement. J Chem, 2018(1), 1595230. [CrossRef]
  • 69. Tang, S., Wang, Y., Geng, Z., Xu, X., Yu, W., & Chen, J. (2021). Structure, fractality, mechanics, and durability of calcium silicate hydrates. Fractal and Fractional, 5(2), 47. [CrossRef]
  • 70. Zhang, H., He, B., Zhao, B., & Monteiro, P. J. (2023). Using diatomite as a partial replacement of cement for improving the performance of recycled aggregate concrete (RAC)-Effects and mechanism. Constr Build Mater, 385, 131518. [CrossRef]
  • 71. Juenger, M. C., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem Concr Res, 78, 71–80. [CrossRef]
  • 72. Abdulkareem, O. M., Fraj, A. B., Bouasker, M., Khouchaf, L., & Khelidj, A. (2021). Microstructural investigation of slag-blended UHPC: The effects of slag content and chemical/thermal activation. Constr Build Mater, 292, 123455. [CrossRef]
  • 73. Živica, V., Palou, M. T., & Križma, M. (2015). Geopolymer cements and their properties: A review. Build Res J, 61(2), 85–100. [CrossRef]
  • 74. Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Constr Build Mater, 56, 113–127. [CrossRef]
  • 75. Lin, W., Zhou, F., Luo, W., & You, L. (2021). Recycling the waste dolomite powder with excellent consolidation properties: Sample synthesis, mechanical evaluation, and consolidation mechanism analysis. Constr Build Mater, 290, 123198. [CrossRef]
  • 76. Jeon, D., Yum, W. S., Song, H., Sim, S., & Oh, J. E. (2018). The temperature-dependent action of sugar in the retardation and strength improvement of Ca(OH)₂-Na₂CO₃-activated fly ash systems through calcium complexation. Constr Build Mater, 190, 918–928. [CrossRef]
  • 77. Rashad, A. M. (2015). Influence of different additives on the properties of sodium sulfate activated slag. Constr Build Mater, 79, 379–389. [CrossRef]

Strength and Durability Performance of Hybrid Alkaline Clay Brick Waste –Coconut Shell Ash Cement

Year 2024, , 374 - 390, 31.12.2024
https://doi.org/10.47481/jscmt.1607846

Abstract

Hybrid Alkaline Cement (HAC) has the potential to reduce carbon dioxide (CO2) and improve concrete structure. The durability of a hybrid alkaline mortar made from a mixture of calcined clay brick waste (CBW) and coconut shell ash (CSA) was compared with that of ordinary Portland cement (OPC) and pozzolanic Portland cement (PPC), which are the two common types of Portland cement. In an open furnace, CSA was obtained by burning coconut shells collected from Kilifi County, Kenya. At the same time, CBW was sampled from brick production and construction sites in Kibwezi sub-county, Kenya, and ground using a laboratory ball mill. Various cement blends were prepared by mixing different mass ratios of OPC:CSA: CBW and activated with 0.5 M and 2 M Sodium sulfate solutions, maintaining a solution-to-cement ratio of 0.5. Control mortar prisms were cast using distilled water and cured in distilled water. Principle Component Analysis (PCA) was used for correlation analysis. Compressive strength development, water sorptivity, Porosity, oxygen permeability index, and thermal resistance were investigated for durability properties. Accelerated chloride ingress and chloride ion diffusion coefficients were determined. Results show that alkali-activated samples exhibited lower sorptivity, Porosity, chloride ingress, and higher compressive strength, oxygen permeability index, and thermal resistance than the cement mix prepared with water. The mix designs 5-1-4, 5-4-1, 3-1-6, and 3-6-1 demonstrated a decreasing optimum performance comparable to OPC in that order. The formulation 5-1-4, prepared with 2 M Sodium sulfate, showed the highest durability in all tests. Moreover, mortar durability was highly influenced by the amount of cement substituted, the kind of precursor, and the concentration of alkali activator.

References

  • 1. Andrew, R. M. (2020). A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth Syst Sci Data, 12(2), 1437–1465. [CrossRef]
  • 2. Amer, I., Kohail, M., El-Feky, M. S., Rashad, A., & Khalaf, M. A. (2021). Characterization of alkali-activated hybrid slag/cement concrete. Ain Shams Eng J, 12(1), 135–144. [CrossRef]
  • 3. Provis, J. L. (2014). Green concrete or red herring? Future of alkali-activated materials. Adv Appl Ceram, 113(8), 472–477. [CrossRef]
  • 4. Rashad, A. M., Bai, Y., Basheer, P. M., Collier, N. C., & Milestone, N. B. (2012). Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res, 42(2), 333–343. [CrossRef]
  • 5. Bahafid, S., Ghabezloo, S., Duc, M., Faure, P., & Sulem, J. (2017). Effect of the hydration temperature on the microstructure of Class G cement: CSH composition and density. Cem Concr Res, 95, 270–281. [CrossRef]
  • 6. Ma, H., Zhu, H., Yi, C., Fan, J., Chen, H., Xu, X., & Wang, T. (2019). Preparation and reaction mechanism characterization of alkali-activated coal gangue-slag materials. Materials, 12(14), 2250. [CrossRef]
  • 7. Zhang, H. Y., Kodur, V., Wu, B., Cao, L., & Wang, F. (2016). Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr Build Mater, 109, 17–24. [CrossRef]
  • 8. Marie, I. (2017). Thermal conductivity of hybrid recycled aggregate-Rubberized concrete. Constr Build Mater, 133, 516–524. [CrossRef]
  • 9. Ullattil, S. G., & Ramakrishnan, R. M. (2018). Defect-rich brown TiO2-x porous flower aggregates: Selective photocatalytic reversibility for organic dye degradation. ACS Appl Nano Mater, 1(8), 4045–4052. [CrossRef]
  • 10. Real, S., & Bogas, J. A. (2017). Oxygen permeability of structural lightweight aggregate concrete. Constr Build Mater, 137, 21–34. [CrossRef]
  • 11. Davidovits, J., & Sawyer, J. L. (1985). Early high-strength mineral polymer. US4509985A.
  • 12. Kuehl, H. (1908). Slag cement and process of making the same. US900939A.
  • 13. Rivera, J., Castro, F., Fernández-Jiménez, A., & Cristelo, N. (2021). Alkali-activated cements from urban, mining and agro-industrial waste: State-of-the-art and opportunities. Waste and Biomass Valorization, 12, 2665–2683. [CrossRef]
  • 14. Al-Kutti, W., Nasir, M., Johari, M. A. M., Islam, A. S., Manda, A. A., & Blaisi, N. I. (2018). An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Constr Build Mater, 159, 567–577. [CrossRef]
  • 15. EAS, K. (2000). Kenya standard test method for determination of cement strength.
  • 16. Alexander, M. G., Ballim, Y., & Mackechnie J. (2018). Durability index testing procedure manual version 4.5.1. https://tinyurl.com/evkvcakb
  • 17. Moore, A. J., Bakera, A. T., & Alexander, M. G. (2020). Water sorptivity and porosity testing of concrete. Concrete Beton Technical Note, 162, 13–16.
  • 18. University of Cape Town. (2015). Concrete durability index testing - Oxygen permeability test. SANS 3001-CO3-2.
  • 19. Kenya Bureau of Standards. (2017). Kenya’s standard test method for oxide specification of hydraulic cement. KS EAS 18-1.
  • 20. Samson, E., Marchand, J., & Snyder, K. A. (2003). Calculation of ionic diffusion coefficients on the basis of migration test results. Materials and Structures, 36, 156–165. [CrossRef]
  • 21. Castellote, M., Andrade, C., & Alonso, C. (2000). Phenomenological mass-balance-based model of migration tests in stationary conditions: Application to non-steady-state tests. Cem Concr Res, 30(12), 1885–1893. [CrossRef]
  • 22. Crank, J. (1975). The mathematics of diffusion. Clarendon Press.
  • 23. Monteiro, P. J., Geng, G., Marchon, D., Li, J., Alapati, P., Kurtis, K. E., & Qomi, M. J. A. (2019). Advances in characterizing and understanding the microstructure of cementitious materials. Cem Concr Res, 124, 105806. [CrossRef]
  • 24. Abdellatief, M., Elemam, W. E., Alanazi, H., & Tahwia, A. M. (2023). Production and optimization of sustainable cement brick incorporating clay brick wastes using response surface method. Ceram Int, 49(6), 9395–9411. [CrossRef]
  • 25. Assi, L. N., Deaver, E. E., & Ziehl, P. (2018). Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer concrete. Constr Build Mater, 167, 372–380. [CrossRef]
  • 26. Schackow, A., Correia, S. L., & Effting, C. (2020). Microstructural and physical characterization of solid wastes from clay bricks for reuse with cement. Environ Eng Manag J, 19(4), 565–576. [CrossRef]
  • 27. Zhou, H., Chen, Y., Li, H., Xu, Z., Dong, H., & Wang, W. (2022). Effect of particles micro characteristics destroyed by ball milling on fly ash electrostatic separation. Advanced Powder Technology, 33(3), 103449. [CrossRef]
  • 28. Arslan, V. (2021). A study on the dissolution kinetics of iron oxide leaching from clays by oxalic acid. Physicochemical Problems of Mineral Processing, 57(3), 97–111. [CrossRef]
  • 29. Hou, P., Kawashima, S., Kong, D., Corr, D. J., Qian, J., & Shah, S. P. (2013). Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Composites Part B Engineering, 45(1), 440–448. [CrossRef]
  • 30. Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., & Khaidir, R. E. M. (2020). The physical and optical studies of crystalline silica derived from the green synthesis of coconut husk ash. Appl Sci, 10(6), 2128. [CrossRef]
  • 31. Tayade, R. A., & Kanojiya, M. A. C. (2022). The case study of isothermal adsorption of phenol, O-cresol on natural charcoal’s and applications. Int J Res Appl Sci Eng Technol, 10(12), 1718–1731. [CrossRef]
  • 32. Onwona-Agyeman, B., Lyczko, N., Minh, D. P., Nzihou, A., & Yaya, A. (2020). Characterization of some selected Ghanaian clay minerals for potential industrial applications. J Ceram Process Res, 21(1), 35–41. [CrossRef]
  • 33. de Sousa, L. L., Salomão, R., & Arantes, V. L. (2017). Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system. Ceram Int, 43(1), 1362–1370. [CrossRef]
  • 34. Garg, N., & Skibsted, J. (2016). Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem Concr Res, 79, 101–111. [CrossRef]
  • 35. Kang, S. H., Hong, S. G., & Moon, J. (2019). The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem Concr Res, 115, 389–400. [CrossRef]
  • 36. Opálková Šišková, A., Dvorák, T., Šimonová Baranyaiová, T., Šimon, E., Eckstein Andicsová, A., Švajdlenková, H., & Nosko, M. (2020). Simple and eco-friendly route from agro-food waste to water pollutants removal. Materials, 13(23), 5424. [CrossRef]
  • 37. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 3, 1–10. [CrossRef]
  • 38. Scrivener, K. L., & Nonat, A. (2011). Hydration of cementitious materials, present and future. Cem Concr Res, 41(7), 651–665. [CrossRef]
  • 39. Khushnood, R. A. O., & Arsalan, R. (2015). High performance self-compacting cementitious materials using nano/micro carbonaceous inerts [Doctoral thesis], Politecnico di Torino.
  • 40. Barboza-Chavez, A. C., Gómez-Zamorano, L. Y., & Acevedo-Dávila, J. L. (2020). Synthesis and characterization of a hybrid cement based on fly ash, metakaolin, and Portland cement clinker. Materials, 13(5), 1084. [CrossRef]
  • 41. Samarakoon, M. H., Ranjith, P. G., Rathnaweera, T. D., & Perera, M. S. A. (2019). Recent advances in alkaline cement binders: A review. J Clean Prod, 227, 70–87. [CrossRef]
  • 42. Musyimi, N. F., Karanja, T. J., Wachira, M. J., & Mulwa, M. O. (2016). Pozzolanicity and compressive strength performance of Kibwezi bricks based cement. IOSR J Appl Chem, 9(2), 28–32.
  • 43. Hanein, T., Thienel, K. C., Zunino, F., Marsh, A. T., Maier, M., Wang, B., & Martirena-Hernandez, F. (2022). Clay calcination technology: State-of-the-art review by the RILEM TC 282-CCL. Mater Struct, 55(1), 3. [CrossRef]
  • 44. Chernyshova, N., Lesovik, V., Fediuk, R., & Timokhin, R. (2020). Enhancement of fresh properties and performances of the eco-friendly gypsum-cement composite (EGCC). Constr Build Mater, 260, 120462. [CrossRef]
  • 45. Bakera, A. T., & Alexander, M. G. (2018). Properties of Western Cape concretes with metakaolin. In MATEC Web of Conferences (Vol. 199, p. 11011). EDP Sciences. [CrossRef]
  • 46. Kearsley, E. P., & Wainwright, P. J. (2001). Porosity and permeability of foamed concrete. Cem Concr Res, 31(5), 805–812. [CrossRef]
  • 47. Marangu, J. M., Thiong’o, J. K., & Wachira, J. M. (2019). Review of carbonation resistance in hydrated cement-based materials. J Chem, 2019(1), 8489671. [CrossRef]
  • 48. Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. D. M. R. (2009). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem Concr Res, 39(2), 110–115. [CrossRef]
  • 49. van Deventer, J. S., San Nicolas, R., Ismail, I., Bernal, S. A., Brice, D. G., & Provis, J. L. (2015). Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sustain Cem Mater, 4(2), 116–128. [CrossRef]
  • 50. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability, and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater, 66, 163–171. [CrossRef]
  • 51. Fang, S., Lam, E. S. S., Li, B., & Wu, B. (2020). Effect of alkali contents, moduli, and curing time on engineering properties of alkali-activated slag. Constr Build Mater, 249, 118799. [CrossRef]
  • 52. Monticelli, C., Natali, M. E., Balbo, A., Chiavari, C., Zanotto, F., Manzi, S., & Bignozzi, M. C. (2016). Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical, and chemical characterization. Cem Concr Res, 80, 60–68. [CrossRef]
  • 53. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: New analytical perspectives. Mater Constr, 64(315), e022. [CrossRef]
  • 54. Angulo-Ramírez, D. E., Valencia-Saavedra, W. G., & Mejía de Gutiérrez, R. (2020). Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption, and chloride permeability. Ing Investig, 40(2), 72–80. [CrossRef]
  • 55. Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the CASH gel formed in alkali-activated slag cements. J Eur Ceram Soc, 31(12), 2043–2056. [CrossRef]
  • 56. Embong, R., Kusbiantoro, A., Shafiq, N., & Nuruddin, M. F. (2016). Strength and microstructural properties of fly ash-based geopolymer concrete containing high-calcium and water-absorptive aggregate. J Clean Prod, 112, 816–822. [CrossRef]
  • 57. Gijbels, K., Pontikes, Y., Samyn, P., Schreurs, S., & Schroeyers, W. (2020). Effect of NaOH content on hydration, mineralogy, porosity, and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cem Concr Res, 132, 106054. [CrossRef]
  • 58. Verma, P., Chowdhury, R., & Chakrabarti, A. (2021). Role of graphene-based materials (GO) in improving physicochemical properties of cementitious nano-composites: A review. J Mater Sci, 56(35), 19329–19358. [CrossRef]
  • 59. Balun, B., & Karataş, M. (2021). Influence of curing conditions on pumice-based alkali-activated composites incorporating Portland cement. J Build Eng, 43, 102605. [CrossRef]
  • 60. Bernal, S. A., San Nicolas, R., Myers, R. J., de Gutiérrez, R. M., Puertas, F., van Deventer, J. S., & Provis, J. L. (2014). MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res, 57, 33–43. [CrossRef]
  • 61. Mithun, B. M., & Narasimhan, M. C. (2016). Performance of alkali-activated slag concrete mixes incorporating copper slag as fine aggregate. J Clean Prod, 112, 837–844. [CrossRef]
  • 62. Yang, K., Yang, C., Magee, B., Nanukuttan, S., & Ye, J. (2016). Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete. Cem Concr Res, 73, 19–28. [CrossRef]
  • 63. Albitar, M., Ali, M. M., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Constr Build Mater, 136, 374–385. [CrossRef]
  • 64. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos, 45, 125–135. [CrossRef]
  • 65. Ngui Musyimi, F., Wachira, J. M., Thiong’o, J. K., & Marangu, J. M. (2019). Performance of ground clay brick mortars in simulated chloride and sulphate media. J Eng, 2019(1), 6430868. [CrossRef]
  • 66. Mutitu, D. K., Karanja, J. K., & Wachira, J. M. (2014). Diffusivity of chloride and sulphate ions into mortar cubes made using ordinary Portland and Portland Pozzolana cements. IOSR J Appl Chem, 7(2), 67–73. [CrossRef]
  • 67. Wang, J., Basheer, P. M., Nanukuttan, S. V., & Bai, Y. (2014). Influence of compressive loading on chloride ingress through concrete. In Civil Engineering Research Association of Ireland (CERAI) Proceedings, Spain.
  • 68. Marangu, J. M., Thiong’o, J. K., & Wachira, J. M. (2018). Chloride ingress in chemically activated calcined clay‐based cement. J Chem, 2018(1), 1595230. [CrossRef]
  • 69. Tang, S., Wang, Y., Geng, Z., Xu, X., Yu, W., & Chen, J. (2021). Structure, fractality, mechanics, and durability of calcium silicate hydrates. Fractal and Fractional, 5(2), 47. [CrossRef]
  • 70. Zhang, H., He, B., Zhao, B., & Monteiro, P. J. (2023). Using diatomite as a partial replacement of cement for improving the performance of recycled aggregate concrete (RAC)-Effects and mechanism. Constr Build Mater, 385, 131518. [CrossRef]
  • 71. Juenger, M. C., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem Concr Res, 78, 71–80. [CrossRef]
  • 72. Abdulkareem, O. M., Fraj, A. B., Bouasker, M., Khouchaf, L., & Khelidj, A. (2021). Microstructural investigation of slag-blended UHPC: The effects of slag content and chemical/thermal activation. Constr Build Mater, 292, 123455. [CrossRef]
  • 73. Živica, V., Palou, M. T., & Križma, M. (2015). Geopolymer cements and their properties: A review. Build Res J, 61(2), 85–100. [CrossRef]
  • 74. Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Constr Build Mater, 56, 113–127. [CrossRef]
  • 75. Lin, W., Zhou, F., Luo, W., & You, L. (2021). Recycling the waste dolomite powder with excellent consolidation properties: Sample synthesis, mechanical evaluation, and consolidation mechanism analysis. Constr Build Mater, 290, 123198. [CrossRef]
  • 76. Jeon, D., Yum, W. S., Song, H., Sim, S., & Oh, J. E. (2018). The temperature-dependent action of sugar in the retardation and strength improvement of Ca(OH)₂-Na₂CO₃-activated fly ash systems through calcium complexation. Constr Build Mater, 190, 918–928. [CrossRef]
  • 77. Rashad, A. M. (2015). Influence of different additives on the properties of sodium sulfate activated slag. Constr Build Mater, 79, 379–389. [CrossRef]
There are 77 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Festus Ngui 0000-0003-0724-7113

Victor Kiptoo Mutai This is me 0009-0003-7896-5566

Najya Muhammed This is me 0000-0003-3119-0217

Fredrick Mulei Mutunga This is me 0000-0003-1983-7217

Joseph M. Marangu This is me 0000-0003-4228-602X

Mike Otieno 0000-0001-6667-4073

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date July 4, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2024

Cite

APA Ngui, F., Mutai, V. K., Muhammed, N., Mutunga, F. M., et al. (2024). Strength and Durability Performance of Hybrid Alkaline Clay Brick Waste –Coconut Shell Ash Cement. Journal of Sustainable Construction Materials and Technologies, 9(4), 374-390. https://doi.org/10.47481/jscmt.1607846

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr