Research Article
BibTex RIS Cite
Year 2018, Volume: 3 Issue: 1, 138 - 155, 31.01.2018
https://doi.org/10.29187/jscmt.2018.18

Abstract

References

  • Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161. doi:10.1016/j.jclepro.2012.10.049 Bilec, M., Ries, R., Matthews, H. S., & Sharrard, A. L. (2006). Example of a hybrid life-cycle assessment of construction processes. Journal of Infrastructure Systems, 12(4), 207–215.
  • Boesch, M. E., Koehler, A., & Hellweg, S. (2009). Model for Cradle-to-Gate Life Cycle Assessment of Clinker Production. Environmental Science & Technology, 43(19), 7578–7583. doi:10.1021/es900036e
  • De Schepper, M., Van den Hedde,P., Van Driessche, I., & De Belie, N. (2014). Life Cycle Assessment of Completely Recyclable Concrete. Materials 2014, 7, 6010-6027; doi:10.339/ma7086010
  • DeVierno, A., Thorn, B., & Carrano, A.L. (2012) Combining Life Cycle Assessment and Linear Regression Analysis to Determine Significant Design Characteristics, ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, Volume 5.
  • Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288. doi:10.1065/lca2007.05.327
  • Habert, G & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement & Concrete Composites, doi: 10.1016/j.cemconcomp.2009.04.001
  • Hanes, R., Bakshi, B.R., & Goel, P.K. (2013) The Use of Regression in Streamlined Life Cycle Assessment. Proceedings of the International Symposium on Sustainable Systems and Technologies, v1.
  • Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668–675. doi:10.1016/j.jclepro.2008.04.007
  • Kim, H. K., & Lee, H. K. (2013). Effects of High Volumes of Fly Ash, Blast Furnace Slag, and Bottom Ash on Flow Characteristics, Density, and Compressive Strength of High-Strength Mortar. Journal of Materials in Civil Engineering, 25(5), 662–665. doi:10.1061/(ASCE)MT.1943-5533.0000624.
  • Knoeri, C., Sanyé-Mengual, E., & Althaus, H.-J. (2013). Comparative LCA of recycled and conventional concrete for structural applications. The International Journal of Life Cycle Assessment, 18(5), 909–918. doi:10.1007/s11367-012-0544-2Marceau, M., Nisbet, M. A., & Van Geem, M. G. (2006). Life Cycle Inventory of Portland Cement Manufacture. Portland Cement Association Skokie, IL. Retrieved from
  • http://www.nrmca.org/taskforce/item_2_talkingpoints/sustainability/sustainability/sn2095b%20- %20cement%20lci%202006.pdf
  • Marceau, M., & VanGeem, M. G. (2003). Life cycle inventory of slag cement manufacturing process (Life Cycle Inventory No. 312012). Skokle, Illinois: Construction Technology Labratories Inc.
  • Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30(11), 2255–2264. doi:10.1016/j.wasman.2010.04.012
  • Menten, F., Cheze, B., Patouillard, L. and Bouvart, F. (2013) A Review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis. Renewable and Sustainable Energy Reviews, 26, 108- 134.
  • O’Brien, K. R., Ménaché, J., & O’Moore, L. M. (2009). Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. The International Journal of Life Cycle Assessment, 14(7), 621–629.
  • Park, J.H., & Seo, K.K. (2003) Approximate Life Cycle Assessment of Product Concepts Using Multiple Regression Analaysis and Artificial Neural Networks. KSME International Journal, 17(12), 1969-1976.
  • Pascual-Gonzalez, J., Pozo, C., Guillen-Gosalbez, G., & Jimenez-Esteller, L. (2015) Combined use of MILP and multi-linear regression to simplify LCA studies. Computers and Chemical Engineering, 82(2), 34-43.
  • Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. doi:10.1016/j.cemconcomp.2014.03.005
  • Purnell, P., & Black, L. (2012). Embodied carbon dioxide in concrete: Variation with common mix design parameters. Cement and Concrete Research, 42(6), 874–877. doi:10.1016/j.cemconres.2012.02.005
  • Schwab, J. (2014). Literature Review on the State of Research on the Environmental Impact of Concrete. Internal report submitted to the Department of Engineering Technology, Texas State University.
  • Sjunnesson, J. (2005, September). Life Cycle Assessment of Concrete (Masters’ Thesis). Lund University, Lund, Sweden.
  • Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431– 442. doi:10.1016/j.cemconcomp.2012.01.004
  • Wang, L., Li, F., Li,J., & Wang, X. (2010) Sensitivity and uncertainy analysis of life-cycle assessment based on multivariate regression analysis. ICRM 2010 Green Manufacturing, Ningbo, China

Building a User-Friendly LCI Prediction Model for Concrete Mixtures

Year 2018, Volume: 3 Issue: 1, 138 - 155, 31.01.2018
https://doi.org/10.29187/jscmt.2018.18

Abstract

Concrete is the corner stone of the construction industry and the second largest material being used after water. The growth of the
construction industry and an increasing awareness of the environmental impact of human activity has accelerated the
development of environment friendly solutions in concrete production and construction. Through the production of concrete and
its constituents, varying amounts of CO2 are emitted into the atmosphere. In this study, a user-friendly Life Cycle Impact (LCI)
model for concrete was developed. The user-friendly LCI model for concrete was developed based on the literature, which can be
used for a constituent comparative analysis. This study demonstrates the practicality of a user-friendly LCI model by comparing
the LCI of different concrete compositions that contain Fly Ash (FA) and Recycled Concrete Aggregate (RCA). Although this
study focused mainly on the environmental impact of FA and RCA, the model was designed to analyze the impact of any
conventional concrete mixture and a mixture with any combination of added or replaced constituents. The major benefit of the
developed user-friendly LCI model is that it is a simple model that can be used by practically anyone in the concrete construction
industry to assess and evaluate the impact of any concrete mixtures. Providing the industry with a user-friendly model that
requires little time can drastically benefit practitioners in better access to environment impact of different concrete mixtures.

References

  • Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161. doi:10.1016/j.jclepro.2012.10.049 Bilec, M., Ries, R., Matthews, H. S., & Sharrard, A. L. (2006). Example of a hybrid life-cycle assessment of construction processes. Journal of Infrastructure Systems, 12(4), 207–215.
  • Boesch, M. E., Koehler, A., & Hellweg, S. (2009). Model for Cradle-to-Gate Life Cycle Assessment of Clinker Production. Environmental Science & Technology, 43(19), 7578–7583. doi:10.1021/es900036e
  • De Schepper, M., Van den Hedde,P., Van Driessche, I., & De Belie, N. (2014). Life Cycle Assessment of Completely Recyclable Concrete. Materials 2014, 7, 6010-6027; doi:10.339/ma7086010
  • DeVierno, A., Thorn, B., & Carrano, A.L. (2012) Combining Life Cycle Assessment and Linear Regression Analysis to Determine Significant Design Characteristics, ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL, Volume 5.
  • Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment, 12(5), 282–288. doi:10.1065/lca2007.05.327
  • Habert, G & Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement & Concrete Composites, doi: 10.1016/j.cemconcomp.2009.04.001
  • Hanes, R., Bakshi, B.R., & Goel, P.K. (2013) The Use of Regression in Streamlined Life Cycle Assessment. Proceedings of the International Symposium on Sustainable Systems and Technologies, v1.
  • Huntzinger, D. N., & Eatmon, T. D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668–675. doi:10.1016/j.jclepro.2008.04.007
  • Kim, H. K., & Lee, H. K. (2013). Effects of High Volumes of Fly Ash, Blast Furnace Slag, and Bottom Ash on Flow Characteristics, Density, and Compressive Strength of High-Strength Mortar. Journal of Materials in Civil Engineering, 25(5), 662–665. doi:10.1061/(ASCE)MT.1943-5533.0000624.
  • Knoeri, C., Sanyé-Mengual, E., & Althaus, H.-J. (2013). Comparative LCA of recycled and conventional concrete for structural applications. The International Journal of Life Cycle Assessment, 18(5), 909–918. doi:10.1007/s11367-012-0544-2Marceau, M., Nisbet, M. A., & Van Geem, M. G. (2006). Life Cycle Inventory of Portland Cement Manufacture. Portland Cement Association Skokie, IL. Retrieved from
  • http://www.nrmca.org/taskforce/item_2_talkingpoints/sustainability/sustainability/sn2095b%20- %20cement%20lci%202006.pdf
  • Marceau, M., & VanGeem, M. G. (2003). Life cycle inventory of slag cement manufacturing process (Life Cycle Inventory No. 312012). Skokle, Illinois: Construction Technology Labratories Inc.
  • Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30(11), 2255–2264. doi:10.1016/j.wasman.2010.04.012
  • Menten, F., Cheze, B., Patouillard, L. and Bouvart, F. (2013) A Review of LCA greenhouse gas emissions results for advanced biofuels: The use of meta-regression analysis. Renewable and Sustainable Energy Reviews, 26, 108- 134.
  • O’Brien, K. R., Ménaché, J., & O’Moore, L. M. (2009). Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. The International Journal of Life Cycle Assessment, 14(7), 621–629.
  • Park, J.H., & Seo, K.K. (2003) Approximate Life Cycle Assessment of Product Concepts Using Multiple Regression Analaysis and Artificial Neural Networks. KSME International Journal, 17(12), 1969-1976.
  • Pascual-Gonzalez, J., Pozo, C., Guillen-Gosalbez, G., & Jimenez-Esteller, L. (2015) Combined use of MILP and multi-linear regression to simplify LCA studies. Computers and Chemical Engineering, 82(2), 34-43.
  • Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38–48. doi:10.1016/j.cemconcomp.2014.03.005
  • Purnell, P., & Black, L. (2012). Embodied carbon dioxide in concrete: Variation with common mix design parameters. Cement and Concrete Research, 42(6), 874–877. doi:10.1016/j.cemconres.2012.02.005
  • Schwab, J. (2014). Literature Review on the State of Research on the Environmental Impact of Concrete. Internal report submitted to the Department of Engineering Technology, Texas State University.
  • Sjunnesson, J. (2005, September). Life Cycle Assessment of Concrete (Masters’ Thesis). Lund University, Lund, Sweden.
  • Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431– 442. doi:10.1016/j.cemconcomp.2012.01.004
  • Wang, L., Li, F., Li,J., & Wang, X. (2010) Sensitivity and uncertainy analysis of life-cycle assessment based on multivariate regression analysis. ICRM 2010 Green Manufacturing, Ningbo, China
There are 23 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Harnish Sharma This is me

Publication Date January 31, 2018
Submission Date January 31, 2017
Acceptance Date June 6, 2017
Published in Issue Year 2018 Volume: 3 Issue: 1

Cite

APA Sharma, H. (2018). Building a User-Friendly LCI Prediction Model for Concrete Mixtures. Journal of Sustainable Construction Materials and Technologies, 3(1), 138-155. https://doi.org/10.29187/jscmt.2018.18

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr