Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 1, 39 - 51, 29.03.2025
https://doi.org/10.47481/jscmt.1667444

Abstract

References

  • 1. Tutu, K. A., Yeboah, A. B., Ampofo, M. O., Mohammed, T. S., Aziz, A. S., Arif, N. H., & Alhassan, C. S. (2025). Palm fruit bunch fiber impact on compressive strength of cement mortar with different fine aggregate types. Journal of Sustainable Construction Materials and Technologies, 10(1), 39–51. https://doi.org/10.47481/jscmt.1667444
  • 2. National Concrete Masonry Association. (2004). Mortars for concrete masonry. https://basalite.ca/wp-content/uploads/2020/06/9-1a-mortars-for-cm.pdf
  • 3. ASTM C270. (2019). Standard specification for mortar for unit masonry. ASTM International.
  • 4. Alexander, M. G. (1996). Aggregates and the deformation properties of concrete. Materials Journal, 93(6), 569–577.
  • 5. Hasdemir, S., Tugrul, A., & Yilmaz, M. (2016). The effect of natural sand composition on concrete strength. Construction and Building Materials, 112, 940–948.
  • 6. Fookes, P. G. (1980). An introduction to the influence of natural aggregates on the performance and durability of concrete. Quarterly Journal of Engineering Geology and Hydrogeology, 13(4), 207–229.
  • 7. Kosmatka, S. H., Panarese, W. C., & Kerkhoff, B. (2002). Design and control of concrete mixtures. Portland Cement Association.
  • 8. Safiuddin, M., Raman, S. N., & Zain, M. F. M. (2007). Utilization of quarry waste fine aggregate in concrete mixtures. Journal of Applied Sciences Research, 3(3), 202–208.
  • 9. Jadhav, P. A., & Kulkarni, D. K. (2013). Effect of replacement of natural sand by manufactured sand on the properties of cement mortar. International Journal of Civil and Structural Engineering, 3(3), 621.
  • 10. Lertwattanaruk, P., & Suntijitto, A. (2015). Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, 94, 664–669.
  • 11. Raut, A. N., & Gomez, C. P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 126, 476–483.
  • 12. ASTM C109. (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International.
  • 13. Rao, P. R., & Ramakrishna, G. (2022). Oil palm empty fruit bunch fiber: Surface morphology, treatment, and suitability as reinforcement in cement composites—A state of the art review. Clean Materials, 6, 100144.
  • 14. Islam, S. M., Hussain, R. R., & Morshed, M. A. Z. (2012). Fiber-reinforced concrete incorporating locally available natural fibers in normal- and high-strength concrete and a performance analysis with steel fiber-reinforced composite concrete. Journal of Composite Materials, 46(1), 111–122.
  • 15. Yan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials, 112, 168–182.
  • 16. Gupta, L. K., & Vyas, A. K. (2018). Impact on mechanical properties of cement sand mortar containing waste granite powder. Construction and Building Materials, 191, 155–164.
  • 17. Mamaru, D. (2020). Suitability of crushed manufactured sand for replacement of natural river sand to produce C-25 concrete. Civil and Environmental Engineering, 10, 368.
  • 18. ASTM C136. (2006). Standard test method for sieve analysis of fine and coarse aggregates. ASTM International.
  • 19. ASTM C128. (2022). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International.
  • 20. ASTM D2419. (2022). Standard test method for sand equivalent value of soils and fine aggregate. ASTM International.
  • 21. ASTM D4318. (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International.
  • 22. Bureau of Indian Standards. (1963). Methods of test for aggregates for concrete (IS 2386).
  • 23. ASTM C1252. (2017). Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading). ASTM International.
  • 24. ASTM C144. (2018). Standard specification for aggregate for masonry mortar. ASTM International.
  • 25. Das, B. M., & Sivakugan, N. (2017). Fundamentals of geotechnical engineering (5th ed.). Cengage Learning.
  • 26. NSSGA. (1991). The aggregates handbook (2nd ed.). National Stone, Sand and Gravel Association.
  • 27. Amartey, B. H. S., Kumator, T. J., Amartey, Y. D., & Ali, A. (2023). The use of oil palm fiber as an additive in concrete. Materials Today: Proceedings, 86, 111-115. https://doi.org/10.1016/j.matpr.2023.01.115
  • 28. Mayowa, I. C., & Chinwuba, A. (2013). Effects of oil palm fibre on the compressive strength of mortar. Journal of Emerging Trends in Engineering and Applied Sciences, 4(5), 714-716.
  • 29. Ali, M., Li, X., & Chouw, N. (2013). Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 44, 596-605. https://doi.org/10.1016/j.matdes.2012.08.026
  • 30. Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • 31. Page, J., Khadraoui, F., Boutouil, M., & Gomina, M. (2017). Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials, 140, 344-353. https://doi.org/10.1016/j.conbuildmat.2017.02.124
  • 32. Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials, 35, 710-717. https://doi.org/10.1016/j.conbuildmat.2012.04.119
  • 33. Ismail, M. A., & Hashim, H. (2008). Palm oil fiber concrete. In The 3rd ACF International Conference (pp. 409-416).
  • 34. Oladele, I. O., Omotoyinbo, J. A., & Adewara, J. O. T. (2010). Investigating the effect of chemical treatment on the constituents and tensile properties of sisal fibre. Journal of Minerals and Materials Characterization and Engineering, 9(6), 569.
  • 35. Sreekala, M. S., George, J., Kumaran, M. G., & Thomas, S. (2001). Water-sorption kinetics in oil palm fibers. Journal of Polymer Science Part B: Polymer Physics, 39(11), 1215-1223. https://doi.org/10.1002/polb.1091
  • 36. Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. J. I. C. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009
  • 37. Raju, G., Ratnam, C. T., Ibrahim, N. A., Rahman, M. Z. A., & Yunus, W. M. Z. W. (2008). Enhancement of PVC/ENR blend properties by poly(methyl acrylate) grafted oil palm empty fruit bunch fiber. Journal of Applied Polymer Science, 110(1), 368-375. https://doi.org/10.1002/app.28614
  • 38. Karina, M., Onggo, H., Abdullah, A. D., & Syampurwadi, A. (2008). Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. Journal of Biological Sciences, 8(1), 101-106.
  • 39. Dalimin, M. N. (1995). Renewable energy update: Malaysia. Renewable Energy, 6(4), 435-439. https://doi.org/10.1016/0960-1481(95)00031-G
  • 40. Rozman, H. D., Lai, C. Y., Ismail, H., & Ishak, Z. A. M. (2000). The effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch-polypropylene composites. Polymer International, 49(11), 1273-1278. https://doi.org/10.1002/1097-0126(200011)49:11<1273::AID-PI499>3.0.CO;2-7
  • 41. Wirjosentono, B., Gurtino, P., & Ismail, H. (2004). Oil palm empty fruit bunch filled polypropylene composites. International Journal of Polymeric Materials, 53(4), 295-306. https://doi.org/10.1080/00914030490429657
  • 42. Hassan, W. H. W., & Soom, R. M. (2002). Road-making using oil palm fibre (Bit5). Malaysian Palm Oil Board. MPOB TT No. 171.
  • 43. Savastano Jr, H., Warden, P. G., & Coutts, R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 25(3), 311-319. https://doi.org/10.1016/S0958-9465(02)00056-7
  • 44. Claramunt, J., Fernandez-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 115, 230-239. https://doi.org/10.1016/j.conbuildmat.2016.04.024
  • 45. Izani, M. N., Paridah, M. T., Anwar, U. M. K., Nor, M. M., & H'ng, P. S. (2013). Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 45(1), 1251-1257. https://doi.org/10.1016/j.compositesb.2012.07.027
  • 46. Ali, M., Li, X., & Chouw, N. (2013). Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 44, 596-605. https://doi.org/10.1016/j.matdes.2012.08.026
  • 47. Al-Oraimi, S. K., & Seibi, A. C. (1995). Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Composite Structures, 32(1-4), 165-171. https://doi.org/10.1016/0263-8223(95)00043-7
  • 48. Merta, I., & Tschegg, E. K. (2013). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials, 40, 991-997. https://doi.org/10.1016/j.conbuildmat.2012.11.060
  • 49. Jadhav, P. A., & Kulkarni, D. K. (2012). An experimental investigation on the properties of concrete containing manufactured sand. International Journal of Advanced Engineering Technology, 3(2), 101-104.
  • 50. Alsadey, S., & Omran, A. (2021). Effect of the type of sand on the properties of concrete. Journal of Engineering and Applied Sciences, 16(3), 111-113.
  • 51. Vandhiyan, R., Vijay, T. J., & Kumar, M. (2021). Effect of fine aggregate properties on cement mortar strength. Materials Today: Proceedings, 37, 2019-2026. https://doi.org/10.1016/j.matpr.2020.07.493
  • 52. Arulmoly, B., & Konthesingha, C. (2022). Pertinence of alternative fine aggregates for concrete and mortar: A brief review on river sand substitutions. Australian Journal of Civil Engineering, 20(2), 272-307. https://doi.org/10.1080/14488353.2021.1989426
  • 53. Akorli, K. S., Aigbavboa, C. O., Ametepey, S. O., & Gyamfi, T. A. (2023). The influence of partially replacing pit sand with quarry dust on the compressive strength of sandcrete blocks. Materials Today: Proceedings, 93, 422-427. https://doi.org/10.1016/j.matpr.2023.05.432
  • 54. Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., & Agrawal, V. (2016). Crushed rock sand-An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science, 8, 345-347. https://doi.org/10.1016/j.pisc.2016.04.070
  • 55. Sankh, A. C., Biradar, P. M., Naghathan, S. J., & Ishwargol, M. B. (2014). Recent trends in replacement of natural sand with different alternatives. In Proceedings of the International Conference on Advances in Engineering and Technology (pp. 59-66).
  • 56. Katz, A., & Baum, H. (2006). Effect of high levels of fines content on concrete properties. ACI Materials Journal, 103(6), 474. https://doi.org/10.14359/18032
  • 57. Smith, M. R., & Collis, L. (2001). Aggregates: Sand, gravel, and crushed rock aggregates for construction purposes (3rd ed.). Geological Society of London.
  • 58. McNally, G. (1998). Soil and rock construction materials. CRC Press.
  • 59. Quiroga, P. N. (2003). The effect of the aggregates' characteristics on the performance of Portland cement concrete [Doctoral dissertation, University of Texas at Austin].
  • 60. Mather, B. (1966). Shape, surface texture, and coatings. In R. C. Mielenz (Ed.), Significance of tests and properties of concrete and concrete-making materials (pp. 295-306). ASTM International.
  • 61. Okafor, F. O., Eze-Uzomaka, O. J., & Egbuniwe, N. (1996). The structural properties and optimum mix proportions of palmnut fibre-reinforced mortar composite. Cement and Concrete Research, 26(7), 1045-1055. https://doi.org/10.1016/0008-8846(96)00081-3
  • 62. Aziz, F. N. A. A., Bida, S. M., Nasir, N. A. M., & Jaafar, M. S. (2014). Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb. Construction and Building Materials, 73, 544-550. https://doi.org/10.1016/j.conbuildmat.2014.09.102
  • 63. Sukmawan, R., Rahmanta, A. P., & Saputri, L. H. (2022). The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite. International Journal of Adhesion and Adhesives, 114, 103095. https://doi.org/10.1016/j.ijadhadh.2021.103095
  • 64. Fatra, W., Rouhillahi, H., Helwani, Z., & Asmura, J. (2016). Effect of alkaline treatment on the properties of oil palm empty fruit bunch fiber-reinforced polypropylene composite. International Journal of Technology, 7(6), 1026-1034. https://doi.org/10.14716/ijtech.v7i6.4469
  • 65. Sreekala, M. S., Kumaran, M. G., & Thomas, S. (2002). Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Composites Part A: Applied Science and Manufacturing, 33(6), 763-777. https://doi.org/10.1016/S1359-835X(02)00023-9
  • 66. Rosli, N. S., Harun, S., Jahim, J. M., & Othaman, R. (2017). Chemical and physical characterization of oil palm empty fruit bunch. Malaysian Journal of Analytical Sciences, 21(1), 188-196.
  • 67. Sreekala, M. S., Kumaran, M. G., & Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66(5), 821-835. https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X
  • 68. Momoh, E. O., & Osofero, A. I. (2020). Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering, 14, 94-108. https://doi.org/10.1007/s11709-019-0587-6
  • 69. Witayakran, S., Kongtud, W., Boonyarit, J., Smithipong, W., & Chollakup, R. (2017). Development of oil palm empty fruit bunch fiber reinforced epoxy composites for bumper beam in automobile. Key Engineering Materials, 751, 779-784. https://doi.org/10.4028/www.scientific.net/KEM.751.779
  • 70. Omontyi, T. E. (2019). Potential of oil palm (Elaeis guineensis) empty fruit bunch fibres cement composites for building applications. AgriEngineering, 1(2), 153-163. https://doi.org/10.3390/agriengineering1020012
  • 71. Schiavon, J. Z., & de Oliveira Andrade, J. J. (2023). Comparison between alternative chemical treatments on coir fibers for application in cementitious materials. Journal of Materials Research and Technology, 25, 4634-4649. https://doi.org/10.1016/j.jmrt.2023.06.174
  • 72. Zhou, X., Saini, H., & Kastiukas, G. (2017). Engineering properties of treated natural hemp fiber-reinforced concrete. Frontiers in Built Environment, 3, 33. https://doi.org/10.3389/fbuil.2017.00033
  • 73. Savastano Jr, H., Warden, P. G., & Coutts, R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 25(3), 311-319. https://doi.org/10.1016/S0958-9465(02)00056-7
  • 74. Machaka, M., Basha, H., Abou Chakra, H., & Elkordi, A. (2014). Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete. European Scientific Journal, 10(12), 186-195.
  • 75. Claramunt, J., Fernandez-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 115, 230-239. https://doi.org/10.1016/j.conbuildmat.2016.04.024

Palm fruit bunch fiber impact on compressive strength of cement mortar with different fine aggregate types

Year 2025, Volume: 10 Issue: 1, 39 - 51, 29.03.2025
https://doi.org/10.47481/jscmt.1667444

Abstract

Depletion of high-quality natural sand deposits and sustainability concerns are popularizing
manufactured sand use in cementitious composites. Meanwhile, palm fruit bunch fiber (PFBF)
improves the properties of cementitious composites, but it is unclear how PFBF interacts with
different fine aggregates to affect mortar strength. This study investigated the impact of PFBF
on the compressive strength of cement mortars containing manufactured sand (granite quar-
ry dust) and natural sands (river and pit). The aggregates were used with Portland cement to
fabricate mortar cubes, which were tested after 28 days. The control mortars (0% PFBF) of
quarry dust, river sand, and pit sand recorded strength of 24.2 MPa, 21.5 MPa, and 10.4 MPa,
respectively. At the optimum fiber content, the strength of the quarry dust and pit sand mor-
tars increased marginally to 24.7 MPa and 12.2 MPa, respectively. However, river sand mortar
strength considerably increased to 26.1 MPa. Interestingly, the quarry dust and pit sand mortars
generally experienced strength loss before reaching their peak at 2.0% and 2.5% fiber content,
respectively. In comparison, river sand mortar consistently gained strength before peaking at
2.5% PFBF. Hence, pre-optimum fiber contents could enhance river sand mortar strength but
hinder quarry dust and pit sand mortar strengths. By standardizing the PFBF-reinforced mortar
strengths against the control strengths, PFBF enhanced pit sand mortar strength the most, fol-
lowed by river sand mortar, but it mainly reduced quarry dust mortar strength. Mortar design
must, therefore, optimize PFBF dosage considering the unique characteristics of each sand type.

References

  • 1. Tutu, K. A., Yeboah, A. B., Ampofo, M. O., Mohammed, T. S., Aziz, A. S., Arif, N. H., & Alhassan, C. S. (2025). Palm fruit bunch fiber impact on compressive strength of cement mortar with different fine aggregate types. Journal of Sustainable Construction Materials and Technologies, 10(1), 39–51. https://doi.org/10.47481/jscmt.1667444
  • 2. National Concrete Masonry Association. (2004). Mortars for concrete masonry. https://basalite.ca/wp-content/uploads/2020/06/9-1a-mortars-for-cm.pdf
  • 3. ASTM C270. (2019). Standard specification for mortar for unit masonry. ASTM International.
  • 4. Alexander, M. G. (1996). Aggregates and the deformation properties of concrete. Materials Journal, 93(6), 569–577.
  • 5. Hasdemir, S., Tugrul, A., & Yilmaz, M. (2016). The effect of natural sand composition on concrete strength. Construction and Building Materials, 112, 940–948.
  • 6. Fookes, P. G. (1980). An introduction to the influence of natural aggregates on the performance and durability of concrete. Quarterly Journal of Engineering Geology and Hydrogeology, 13(4), 207–229.
  • 7. Kosmatka, S. H., Panarese, W. C., & Kerkhoff, B. (2002). Design and control of concrete mixtures. Portland Cement Association.
  • 8. Safiuddin, M., Raman, S. N., & Zain, M. F. M. (2007). Utilization of quarry waste fine aggregate in concrete mixtures. Journal of Applied Sciences Research, 3(3), 202–208.
  • 9. Jadhav, P. A., & Kulkarni, D. K. (2013). Effect of replacement of natural sand by manufactured sand on the properties of cement mortar. International Journal of Civil and Structural Engineering, 3(3), 621.
  • 10. Lertwattanaruk, P., & Suntijitto, A. (2015). Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, 94, 664–669.
  • 11. Raut, A. N., & Gomez, C. P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 126, 476–483.
  • 12. ASTM C109. (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International.
  • 13. Rao, P. R., & Ramakrishna, G. (2022). Oil palm empty fruit bunch fiber: Surface morphology, treatment, and suitability as reinforcement in cement composites—A state of the art review. Clean Materials, 6, 100144.
  • 14. Islam, S. M., Hussain, R. R., & Morshed, M. A. Z. (2012). Fiber-reinforced concrete incorporating locally available natural fibers in normal- and high-strength concrete and a performance analysis with steel fiber-reinforced composite concrete. Journal of Composite Materials, 46(1), 111–122.
  • 15. Yan, L., Chouw, N., Huang, L., & Kasal, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials, 112, 168–182.
  • 16. Gupta, L. K., & Vyas, A. K. (2018). Impact on mechanical properties of cement sand mortar containing waste granite powder. Construction and Building Materials, 191, 155–164.
  • 17. Mamaru, D. (2020). Suitability of crushed manufactured sand for replacement of natural river sand to produce C-25 concrete. Civil and Environmental Engineering, 10, 368.
  • 18. ASTM C136. (2006). Standard test method for sieve analysis of fine and coarse aggregates. ASTM International.
  • 19. ASTM C128. (2022). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International.
  • 20. ASTM D2419. (2022). Standard test method for sand equivalent value of soils and fine aggregate. ASTM International.
  • 21. ASTM D4318. (2017). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International.
  • 22. Bureau of Indian Standards. (1963). Methods of test for aggregates for concrete (IS 2386).
  • 23. ASTM C1252. (2017). Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading). ASTM International.
  • 24. ASTM C144. (2018). Standard specification for aggregate for masonry mortar. ASTM International.
  • 25. Das, B. M., & Sivakugan, N. (2017). Fundamentals of geotechnical engineering (5th ed.). Cengage Learning.
  • 26. NSSGA. (1991). The aggregates handbook (2nd ed.). National Stone, Sand and Gravel Association.
  • 27. Amartey, B. H. S., Kumator, T. J., Amartey, Y. D., & Ali, A. (2023). The use of oil palm fiber as an additive in concrete. Materials Today: Proceedings, 86, 111-115. https://doi.org/10.1016/j.matpr.2023.01.115
  • 28. Mayowa, I. C., & Chinwuba, A. (2013). Effects of oil palm fibre on the compressive strength of mortar. Journal of Emerging Trends in Engineering and Applied Sciences, 4(5), 714-716.
  • 29. Ali, M., Li, X., & Chouw, N. (2013). Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 44, 596-605. https://doi.org/10.1016/j.matdes.2012.08.026
  • 30. Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • 31. Page, J., Khadraoui, F., Boutouil, M., & Gomina, M. (2017). Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials, 140, 344-353. https://doi.org/10.1016/j.conbuildmat.2017.02.124
  • 32. Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials, 35, 710-717. https://doi.org/10.1016/j.conbuildmat.2012.04.119
  • 33. Ismail, M. A., & Hashim, H. (2008). Palm oil fiber concrete. In The 3rd ACF International Conference (pp. 409-416).
  • 34. Oladele, I. O., Omotoyinbo, J. A., & Adewara, J. O. T. (2010). Investigating the effect of chemical treatment on the constituents and tensile properties of sisal fibre. Journal of Minerals and Materials Characterization and Engineering, 9(6), 569.
  • 35. Sreekala, M. S., George, J., Kumaran, M. G., & Thomas, S. (2001). Water-sorption kinetics in oil palm fibers. Journal of Polymer Science Part B: Polymer Physics, 39(11), 1215-1223. https://doi.org/10.1002/polb.1091
  • 36. Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. J. I. C. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7-22. https://doi.org/10.1016/j.indcrop.2010.09.009
  • 37. Raju, G., Ratnam, C. T., Ibrahim, N. A., Rahman, M. Z. A., & Yunus, W. M. Z. W. (2008). Enhancement of PVC/ENR blend properties by poly(methyl acrylate) grafted oil palm empty fruit bunch fiber. Journal of Applied Polymer Science, 110(1), 368-375. https://doi.org/10.1002/app.28614
  • 38. Karina, M., Onggo, H., Abdullah, A. D., & Syampurwadi, A. (2008). Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. Journal of Biological Sciences, 8(1), 101-106.
  • 39. Dalimin, M. N. (1995). Renewable energy update: Malaysia. Renewable Energy, 6(4), 435-439. https://doi.org/10.1016/0960-1481(95)00031-G
  • 40. Rozman, H. D., Lai, C. Y., Ismail, H., & Ishak, Z. A. M. (2000). The effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch-polypropylene composites. Polymer International, 49(11), 1273-1278. https://doi.org/10.1002/1097-0126(200011)49:11<1273::AID-PI499>3.0.CO;2-7
  • 41. Wirjosentono, B., Gurtino, P., & Ismail, H. (2004). Oil palm empty fruit bunch filled polypropylene composites. International Journal of Polymeric Materials, 53(4), 295-306. https://doi.org/10.1080/00914030490429657
  • 42. Hassan, W. H. W., & Soom, R. M. (2002). Road-making using oil palm fibre (Bit5). Malaysian Palm Oil Board. MPOB TT No. 171.
  • 43. Savastano Jr, H., Warden, P. G., & Coutts, R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 25(3), 311-319. https://doi.org/10.1016/S0958-9465(02)00056-7
  • 44. Claramunt, J., Fernandez-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 115, 230-239. https://doi.org/10.1016/j.conbuildmat.2016.04.024
  • 45. Izani, M. N., Paridah, M. T., Anwar, U. M. K., Nor, M. M., & H'ng, P. S. (2013). Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 45(1), 1251-1257. https://doi.org/10.1016/j.compositesb.2012.07.027
  • 46. Ali, M., Li, X., & Chouw, N. (2013). Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 44, 596-605. https://doi.org/10.1016/j.matdes.2012.08.026
  • 47. Al-Oraimi, S. K., & Seibi, A. C. (1995). Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Composite Structures, 32(1-4), 165-171. https://doi.org/10.1016/0263-8223(95)00043-7
  • 48. Merta, I., & Tschegg, E. K. (2013). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials, 40, 991-997. https://doi.org/10.1016/j.conbuildmat.2012.11.060
  • 49. Jadhav, P. A., & Kulkarni, D. K. (2012). An experimental investigation on the properties of concrete containing manufactured sand. International Journal of Advanced Engineering Technology, 3(2), 101-104.
  • 50. Alsadey, S., & Omran, A. (2021). Effect of the type of sand on the properties of concrete. Journal of Engineering and Applied Sciences, 16(3), 111-113.
  • 51. Vandhiyan, R., Vijay, T. J., & Kumar, M. (2021). Effect of fine aggregate properties on cement mortar strength. Materials Today: Proceedings, 37, 2019-2026. https://doi.org/10.1016/j.matpr.2020.07.493
  • 52. Arulmoly, B., & Konthesingha, C. (2022). Pertinence of alternative fine aggregates for concrete and mortar: A brief review on river sand substitutions. Australian Journal of Civil Engineering, 20(2), 272-307. https://doi.org/10.1080/14488353.2021.1989426
  • 53. Akorli, K. S., Aigbavboa, C. O., Ametepey, S. O., & Gyamfi, T. A. (2023). The influence of partially replacing pit sand with quarry dust on the compressive strength of sandcrete blocks. Materials Today: Proceedings, 93, 422-427. https://doi.org/10.1016/j.matpr.2023.05.432
  • 54. Mundra, S., Sindhi, P. R., Chandwani, V., Nagar, R., & Agrawal, V. (2016). Crushed rock sand-An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science, 8, 345-347. https://doi.org/10.1016/j.pisc.2016.04.070
  • 55. Sankh, A. C., Biradar, P. M., Naghathan, S. J., & Ishwargol, M. B. (2014). Recent trends in replacement of natural sand with different alternatives. In Proceedings of the International Conference on Advances in Engineering and Technology (pp. 59-66).
  • 56. Katz, A., & Baum, H. (2006). Effect of high levels of fines content on concrete properties. ACI Materials Journal, 103(6), 474. https://doi.org/10.14359/18032
  • 57. Smith, M. R., & Collis, L. (2001). Aggregates: Sand, gravel, and crushed rock aggregates for construction purposes (3rd ed.). Geological Society of London.
  • 58. McNally, G. (1998). Soil and rock construction materials. CRC Press.
  • 59. Quiroga, P. N. (2003). The effect of the aggregates' characteristics on the performance of Portland cement concrete [Doctoral dissertation, University of Texas at Austin].
  • 60. Mather, B. (1966). Shape, surface texture, and coatings. In R. C. Mielenz (Ed.), Significance of tests and properties of concrete and concrete-making materials (pp. 295-306). ASTM International.
  • 61. Okafor, F. O., Eze-Uzomaka, O. J., & Egbuniwe, N. (1996). The structural properties and optimum mix proportions of palmnut fibre-reinforced mortar composite. Cement and Concrete Research, 26(7), 1045-1055. https://doi.org/10.1016/0008-8846(96)00081-3
  • 62. Aziz, F. N. A. A., Bida, S. M., Nasir, N. A. M., & Jaafar, M. S. (2014). Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb. Construction and Building Materials, 73, 544-550. https://doi.org/10.1016/j.conbuildmat.2014.09.102
  • 63. Sukmawan, R., Rahmanta, A. P., & Saputri, L. H. (2022). The effect of repeated alkali pretreatments on the morphological characteristics of cellulose from oil palm empty fruit bunch fiber-reinforced epoxy adhesive composite. International Journal of Adhesion and Adhesives, 114, 103095. https://doi.org/10.1016/j.ijadhadh.2021.103095
  • 64. Fatra, W., Rouhillahi, H., Helwani, Z., & Asmura, J. (2016). Effect of alkaline treatment on the properties of oil palm empty fruit bunch fiber-reinforced polypropylene composite. International Journal of Technology, 7(6), 1026-1034. https://doi.org/10.14716/ijtech.v7i6.4469
  • 65. Sreekala, M. S., Kumaran, M. G., & Thomas, S. (2002). Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Composites Part A: Applied Science and Manufacturing, 33(6), 763-777. https://doi.org/10.1016/S1359-835X(02)00023-9
  • 66. Rosli, N. S., Harun, S., Jahim, J. M., & Othaman, R. (2017). Chemical and physical characterization of oil palm empty fruit bunch. Malaysian Journal of Analytical Sciences, 21(1), 188-196.
  • 67. Sreekala, M. S., Kumaran, M. G., & Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66(5), 821-835. https://doi.org/10.1002/(SICI)1097-4628(19971031)66:5<821::AID-APP2>3.0.CO;2-X
  • 68. Momoh, E. O., & Osofero, A. I. (2020). Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering, 14, 94-108. https://doi.org/10.1007/s11709-019-0587-6
  • 69. Witayakran, S., Kongtud, W., Boonyarit, J., Smithipong, W., & Chollakup, R. (2017). Development of oil palm empty fruit bunch fiber reinforced epoxy composites for bumper beam in automobile. Key Engineering Materials, 751, 779-784. https://doi.org/10.4028/www.scientific.net/KEM.751.779
  • 70. Omontyi, T. E. (2019). Potential of oil palm (Elaeis guineensis) empty fruit bunch fibres cement composites for building applications. AgriEngineering, 1(2), 153-163. https://doi.org/10.3390/agriengineering1020012
  • 71. Schiavon, J. Z., & de Oliveira Andrade, J. J. (2023). Comparison between alternative chemical treatments on coir fibers for application in cementitious materials. Journal of Materials Research and Technology, 25, 4634-4649. https://doi.org/10.1016/j.jmrt.2023.06.174
  • 72. Zhou, X., Saini, H., & Kastiukas, G. (2017). Engineering properties of treated natural hemp fiber-reinforced concrete. Frontiers in Built Environment, 3, 33. https://doi.org/10.3389/fbuil.2017.00033
  • 73. Savastano Jr, H., Warden, P. G., & Coutts, R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 25(3), 311-319. https://doi.org/10.1016/S0958-9465(02)00056-7
  • 74. Machaka, M., Basha, H., Abou Chakra, H., & Elkordi, A. (2014). Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete. European Scientific Journal, 10(12), 186-195.
  • 75. Claramunt, J., Fernandez-Carrasco, L. J., Ventura, H., & Ardanuy, M. (2016). Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 115, 230-239. https://doi.org/10.1016/j.conbuildmat.2016.04.024
There are 75 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Article
Authors

Kenneth A. Tutu 0000-0002-7455-997X

Akua Boadiwaa Yeboah This is me 0009-0002-7430-0973

Michael Owusu Ampofo This is me 0009-0007-9184-5293

Tungteiyah Suad Mohammed This is me 0009-0008-6378-7601

Abdul-samed Aziz This is me 0009-0005-1350-3971

Nasara Hafiz Arif This is me 0009-0008-2527-7168

Chenti Sa-ad Alhassan This is me 0009-0002-6213-0268

Publication Date March 29, 2025
Submission Date May 7, 2024
Acceptance Date January 8, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Tutu, K. A., Yeboah, A. B., Ampofo, M. O., … Mohammed, T. S. (2025). Palm fruit bunch fiber impact on compressive strength of cement mortar with different fine aggregate types. Journal of Sustainable Construction Materials and Technologies, 10(1), 39-51. https://doi.org/10.47481/jscmt.1667444