Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 6, Issue 2, 53 - 62, 30.06.2021
https://doi.org/10.29187/jscmt.2021.60

Abstract

References

  • 1. Bekas, D.G., Tsirka, K., Baltzis, D., Paipetis, A.S. (2016). Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 87, 92-119. https://doi.org/10.1016/j.compositesb.2015.09.057.
  • 2. Gupta, S., Pang, S.D., Kua, H.W. (2017). Autonomous healing in concrete by bio-based healing agents – A review. Construction and Building Materials, 146, 419-428. https://doi.org/10.1016/j.conbuildmat.2017.04.111.
  • 3. Liang, B., Lan, F., Shi, K., Qian, G., Liu, Z., Zheng, J. (2021). Review on the self-healing of asphalt materials: Mechanism, affecting factors, assessments and improvements. Construction and Building Materials, 266, 120453. https://doi.org/10.1016/j.conbuildmat.2020.120453.
  • 4. Shen, J., Amirkhanian, S., Aune Miller, J. (2007). Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement. Journal of Materials in Civil Engineering, 19(5), 376-384. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(376).
  • 5. Rushing, J.F., Falls, A.J., Field performance of asphalt surface treatments on airfields, International Conference on Pavement Preservation, 1st ed, California Department of Transportation, Federal Highway Administration Foundation for Pavement Preservation, California, USA, 2010. https://www.pavementpreservation.org/icpp/paper/48_2010.pdf
  • 6. Riara, M., Tang, P., Mo, L., Javilla, B., Wu, S. (2018). Investigation into crack healing of asphalt mixtures using healing agents. Construction and Building Materials, 161, 45-52. https://doi.org/10.1016/j.conbuildmat.2017.11.074.
  • 7. Liu, Q., Schlangen, E., García, Á., van de Ven, M. (2010). Induction heating of electrically conductive porous asphalt concrete. Construction and Building Materials, 24(7), 1207-1213. https://doi.org/10.1016/j.conbuildmat.2009.12.019.
  • 8. Dai, Q., Wang, Z., Mohd Hasan, M.R. (2013). Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Construction and Building Materials, 49, 729-737. https://doi.org/10.1016/j.conbuildmat.2013.08.089.
  • 9. Apostolidis, P., Liu, X., Scarpas, A., Kasbergen, C., van de Ven, M. (2016). Advanced evaluation of asphalt mortar for induction healing purposes. Construction and Building Materials, 126, 9-25. https://doi.org/10.1016/j.conbuildmat.2016.09.011.
  • 10. García, A., Bueno, M., Norambuena-Contreras, J., Partl, M.N. (2013). Induction healing of dense asphalt concrete. Construction and Building Materials, 49, 1-7. https://doi.org/10.1016/j.conbuildmat.2013.07.105.
  • 11. Norambuena-Contreras, J., Garcia, A. (2016). Self-healing of asphalt mixture by microwave and induction heating. Materials & Design, 106, 404-414. https://doi.org/10.1016/j.matdes.2016.05.095.
  • 12. Apostolidis, P., Liu, X., Kasbergen, C., Scarpas, A.T., van de Ven, M. (2017). Toward the Design of an Induction Heating System for Asphalt Pavements with the Finite Element Method. Transportation Research Record, (2633), 136-146. https://doi.org/10.3141/2633-16.
  • 13. Pamulapati, Y., Elseifi, M.A., Cooper, S.B., Mohammad, L.N., Elbagalati, O. (2017). Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers. Construction and Building Materials, 146, 66-75. https://doi.org/10.1016/j.conbuildmat.2017.04.064.
  • 14. Lin, J., Hong, J., Huang, C., Liu, J., Wu, S. (2014). Effectiveness of rejuvenator seal materials on performance of asphalt pavement. Construction and Building Materials, 55, 63-68. https://doi.org/10.1016/j.conbuildmat.2014.01.018.
  • 15. Riara, M., Tang, P., Mo, L., Hong, W., Chen, M., Wu, S. (2018). Evaluation of moisture and temperature effect on crack healing of asphalt mortar and mixtures using healing agents. Construction and Building Materials, 177, 388-394. https://doi.org/10.1016/j.conbuildmat.2018.05.020.
  • 16. Tan, Y., Shan, L., Richard Kim, Y., Underwood, B.S. (2012). Healing characteristics of asphalt binder. Construction and Building Materials, 27(1), 570-577. https://doi.org/10.1016/j.conbuildmat.2011.07.006.
  • 17. Qiu, J., van de Ven, M., Wu, S., Yu, J., Molenaar, A. (2011). Evaluating Self Healing Capability of Bituminous Mastics. Experimental Mechanics, 52(8), 1163-1171. https://doi.org/10.1007/s11340-011-9573-1.
  • 18. Castro, M., Sánchez José, A. (2006). Fatigue and Healing of Asphalt Mixtures: Discriminate Analysis of Fatigue Curves. Journal of Transportation Engineering, 132(2), 168-174. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(168).
  • 19. Bommavaram, R., Bhasin, A., Little, D. (2009). Determining Intrinsic Healing Properties of Asphalt Binders. Transportation Research Record: Journal of the Transportation Research Board, 2126, 47-54. https://doi.org/10.3141/2126-06.
  • 20. Riara, M., Tang, P., Mo, L., Chen, M., Zhang, J., Wu, S. (2018). Experimental assessment of the long-time crack healing in asphalt mixtures using healing agents. Construction and Building Materials, 191, 411-422. https://doi.org/10.1016/j.conbuildmat.2018.10.001.
  • 21. Sun, D., Lin, T., Zhu, X., Cao, L. (2015). Calculation and evaluation of activation energy as a self-healing indication of asphalt mastic. Construction and Building Materials, 95, 431-436. https://doi.org/10.1016/j.conbuildmat.2015.07.126.
  • 22. Wool, R.P., O’Connor, K.M. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52(10), 5953-5963. https://doi.org/10.1063/1.328526.
  • 23. Schapery, R.A. (1989). On the mechanics of crack closing and bonding in linear viscoelastic media. International Journal of Fracture, 39(1), 163-189. https://doi.org/10.1007/bf00047448. https://doi.org/10.1007/BF00047448.
  • 24. Ma, T., Huang, X., Zhao, Y., Zhang, Y. (2015). Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling. Construction and Building Materials, 98, 530-536. https://doi.org/10.1016/j.conbuildmat.2015.08.135.
  • 25. Cong, P., Hao, H., Zhang, Y., Luo, W., Yao, D. (2016). Investigation of diffusion of rejuvenator in aged asphalt. International Journal of Pavement Research and Technology, 9(4), 280-288. https://doi.org/10.1016/j.ijprt.2016.08.001.
  • 26. Xiao, Y., Li, C., Wan, M., Zhou, X., Wang, Y., Wu, S. (2017). Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Applied Sciences, 7(4), 397. https://doi.org/10.3390/app7040397.
  • 27. Xu, H., Zhou, J., Dong, Q., Tan, Y. (2017). Characterization of moisture vapor diffusion in fine aggregate mixtures using Fickian and non-Fickian models. Materials & Design, 124, 108-120. https://doi.org/10.1016/j.matdes.2017.03.076.
  • 28. Bhasin, A., Little, D.N., Bommavaram, R., Vasconcelos, K. (2011). A Framework to Quantify the Effect of Healing in Bituminous Materials using Material Properties. Road Materials and Pavement Design, 9(sup1), 219-242. https://doi.org/10.1080/14680629.2008.9690167.
  • 29. García, Á. (2012). Self-healing of open cracks in asphalt mastic. Fuel, 93, 264-272. https://doi.org/10.1016/j.fuel.2011.09.009.
  • 30. Wu, D.Y., Meure, S., Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33(5), 479-522. https://doi.org/10.1016/j.progpolymsci.2008.02.001.
  • 31. Gennes, P.G.d. (1971). Reptation of a Polymer Chain in the Presence of Fixed Obstacles. The Journal of Chemical Physics, 55(2), 572-579. https://doi.org/10.1063/1.1675789.
  • 32. Garcia, S.J. (2014). Effect of polymer architecture on the intrinsic self-healing character of polymers. European Polymer Journal, 53, 118-125. https://doi.org/10.1016/j.eurpolymj.2014.01.026.
  • 33. Sun, D., Sun, G., Zhu, X., Guarin, A., Li, B., Dai, Z., et al. (2018). A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Advances in Colloid and Interface Science, 256, 65-93. https://doi.org/10.1016/j.cis.2018.05.003.
  • 34. Sun, D., Sun, G., Zhu, X., Pang, Q., Yu, F., Lin, T. (2017). Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope. Construction and Building Materials, 132, 230-239. https://doi.org/10.1016/j.conbuildmat.2016.11.137.
  • 35. American Association of State Highway and Transportation Officials, AASHTO TP 105: Standard method of test for determining the fracture energy of asphalt mixtures using the Semicircular Bend geometry (SCB), AASHTO, Washington DC, USA, 2013.
  • 36. Sun, D., Yu, F., Li, L., Lin, T., Zhu, X.Y. (2017). Effect of chemical composition and structure of asphalt binders on self-healing. Construction and Building Materials, 133, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.12.082.
  • 37. Little, D.N., Lytton, R.L., Williams, D., Kim, R. (1998). An Analysis of the Mechanism of Microdamage Healing Based on the Application of Micromechanics First Principles of Fracture and Healing. Journal of Association of Asphalt Paving Technologists, 68, 501-542. http://worldcat.org/issn/02702932.
  • 38. Schmets, A., Kringos, N., Pauli, T., Redelius, P., Scarpas, T. (2010). On the existence of wax-induced phase separation in bitumen. International Journal of Pavement Engineering, 11(6), 555-563. https://doi.org/10.1080/10298436.2010.488730.
  • 39. Al-Qadi, I.L., Fini, E.H., Figueroa, H.D., Masson, J., McGhee, K.K., Adhesion testing procedure for hot-poured crack sealants, 2008. https://rosap.ntl.bts.gov/view/dot/16703.
  • 40. Riara, M., Tang, P., Mo, L., Javilla, B., Chen, M., Wu, S. (2018). Systematic Evaluation of Fracture-Based Healing Indexes of Asphalt Mixtures. Journal of Materials in Civil Engineering, 30(10), 04018264. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002479.

Characterization of crack healing of asphalt mixtures treated with healing agents

Year 2021, Volume 6, Issue 2, 53 - 62, 30.06.2021
https://doi.org/10.29187/jscmt.2021.60

Abstract

This study investigated the long-term crack healing of asphalt mixtures treated with healing agents (HAs). Five crack healing agents were applied on fractured surfaces of asphalt mixtures and the long-term healing performance was evaluated based on the restored peak strength and fracture energy. Long term healing of the mixtures was predicted using the Modified Wool and O’Connor model, a modified Avrami model and a long-term healing prediction model proposed in this study. Test results indicated that the proposed healing model and the modified Avrami model could predict the long-term healing of the asphalt mixtures. Crack healing comprised of an instantaneous component and a time dependent healing component. The instantaneous component was attributed to crack wetting and the adhesion of the healing agents onto the fracture surfaces. The time dependent component was ascribed to molecular flow of the HAs. Additional healing due to hardening and drying of the HAs’ residue succeeded molecular flow healing. The temperature dependence of crack healing using HAs follow the Arrhenius law. The healing activation energies determined based on this law were dependent on the type of the HA. Maltene based HAs have a lower activation energy, hence, they required less energy to stimulate the recovery of the material response parameters.

References

  • 1. Bekas, D.G., Tsirka, K., Baltzis, D., Paipetis, A.S. (2016). Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 87, 92-119. https://doi.org/10.1016/j.compositesb.2015.09.057.
  • 2. Gupta, S., Pang, S.D., Kua, H.W. (2017). Autonomous healing in concrete by bio-based healing agents – A review. Construction and Building Materials, 146, 419-428. https://doi.org/10.1016/j.conbuildmat.2017.04.111.
  • 3. Liang, B., Lan, F., Shi, K., Qian, G., Liu, Z., Zheng, J. (2021). Review on the self-healing of asphalt materials: Mechanism, affecting factors, assessments and improvements. Construction and Building Materials, 266, 120453. https://doi.org/10.1016/j.conbuildmat.2020.120453.
  • 4. Shen, J., Amirkhanian, S., Aune Miller, J. (2007). Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement. Journal of Materials in Civil Engineering, 19(5), 376-384. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(376).
  • 5. Rushing, J.F., Falls, A.J., Field performance of asphalt surface treatments on airfields, International Conference on Pavement Preservation, 1st ed, California Department of Transportation, Federal Highway Administration Foundation for Pavement Preservation, California, USA, 2010. https://www.pavementpreservation.org/icpp/paper/48_2010.pdf
  • 6. Riara, M., Tang, P., Mo, L., Javilla, B., Wu, S. (2018). Investigation into crack healing of asphalt mixtures using healing agents. Construction and Building Materials, 161, 45-52. https://doi.org/10.1016/j.conbuildmat.2017.11.074.
  • 7. Liu, Q., Schlangen, E., García, Á., van de Ven, M. (2010). Induction heating of electrically conductive porous asphalt concrete. Construction and Building Materials, 24(7), 1207-1213. https://doi.org/10.1016/j.conbuildmat.2009.12.019.
  • 8. Dai, Q., Wang, Z., Mohd Hasan, M.R. (2013). Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Construction and Building Materials, 49, 729-737. https://doi.org/10.1016/j.conbuildmat.2013.08.089.
  • 9. Apostolidis, P., Liu, X., Scarpas, A., Kasbergen, C., van de Ven, M. (2016). Advanced evaluation of asphalt mortar for induction healing purposes. Construction and Building Materials, 126, 9-25. https://doi.org/10.1016/j.conbuildmat.2016.09.011.
  • 10. García, A., Bueno, M., Norambuena-Contreras, J., Partl, M.N. (2013). Induction healing of dense asphalt concrete. Construction and Building Materials, 49, 1-7. https://doi.org/10.1016/j.conbuildmat.2013.07.105.
  • 11. Norambuena-Contreras, J., Garcia, A. (2016). Self-healing of asphalt mixture by microwave and induction heating. Materials & Design, 106, 404-414. https://doi.org/10.1016/j.matdes.2016.05.095.
  • 12. Apostolidis, P., Liu, X., Kasbergen, C., Scarpas, A.T., van de Ven, M. (2017). Toward the Design of an Induction Heating System for Asphalt Pavements with the Finite Element Method. Transportation Research Record, (2633), 136-146. https://doi.org/10.3141/2633-16.
  • 13. Pamulapati, Y., Elseifi, M.A., Cooper, S.B., Mohammad, L.N., Elbagalati, O. (2017). Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers. Construction and Building Materials, 146, 66-75. https://doi.org/10.1016/j.conbuildmat.2017.04.064.
  • 14. Lin, J., Hong, J., Huang, C., Liu, J., Wu, S. (2014). Effectiveness of rejuvenator seal materials on performance of asphalt pavement. Construction and Building Materials, 55, 63-68. https://doi.org/10.1016/j.conbuildmat.2014.01.018.
  • 15. Riara, M., Tang, P., Mo, L., Hong, W., Chen, M., Wu, S. (2018). Evaluation of moisture and temperature effect on crack healing of asphalt mortar and mixtures using healing agents. Construction and Building Materials, 177, 388-394. https://doi.org/10.1016/j.conbuildmat.2018.05.020.
  • 16. Tan, Y., Shan, L., Richard Kim, Y., Underwood, B.S. (2012). Healing characteristics of asphalt binder. Construction and Building Materials, 27(1), 570-577. https://doi.org/10.1016/j.conbuildmat.2011.07.006.
  • 17. Qiu, J., van de Ven, M., Wu, S., Yu, J., Molenaar, A. (2011). Evaluating Self Healing Capability of Bituminous Mastics. Experimental Mechanics, 52(8), 1163-1171. https://doi.org/10.1007/s11340-011-9573-1.
  • 18. Castro, M., Sánchez José, A. (2006). Fatigue and Healing of Asphalt Mixtures: Discriminate Analysis of Fatigue Curves. Journal of Transportation Engineering, 132(2), 168-174. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(168).
  • 19. Bommavaram, R., Bhasin, A., Little, D. (2009). Determining Intrinsic Healing Properties of Asphalt Binders. Transportation Research Record: Journal of the Transportation Research Board, 2126, 47-54. https://doi.org/10.3141/2126-06.
  • 20. Riara, M., Tang, P., Mo, L., Chen, M., Zhang, J., Wu, S. (2018). Experimental assessment of the long-time crack healing in asphalt mixtures using healing agents. Construction and Building Materials, 191, 411-422. https://doi.org/10.1016/j.conbuildmat.2018.10.001.
  • 21. Sun, D., Lin, T., Zhu, X., Cao, L. (2015). Calculation and evaluation of activation energy as a self-healing indication of asphalt mastic. Construction and Building Materials, 95, 431-436. https://doi.org/10.1016/j.conbuildmat.2015.07.126.
  • 22. Wool, R.P., O’Connor, K.M. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52(10), 5953-5963. https://doi.org/10.1063/1.328526.
  • 23. Schapery, R.A. (1989). On the mechanics of crack closing and bonding in linear viscoelastic media. International Journal of Fracture, 39(1), 163-189. https://doi.org/10.1007/bf00047448. https://doi.org/10.1007/BF00047448.
  • 24. Ma, T., Huang, X., Zhao, Y., Zhang, Y. (2015). Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling. Construction and Building Materials, 98, 530-536. https://doi.org/10.1016/j.conbuildmat.2015.08.135.
  • 25. Cong, P., Hao, H., Zhang, Y., Luo, W., Yao, D. (2016). Investigation of diffusion of rejuvenator in aged asphalt. International Journal of Pavement Research and Technology, 9(4), 280-288. https://doi.org/10.1016/j.ijprt.2016.08.001.
  • 26. Xiao, Y., Li, C., Wan, M., Zhou, X., Wang, Y., Wu, S. (2017). Study of the Diffusion of Rejuvenators and Its Effect on Aged Bitumen Binder. Applied Sciences, 7(4), 397. https://doi.org/10.3390/app7040397.
  • 27. Xu, H., Zhou, J., Dong, Q., Tan, Y. (2017). Characterization of moisture vapor diffusion in fine aggregate mixtures using Fickian and non-Fickian models. Materials & Design, 124, 108-120. https://doi.org/10.1016/j.matdes.2017.03.076.
  • 28. Bhasin, A., Little, D.N., Bommavaram, R., Vasconcelos, K. (2011). A Framework to Quantify the Effect of Healing in Bituminous Materials using Material Properties. Road Materials and Pavement Design, 9(sup1), 219-242. https://doi.org/10.1080/14680629.2008.9690167.
  • 29. García, Á. (2012). Self-healing of open cracks in asphalt mastic. Fuel, 93, 264-272. https://doi.org/10.1016/j.fuel.2011.09.009.
  • 30. Wu, D.Y., Meure, S., Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33(5), 479-522. https://doi.org/10.1016/j.progpolymsci.2008.02.001.
  • 31. Gennes, P.G.d. (1971). Reptation of a Polymer Chain in the Presence of Fixed Obstacles. The Journal of Chemical Physics, 55(2), 572-579. https://doi.org/10.1063/1.1675789.
  • 32. Garcia, S.J. (2014). Effect of polymer architecture on the intrinsic self-healing character of polymers. European Polymer Journal, 53, 118-125. https://doi.org/10.1016/j.eurpolymj.2014.01.026.
  • 33. Sun, D., Sun, G., Zhu, X., Guarin, A., Li, B., Dai, Z., et al. (2018). A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Advances in Colloid and Interface Science, 256, 65-93. https://doi.org/10.1016/j.cis.2018.05.003.
  • 34. Sun, D., Sun, G., Zhu, X., Pang, Q., Yu, F., Lin, T. (2017). Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope. Construction and Building Materials, 132, 230-239. https://doi.org/10.1016/j.conbuildmat.2016.11.137.
  • 35. American Association of State Highway and Transportation Officials, AASHTO TP 105: Standard method of test for determining the fracture energy of asphalt mixtures using the Semicircular Bend geometry (SCB), AASHTO, Washington DC, USA, 2013.
  • 36. Sun, D., Yu, F., Li, L., Lin, T., Zhu, X.Y. (2017). Effect of chemical composition and structure of asphalt binders on self-healing. Construction and Building Materials, 133, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.12.082.
  • 37. Little, D.N., Lytton, R.L., Williams, D., Kim, R. (1998). An Analysis of the Mechanism of Microdamage Healing Based on the Application of Micromechanics First Principles of Fracture and Healing. Journal of Association of Asphalt Paving Technologists, 68, 501-542. http://worldcat.org/issn/02702932.
  • 38. Schmets, A., Kringos, N., Pauli, T., Redelius, P., Scarpas, T. (2010). On the existence of wax-induced phase separation in bitumen. International Journal of Pavement Engineering, 11(6), 555-563. https://doi.org/10.1080/10298436.2010.488730.
  • 39. Al-Qadi, I.L., Fini, E.H., Figueroa, H.D., Masson, J., McGhee, K.K., Adhesion testing procedure for hot-poured crack sealants, 2008. https://rosap.ntl.bts.gov/view/dot/16703.
  • 40. Riara, M., Tang, P., Mo, L., Javilla, B., Chen, M., Wu, S. (2018). Systematic Evaluation of Fracture-Based Healing Indexes of Asphalt Mixtures. Journal of Materials in Civil Engineering, 30(10), 04018264. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002479.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Martin Munene RIARA This is me (Primary Author)
Department of Physical Sciences, South Eastern Kenya University
0000-0003-4539-7956
Kenya

Publication Date June 30, 2021
Published in Issue Year 2021, Volume 6, Issue 2

Cite

APA Rıara, M. M. (2021). Characterization of crack healing of asphalt mixtures treated with healing agents . Journal of Sustainable Construction Materials and Technologies , 6 (2) , 53-62 . DOI: 10.29187/jscmt.2021.60

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is licensed under a Creative Commons Attributio 4.0 International License.

Based on a work at https://dergipark.org.tr/tr/pub/jscmt