Review
PDF EndNote BibTex RIS Cite

Year 2022, Volume 7, Issue 3, 231 - 249, 30.09.2022
https://doi.org/10.47481/jscmt.1136018

Abstract

References

  • Chawla, K.K., (2015), Composite Materials Science and Engineering, 3rd Edition, Springer, New York, USA.
  • Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. Jom, 61(1), 17-22. https://doi.org/10.1007/s11837-009-0004-z
  • Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
  • Ahmad, F., Choi, H. S., & Park, M. K. (2015). A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10-24. https://doi.org/10.1002/mame.201400089
  • Arockiam, N. J., Jawaid, M., & Saba, N. (2018). Sustainable bio composites for aircraft components. In Sustainable Composites for Aerospace Applications (pp. 109-123). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102131-6.00006-2
  • Pickering, K. L., Beckermann, G. W., Alam, S. N., & Foreman, N. J. (2007). Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing, 38(2), 461-468. https://doi.org/10.1016/j.compositesa.2006.02.020
  • Wang, Y. N., Weng, Y. X., & Wang, L. (2014). Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polymer Testing, 36, 119-125. https://doi.org/10.1016/j.polymertesting.2014.04.001
  • Kozłowski, R., & Władyka‐Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for advanced technologies, 19(6), 446-453. https://doi.org/10.1002/pat.1135
  • Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. CRC press.
  • Guna, V., Ilangovan, M., Ananthaprasad, M. G., & Reddy, N. (2018). Hybrid biocomposites. Polymer Composites, 39, E30-E54. https://doi.org/10.1002/pc.24641
  • Mitra, B. C. (2014). Environment friendly composite materials: biocomposites and green composites. Defence Science Journal, 64(3), 244. https://doi.org/10.14429/dsj.64.7323
  • La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. https://doi.org/10.1016/j.compositesa.2011.01.017
  • Ray, D. (Ed.). (2017). Biocomposites for high-performance applications: Current barriers and future needs towards industrial development. Woodhead Publishing.
  • Campilho, R. D. (Ed.). (2015). Natural fiber composites. CRC Press.
  • Majeed, K., Jawaid, M., Hassan, A. A. B. A. A., Bakar, A. A., Khalil, H. A., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391-410. https://doi.org/10.1016/j.matdes.2012.10.044
  • Barbero, E. J. (2017). Introduction to composite materials design. CRC press.
  • Townsend, T. (2020). World natural fibre production and employment. In Handbook of Natural Fibres (pp. 15-36). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818398-4.00002-5
  • Wei, L., & McDonald, A. G. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303. https://doi.org/10.3390/ma9040303
  • Ilyas, R. A., Sapuan, S. M., Kadier, A., Kalil, M. S., Ibrahim, R., Atikah, M. S. N.,. & Ibrahim, M. I. J. (2020). Properties and characterization of PLA, PHA, and other types of biopolymer composites. In Advanced processing, properties, and applications of starch and other bio-based polymers (pp. 111-138). Elsevier. https://doi.org/10.1016/B978-0-12-819661-8.00008-1
  • Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  • Nick, A., Becker, U., & Thoma, W. (2002). Improved Acoustic Behavior of Interior Parts of Renewable Resources in the Automotive Industry. Journal of Polymers & the Environment, 10(3). https://doi.org/10.1023/A:1021124214818
  • Yilmaz, N. D., Powell, N. B., Banks-Lee, P., & Michielsen, S. (2013). Multi-fiber needle-punched nonwoven composites: effects of heat treatment on sound absorption performance. Journal of Industrial Textiles, 43(2), 231-246. https://doi.org/10.1177/1528083712452899
  • ldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350-363. https://doi.org/10.1016/j.apacoust.2010.12.009
  • Corbin, A. C., Soulat, D., Ferreira, M., Labanieh, A. R., Gabrion, X., Malécot, P., & Placet, V. (2020). Towards hemp fabrics for high-performance composites: Influence of weave pattern and features. Composites Part B: Engineering, 181, 107582. https://doi.org/10.1016/j.compositesb.2019.107582
  • Bonnafous, C., Touchard, F., & Chocinski-Arnault, L. (2011). Damage mechanisms in hemp-fibre woven fabric composite, and comparison with glass-fibre composite. Polymers and Polymer Composites, 19(7), 543-552. https://doi.org/10.1177/096739111101900703
  • Hasan, K. F., Horváth, P. G., Zsolt, K., Kóczán, Z., Bak, M., Horváth, A., & Alpár, T. (2021). Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Composite Interfaces, 1-19. https://doi.org/10.1080/09276440.2021.1979752
  • Yallew, T. B., Kumar, P., & Singh, I. (2015). Sliding behaviour of woven industrial hemp fabric reinforced thermoplastic polymer composites. International Journal of Plastics Technology, 19(2), 347-362. https://doi.org/10.1007/s12588-015-9121-4
  • Baghaei, B., & Skrifvars, M. (2016). Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–lyocell hybrid yarn fabrics. Composites Part A: Applied Science and Manufacturing, 81, 139-144. https://doi.org/10.1016/j.compositesa.2015.10.042
  • Hargitai, H., Rácz, I., & Anandjiwala, R. D. (2008). Development of hemp fiber reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 21(2), 165-174. https://doi.org/10.1177/0892705707083949
  • Shahzad, A. (2013). A study in physical and mechanical properties of hemp fibres. Advances in Materials Science and Engineering, 2013. https://doi.org/10.1155/2013/325085
  • Stelea, L., Filip, I., Lisa, G., Ichim, M., Drobotă, M., Sava, C., & Mureșan, A. (2022). Characterisation of Hemp Fibres Reinforced Composites Using Thermoplastic Polymers as Matrices. Polymers, 14(3), 481. https://doi.org/10.3390/polym14030481
  • Chen, Y., Sun, L., Negulescu, I., Wu, Q., & Henderson, G. (2007). Comparative study of hemp fiber for nonwoven composites. Journal of Industrial Hemp, 12(1), 27-45. https://doi.org/10.1300/J237v12n01_04
  • Stapulionienė, R., Vaitkus, S., & Vėjelis, S. (2017). Investigation of Mechanical Properties of Composite Made from Hemp and Polylactide. In Key Engineering Materials (Vol. 721, pp. 63-67). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.721.63
  • Rasyid, M. A., Salim, M. S., Akil, H. M., Karger-Kocsis, J., & Ishak, Z. M. (2019). Non-woven flax fibre reinforced acrylic based polyester composites: the effect of sodium silicate on mechanical, flammability and acoustic properties. Express Polymer Letters, 13(6), 553-564. https://doi.org/10.3144/expresspolymlett.2019.47
  • Velayutham, T., Manickam, R. K., Sundararajan, P., Chung, I. M., & Prabakaran, M. (2021). A Study on the Effect of Natural Regenerated and Synthetic Non-woven Fabric Properties on Acoustic Applications. Journal of Natural Fibers, 1-11. https://doi.org/10.1080/15440478.2021.1929645
  • Muthukumar, N., Thilagavathi, G., Neelakrishnan, S., & Poovaragan, P. T. (2019). Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers, 16(2), 245-252. https://doi.org/10.1080/15440478.2017.1414654
  • Pil, L., Bensadoun, F., Pariset, J., & Verpoest, I. (2016). Why are designers fascinated by flax and hemp fibre composites?. Composites Part A: Applied Science and Manufacturing, 83, 193-205. https://doi.org/10.1016/j.compositesa.2015.11.004
  • Shahria, S. (2019). Fabrication and Property Evaluation of Hemp–flax Fiber Reinforced Hybrid Composite. Cellulose, 77(56.5), 64-1. https://doi.org/10.13189/cme.2019.070202
  • Maity, S., Gon, D. P., & Paul, P. (2014). A review of flax nonwovens: Manufacturing, properties, and applications. Journal of Natural Fibers, 11(4), 365-390. https://doi.org/10.1080/15440478.2013.861781
  • John, M. J., & Anandjiwala, R. D. (2009). Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), 442-448. https://doi.org/10.1016/j.compositesa.2009.01.007
  • Omrani, F., Wang, P., Soulat, D., Ferreira, M., & Ouagne, P. (2017). Analysis of the deformability of flax-fibre nonwoven fabrics during manufacturing. Composites Part B: Engineering, 116, 471-485. https://doi.org/10.1016/j.compositesb.2016.11.003
  • Bachmann, J., Wiedemann, M., & Wierach, P. (2018). Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace, 5(4), 107. https://doi.org/10.3390/aerospace5040107
  • Alimuzzaman, S., Gong, R. H., & Akonda, M. (2013). Nonwoven polylactic acid and flax biocomposites. Polymer Composites, 34(10), 1611-1619. https://doi.org/10.1002/pc.22561
  • Claramunt, J., Ventura, H., Fernández-Carrasco, L. J., & Ardanuy, M. (2017). Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials, 10(2), 215. https://doi.org/10.3390/ma10020215
  • Gonzalez-Lopez, L., Claramunt, J., Hsieh, Y. L., Ventura, H., & Ardanuy, M. (2020). Surface modification of flax nonwovens for the development of sustainable, high performance, and durable calcium aluminate cement composites. Composites Part B: Engineering, 191, 107955. https://doi.org/10.1016/j.compositesb.2020.107955
  • Phongam, N., Dangtungee, R., & Siengchin, S. (2015). Comparative studies on the mechanical properties of nonwoven-and woven-flax-fiber-reinforced poly (butylene adipate-co-terephthalate)-based composite laminates. Mechanics of Composite Materials, 51(1), 17-24. https://doi.org/10.1007/s11029-015-9472-0
  • Awais, H., Nawab, Y., Anjang, A., Akil, H. M., & Abidin, M. (2020). Mechanical properties of continuous natural fibres (jute, hemp, flax) reinforced polypropylene composites modified with hollow glass microspheres. Fibers and Polymers, 21(9), 2076-2083. https://doi.org/10.1007/s12221-020-2260-z
  • Goutianos, S., Peijs, T., Nystrom, B., & Skrifvars, M. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13(4), 199-215. https://doi.org/10.1007/s10443-006-9010-2
  • Charlet, K., Jernot, J. P., Gomina, M., Bizet, L., & Bréard, J. (2010). Mechanical properties of flax fibers and of the derived unidirectional composites. Journal of Composite Materials, 44(24), 2887-2896. https://doi.org/10.1177/0021998310369579
  • Couture, A., Lebrun, G., & Laperrière, L. (2016). Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Composite Structures, 154, 286-295. https://doi.org/10.1016/j.compstruct.2016.07.069
  • Tanguy, M., Bourmaud, A., Beaugrand, J., Gaudry, T., & Baley, C. (2018). Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Composites Part B: Engineering, 139, 64-74. https://doi.org/10.1016/j.compositesb.2017.11.061
  • Mak, K., & Fam, A. (2020). The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers. Composites Part B: Engineering, 183, 107645. https://doi.org/10.1016/j.compositesb.2019.107645
  • Loong, M. L., & Cree, D. (2018). Enhancement of mechanical properties of bio-resin epoxy/flax fiber composites using acetic anhydride. Journal of Polymers and the Environment, 26(1), 224-234. https://doi.org/10.1007/s10924-017-0943-3
  • Alzeer, M., & MacKenzie, K. (2013). Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax). Applied Clay Science, 75, 148-152. https://doi.org/10.1016/j.clay.2013.03.010
  • Zhang, Y., Li, Y., Ma, H., & Yu, T. (2013). Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Composites Science and Technology, 88, 172-177. https://doi.org/10.1016/j.compscitech.2013.08.037
  • Sarasini, F., Tirillò, J., D'Altilia, S., Valente, T., Santulli, C., Touchard, F., & Gaudenzi, P. (2016). Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering, 91, 144-153. https://doi.org/10.1016/j.compositesb.2016.01.050
  • Chaudhary, V., Bajpai, P. K., & Maheshwari, S. (2018). Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. Journal of Natural Fibers, 15(1), 80-97. https://doi.org/10.1080/15440478.2017.1320260
  • Boccarusso, L., De Fazio, D., & Durante, M. (2021). Production of PP Composites Reinforced with Flax and Hemp Woven Mesh Fabrics via Compression Molding. Inventions, 7(1), 5. https://doi.org/10.3390/inventions7010005
  • Shahzad, A. (2011). Impact and fatigue properties of hemp–glass fiber hybrid biocomposites. Journal of Reinforced Plastics and Composites, 30(16), 1389-1398. https://doi.org/10.1177/0731684411425975
  • Munoz, E., & García-Manrique, J. A. (2015). Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/390275
  • Manfredi, L. B., Rodríguez, E. S., Wladyka-Przybylak, M., & Vázquez, A. (2006). Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymer Degradation and Stability, 91(2), 255-261. https://doi.org/10.1016/j.polymdegradstab.2005.05.003
  • Kumar, A. P., Singh, R. P., & Sarwade, B. D. (2005). Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Materials Chemistry and Physics, 92(2-3), 458-469. https://doi.org/10.1016/j.matchemphys.2005.01.027
  • Sarkar, S., & Adhikari, B. (2001). Jute felt composite from lignin modified phenolic resin. Polymer Composites, 22(4), 518-527. https://doi.org/10.1002/pc.10556
  • Das, B. K., Ray, P. K., & Chakravarty, A. C. (1983). 37—The Properties of Jute Fibres at Different Stages of Plant Growth. Journal of the Textile Institute, 74(6), 367-373. https://doi.org/10.1080/00405008308631693
  • Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92-100. https://doi.org/10.1016/j.jclepro.2018.02.257
  • Suizu, N., Uno, T., Goda, K., & Ohgi, J. (2009). Tensile and impact properties of fully green composites reinforced with mercerized ramie fibers. Journal of Materials Science, 44(10), 2477-2482. http://dx.doi.org/10.1007/s10853-009-3317-y
  • Qiu, R., Ren, X., Fifield, L. S., Simmons, K. L., & Li, K. (2011). Hemp‐fiber‐reinforced unsaturated polyester composites: Optimization of processing and improvement of interfacial adhesion. Journal of Applied Polymer Science, 121(2), 862-868. https://doi.org/10.1002/app.33674
  • Lu, N., Oza, S., & Ferguson, I. (2012). Effect of alkali and silane treatment on the thermal stability of hemp fibers as reinforcement in composite structures. In Advanced Materials Research (Vol. 415, pp. 666-670). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.415-417.666
  • Oh, J. T., Hong, J. H., Ahn, Y., & Kim, H. (2012). Reliability improvement of hemp based bio-composite by surface modification. Fibers and Polymers, 13(6), 735-739. http://dx.doi.org/10.1007%2Fs12221-012-0735-2
  • Islam, M. S., Pickering, K. L., & Foreman, N. J. (2011). Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science, 119(6), 3696-3707. https://doi.org/10.1002/app.31335
  • Väisänen, T., Batello, P., Lappalainen, R., & Tomppo, L. (2018). Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products, 111, 422-429. https://doi.org/10.1016/j.indcrop.2017.10.049
  • Sullins, T., Pillay, S., Komus, A., & Ning, H. (2017). Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, 15-22. https://doi.org/10.1016/j.compositesb.2017.02.001
  • Bledzki, A. K., Reihmane, S. A., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: a literature review. Polym.-Plast. Technol. Eng., 37(4), 451-468. https://doi.org/10.1080/03602559808001373
  • Schirp, A., & Stender, J. (2010). Properties of extruded wood-plastic composites based on refiner wood fibres (TMP fibres) and hemp fibres. Eur. J. Wood Prod, 68(2), 219-231. https://doi.org/10.1007/s00107-009-0372-7
  • Niu, P., Liu, B., Wei, X., Wang, X., & Yang, J. (2011). Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. Journal of Reinforced Plastics and Composites, 30(1), 36-44. https://doi.org/10.1177/0731684410383067
  • Merotte, J., Le Duigou, A., Kervoelen, A., Bourmaud, A., Behlouli, K., Sire, O., & Baley, C. (2018). Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polymer Testing, 66, 303-311. https://doi.org/10.1016/j.polymertesting.2018.01.019
  • Yan, Z. L., Wang, H., Lau, K. T., Pather, S., Zhang, J. C., Lin, G., & Ding, Y. (2013). Reinforcement of polypropylene with hemp fibres. Composites Part B: Engineering, 46, 221-226. https://doi.org/10.1016/j.compositesb.2012.09.027
  • Talla, A. F., Mfoumou, E., Jeson, S., Pagé, J. S. Y. D., & Erchiqui, F. (2013). Mechanical and structural properties of a novel melt processed PET–hemp composite: Influence of additives and fibers concentration. Journal of Reinforced Plastics and Composites, 32(20), 1526-1533. https://doi.org/10.1177/0731684413494108
  • Brostow, W., & Hagg Lobland, H. E. (2010). Brittleness of materials: implications for composites and a relation to impact strength. Journal of materials science, 45(1), 242-250. https://doi.org/10.1007/s10853-009-3926-5
  • Glória, G. O., Margem, F. M., Ribeiro, C. G. D., Moraes, Y. M. D., Cruz, R. B. D., Silva, F. D. A., & Monteiro, S. N. "Charpy impact tests of epoxy composites reinforced with giant bamboo fibers." Materials Research 18 (2015): 178-184. https://doi.org/10.1590/1516-1439.360614
  • Assis, F. S., Monteiro, S. N., Margem, F. M., & Loiola, R. L. (2014). Charpy toughness behavior of continuous banana fiber reinforced epoxy matrix composites. Characterization of Minerals, Metals, and Materials 2014, 499-506. https://doi.org/10.1002/9781118888056.ch58
  • Pereira, A. C., Monteiro, S. N., de Assis, F. S., Margem, F. M., da Luz, F. S., & de Oliveira Braga, F. (2017). Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. Journal of Materials Research and Technology, 6(4), 312-316. https://doi.org/10.1016/j.jmrt.2017.08.004
  • Petrucci, R., Santulli, C., Puglia, D., Nisini, E., Sarasini, F., Tirillò, J.,. & Kenny, J. M. (2015). Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Composites Part B: Engineering, 69, 507-515. https://doi.org/10.1016/j.compositesb.2014.10.031
  • Kong, K., Hejda, M., Young, R. J., & Eichhorn, S. J. (2009). Deformation micromechanics of a model cellulose/glass fibre hybrid composite. Composites Science and Technology, 69(13), 2218-2224.https://doi.org/10.1016/j.compscitech.2009.06.006
  • Clark, R. A., & Ansell, M. P. (1986). Jute and glass fibre hybrid laminates. Journal of Materials Science, 21(1), 269-276. https://doi.org/10.1007/BF01144731
  • Sanjay, M. R., & Yogesha, B. (2017). Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2), 2739-2747. https://doi.org/10.1016/j.matpr.2017.02.151
  • Stapulionienė, R., Vaitkus, S., & Vėjelis, S. (2017). Investigation of Mechanical Properties of Composite Made from Hemp and Polylactide. In Key Engineering Materials (Vol. 721, pp. 63-67). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.721.63
  • Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., & Bin, Y. (2013). Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. Journal of Polymers and the Environment, 21(4), 1117-1127. https://doi.org/10.1007/s10924-013-0569-z
  • Mukherjee, T., & Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: a review. Journal of Polymers and the Environment, 19(3), 714. https://doi.org/10.1007/s10924-011-0320-6
  • Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., & Takeishi, H. (2003). Biocomposites made from short abaca fiber and biodegradable polyesters. Macromolecular Materials and Engineering, 288(1), 35-43. https://doi.org/10.1002/mame.200290031

A review on engineering biocomposites and natural fiber-reinforced materials

Year 2022, Volume 7, Issue 3, 231 - 249, 30.09.2022
https://doi.org/10.47481/jscmt.1136018

Abstract

Fiber-reinforced polymer composites are well-studied and established products and today they are being used in different industrial and non-industrial areas. However, the increased interest in recyclability and the concerns about climate change caused materials scientists to look for a non-petroleum-based alternative to synthetic fibers and polymers. Since the beginning of this century, natural fibers and biopolymers have seen an increased interest each year for composite applications. Thanks to this interest, the studies on natural fibers and biopolymers have increased significantly. Despite the high number of studies on natural fibers and natural fiber-reinforced polymers (NFRP), there are gaps in the literature. This work reviews the studies on natural fibers, biopolymers, and biocomposites with their advantages, disadvantages, and limitations. The studies that focus on the ways to reduce or eliminate these disadvantages and limitations have also been looked at. Also, current challenges and future perspectives for natural fibers, biopolymers, and NFRPs have been discussed

References

  • Chawla, K.K., (2015), Composite Materials Science and Engineering, 3rd Edition, Springer, New York, USA.
  • Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly. Jom, 61(1), 17-22. https://doi.org/10.1007/s11837-009-0004-z
  • Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
  • Ahmad, F., Choi, H. S., & Park, M. K. (2015). A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10-24. https://doi.org/10.1002/mame.201400089
  • Arockiam, N. J., Jawaid, M., & Saba, N. (2018). Sustainable bio composites for aircraft components. In Sustainable Composites for Aerospace Applications (pp. 109-123). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102131-6.00006-2
  • Pickering, K. L., Beckermann, G. W., Alam, S. N., & Foreman, N. J. (2007). Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing, 38(2), 461-468. https://doi.org/10.1016/j.compositesa.2006.02.020
  • Wang, Y. N., Weng, Y. X., & Wang, L. (2014). Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polymer Testing, 36, 119-125. https://doi.org/10.1016/j.polymertesting.2014.04.001
  • Kozłowski, R., & Władyka‐Przybylak, M. (2008). Flammability and fire resistance of composites reinforced by natural fibers. Polymers for advanced technologies, 19(6), 446-453. https://doi.org/10.1002/pat.1135
  • Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. CRC press.
  • Guna, V., Ilangovan, M., Ananthaprasad, M. G., & Reddy, N. (2018). Hybrid biocomposites. Polymer Composites, 39, E30-E54. https://doi.org/10.1002/pc.24641
  • Mitra, B. C. (2014). Environment friendly composite materials: biocomposites and green composites. Defence Science Journal, 64(3), 244. https://doi.org/10.14429/dsj.64.7323
  • La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. https://doi.org/10.1016/j.compositesa.2011.01.017
  • Ray, D. (Ed.). (2017). Biocomposites for high-performance applications: Current barriers and future needs towards industrial development. Woodhead Publishing.
  • Campilho, R. D. (Ed.). (2015). Natural fiber composites. CRC Press.
  • Majeed, K., Jawaid, M., Hassan, A. A. B. A. A., Bakar, A. A., Khalil, H. A., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391-410. https://doi.org/10.1016/j.matdes.2012.10.044
  • Barbero, E. J. (2017). Introduction to composite materials design. CRC press.
  • Townsend, T. (2020). World natural fibre production and employment. In Handbook of Natural Fibres (pp. 15-36). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818398-4.00002-5
  • Wei, L., & McDonald, A. G. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303. https://doi.org/10.3390/ma9040303
  • Ilyas, R. A., Sapuan, S. M., Kadier, A., Kalil, M. S., Ibrahim, R., Atikah, M. S. N.,. & Ibrahim, M. I. J. (2020). Properties and characterization of PLA, PHA, and other types of biopolymer composites. In Advanced processing, properties, and applications of starch and other bio-based polymers (pp. 111-138). Elsevier. https://doi.org/10.1016/B978-0-12-819661-8.00008-1
  • Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  • Nick, A., Becker, U., & Thoma, W. (2002). Improved Acoustic Behavior of Interior Parts of Renewable Resources in the Automotive Industry. Journal of Polymers & the Environment, 10(3). https://doi.org/10.1023/A:1021124214818
  • Yilmaz, N. D., Powell, N. B., Banks-Lee, P., & Michielsen, S. (2013). Multi-fiber needle-punched nonwoven composites: effects of heat treatment on sound absorption performance. Journal of Industrial Textiles, 43(2), 231-246. https://doi.org/10.1177/1528083712452899
  • ldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350-363. https://doi.org/10.1016/j.apacoust.2010.12.009
  • Corbin, A. C., Soulat, D., Ferreira, M., Labanieh, A. R., Gabrion, X., Malécot, P., & Placet, V. (2020). Towards hemp fabrics for high-performance composites: Influence of weave pattern and features. Composites Part B: Engineering, 181, 107582. https://doi.org/10.1016/j.compositesb.2019.107582
  • Bonnafous, C., Touchard, F., & Chocinski-Arnault, L. (2011). Damage mechanisms in hemp-fibre woven fabric composite, and comparison with glass-fibre composite. Polymers and Polymer Composites, 19(7), 543-552. https://doi.org/10.1177/096739111101900703
  • Hasan, K. F., Horváth, P. G., Zsolt, K., Kóczán, Z., Bak, M., Horváth, A., & Alpár, T. (2021). Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Composite Interfaces, 1-19. https://doi.org/10.1080/09276440.2021.1979752
  • Yallew, T. B., Kumar, P., & Singh, I. (2015). Sliding behaviour of woven industrial hemp fabric reinforced thermoplastic polymer composites. International Journal of Plastics Technology, 19(2), 347-362. https://doi.org/10.1007/s12588-015-9121-4
  • Baghaei, B., & Skrifvars, M. (2016). Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–lyocell hybrid yarn fabrics. Composites Part A: Applied Science and Manufacturing, 81, 139-144. https://doi.org/10.1016/j.compositesa.2015.10.042
  • Hargitai, H., Rácz, I., & Anandjiwala, R. D. (2008). Development of hemp fiber reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 21(2), 165-174. https://doi.org/10.1177/0892705707083949
  • Shahzad, A. (2013). A study in physical and mechanical properties of hemp fibres. Advances in Materials Science and Engineering, 2013. https://doi.org/10.1155/2013/325085
  • Stelea, L., Filip, I., Lisa, G., Ichim, M., Drobotă, M., Sava, C., & Mureșan, A. (2022). Characterisation of Hemp Fibres Reinforced Composites Using Thermoplastic Polymers as Matrices. Polymers, 14(3), 481. https://doi.org/10.3390/polym14030481
  • Chen, Y., Sun, L., Negulescu, I., Wu, Q., & Henderson, G. (2007). Comparative study of hemp fiber for nonwoven composites. Journal of Industrial Hemp, 12(1), 27-45. https://doi.org/10.1300/J237v12n01_04
  • Stapulionienė, R., Vaitkus, S., & Vėjelis, S. (2017). Investigation of Mechanical Properties of Composite Made from Hemp and Polylactide. In Key Engineering Materials (Vol. 721, pp. 63-67). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.721.63
  • Rasyid, M. A., Salim, M. S., Akil, H. M., Karger-Kocsis, J., & Ishak, Z. M. (2019). Non-woven flax fibre reinforced acrylic based polyester composites: the effect of sodium silicate on mechanical, flammability and acoustic properties. Express Polymer Letters, 13(6), 553-564. https://doi.org/10.3144/expresspolymlett.2019.47
  • Velayutham, T., Manickam, R. K., Sundararajan, P., Chung, I. M., & Prabakaran, M. (2021). A Study on the Effect of Natural Regenerated and Synthetic Non-woven Fabric Properties on Acoustic Applications. Journal of Natural Fibers, 1-11. https://doi.org/10.1080/15440478.2021.1929645
  • Muthukumar, N., Thilagavathi, G., Neelakrishnan, S., & Poovaragan, P. T. (2019). Sound and thermal insulation properties of flax/low melt PET needle punched nonwovens. Journal of Natural Fibers, 16(2), 245-252. https://doi.org/10.1080/15440478.2017.1414654
  • Pil, L., Bensadoun, F., Pariset, J., & Verpoest, I. (2016). Why are designers fascinated by flax and hemp fibre composites?. Composites Part A: Applied Science and Manufacturing, 83, 193-205. https://doi.org/10.1016/j.compositesa.2015.11.004
  • Shahria, S. (2019). Fabrication and Property Evaluation of Hemp–flax Fiber Reinforced Hybrid Composite. Cellulose, 77(56.5), 64-1. https://doi.org/10.13189/cme.2019.070202
  • Maity, S., Gon, D. P., & Paul, P. (2014). A review of flax nonwovens: Manufacturing, properties, and applications. Journal of Natural Fibers, 11(4), 365-390. https://doi.org/10.1080/15440478.2013.861781
  • John, M. J., & Anandjiwala, R. D. (2009). Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), 442-448. https://doi.org/10.1016/j.compositesa.2009.01.007
  • Omrani, F., Wang, P., Soulat, D., Ferreira, M., & Ouagne, P. (2017). Analysis of the deformability of flax-fibre nonwoven fabrics during manufacturing. Composites Part B: Engineering, 116, 471-485. https://doi.org/10.1016/j.compositesb.2016.11.003
  • Bachmann, J., Wiedemann, M., & Wierach, P. (2018). Flexural mechanical properties of hybrid epoxy composites reinforced with nonwoven made of flax fibres and recycled carbon fibres. Aerospace, 5(4), 107. https://doi.org/10.3390/aerospace5040107
  • Alimuzzaman, S., Gong, R. H., & Akonda, M. (2013). Nonwoven polylactic acid and flax biocomposites. Polymer Composites, 34(10), 1611-1619. https://doi.org/10.1002/pc.22561
  • Claramunt, J., Ventura, H., Fernández-Carrasco, L. J., & Ardanuy, M. (2017). Tensile and flexural properties of cement composites reinforced with flax nonwoven fabrics. Materials, 10(2), 215. https://doi.org/10.3390/ma10020215
  • Gonzalez-Lopez, L., Claramunt, J., Hsieh, Y. L., Ventura, H., & Ardanuy, M. (2020). Surface modification of flax nonwovens for the development of sustainable, high performance, and durable calcium aluminate cement composites. Composites Part B: Engineering, 191, 107955. https://doi.org/10.1016/j.compositesb.2020.107955
  • Phongam, N., Dangtungee, R., & Siengchin, S. (2015). Comparative studies on the mechanical properties of nonwoven-and woven-flax-fiber-reinforced poly (butylene adipate-co-terephthalate)-based composite laminates. Mechanics of Composite Materials, 51(1), 17-24. https://doi.org/10.1007/s11029-015-9472-0
  • Awais, H., Nawab, Y., Anjang, A., Akil, H. M., & Abidin, M. (2020). Mechanical properties of continuous natural fibres (jute, hemp, flax) reinforced polypropylene composites modified with hollow glass microspheres. Fibers and Polymers, 21(9), 2076-2083. https://doi.org/10.1007/s12221-020-2260-z
  • Goutianos, S., Peijs, T., Nystrom, B., & Skrifvars, M. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13(4), 199-215. https://doi.org/10.1007/s10443-006-9010-2
  • Charlet, K., Jernot, J. P., Gomina, M., Bizet, L., & Bréard, J. (2010). Mechanical properties of flax fibers and of the derived unidirectional composites. Journal of Composite Materials, 44(24), 2887-2896. https://doi.org/10.1177/0021998310369579
  • Couture, A., Lebrun, G., & Laperrière, L. (2016). Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Composite Structures, 154, 286-295. https://doi.org/10.1016/j.compstruct.2016.07.069
  • Tanguy, M., Bourmaud, A., Beaugrand, J., Gaudry, T., & Baley, C. (2018). Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Composites Part B: Engineering, 139, 64-74. https://doi.org/10.1016/j.compositesb.2017.11.061
  • Mak, K., & Fam, A. (2020). The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers. Composites Part B: Engineering, 183, 107645. https://doi.org/10.1016/j.compositesb.2019.107645
  • Loong, M. L., & Cree, D. (2018). Enhancement of mechanical properties of bio-resin epoxy/flax fiber composites using acetic anhydride. Journal of Polymers and the Environment, 26(1), 224-234. https://doi.org/10.1007/s10924-017-0943-3
  • Alzeer, M., & MacKenzie, K. (2013). Synthesis and mechanical properties of novel composites of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormium tenax). Applied Clay Science, 75, 148-152. https://doi.org/10.1016/j.clay.2013.03.010
  • Zhang, Y., Li, Y., Ma, H., & Yu, T. (2013). Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Composites Science and Technology, 88, 172-177. https://doi.org/10.1016/j.compscitech.2013.08.037
  • Sarasini, F., Tirillò, J., D'Altilia, S., Valente, T., Santulli, C., Touchard, F., & Gaudenzi, P. (2016). Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering, 91, 144-153. https://doi.org/10.1016/j.compositesb.2016.01.050
  • Chaudhary, V., Bajpai, P. K., & Maheshwari, S. (2018). Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. Journal of Natural Fibers, 15(1), 80-97. https://doi.org/10.1080/15440478.2017.1320260
  • Boccarusso, L., De Fazio, D., & Durante, M. (2021). Production of PP Composites Reinforced with Flax and Hemp Woven Mesh Fabrics via Compression Molding. Inventions, 7(1), 5. https://doi.org/10.3390/inventions7010005
  • Shahzad, A. (2011). Impact and fatigue properties of hemp–glass fiber hybrid biocomposites. Journal of Reinforced Plastics and Composites, 30(16), 1389-1398. https://doi.org/10.1177/0731684411425975
  • Munoz, E., & García-Manrique, J. A. (2015). Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/390275
  • Manfredi, L. B., Rodríguez, E. S., Wladyka-Przybylak, M., & Vázquez, A. (2006). Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymer Degradation and Stability, 91(2), 255-261. https://doi.org/10.1016/j.polymdegradstab.2005.05.003
  • Kumar, A. P., Singh, R. P., & Sarwade, B. D. (2005). Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Materials Chemistry and Physics, 92(2-3), 458-469. https://doi.org/10.1016/j.matchemphys.2005.01.027
  • Sarkar, S., & Adhikari, B. (2001). Jute felt composite from lignin modified phenolic resin. Polymer Composites, 22(4), 518-527. https://doi.org/10.1002/pc.10556
  • Das, B. K., Ray, P. K., & Chakravarty, A. C. (1983). 37—The Properties of Jute Fibres at Different Stages of Plant Growth. Journal of the Textile Institute, 74(6), 367-373. https://doi.org/10.1080/00405008308631693
  • Wu, Y., Xia, C., Cai, L., Garcia, A. C., & Shi, S. Q. (2018). Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production, 184, 92-100. https://doi.org/10.1016/j.jclepro.2018.02.257
  • Suizu, N., Uno, T., Goda, K., & Ohgi, J. (2009). Tensile and impact properties of fully green composites reinforced with mercerized ramie fibers. Journal of Materials Science, 44(10), 2477-2482. http://dx.doi.org/10.1007/s10853-009-3317-y
  • Qiu, R., Ren, X., Fifield, L. S., Simmons, K. L., & Li, K. (2011). Hemp‐fiber‐reinforced unsaturated polyester composites: Optimization of processing and improvement of interfacial adhesion. Journal of Applied Polymer Science, 121(2), 862-868. https://doi.org/10.1002/app.33674
  • Lu, N., Oza, S., & Ferguson, I. (2012). Effect of alkali and silane treatment on the thermal stability of hemp fibers as reinforcement in composite structures. In Advanced Materials Research (Vol. 415, pp. 666-670). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.415-417.666
  • Oh, J. T., Hong, J. H., Ahn, Y., & Kim, H. (2012). Reliability improvement of hemp based bio-composite by surface modification. Fibers and Polymers, 13(6), 735-739. http://dx.doi.org/10.1007%2Fs12221-012-0735-2
  • Islam, M. S., Pickering, K. L., & Foreman, N. J. (2011). Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science, 119(6), 3696-3707. https://doi.org/10.1002/app.31335
  • Väisänen, T., Batello, P., Lappalainen, R., & Tomppo, L. (2018). Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products, 111, 422-429. https://doi.org/10.1016/j.indcrop.2017.10.049
  • Sullins, T., Pillay, S., Komus, A., & Ning, H. (2017). Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, 15-22. https://doi.org/10.1016/j.compositesb.2017.02.001
  • Bledzki, A. K., Reihmane, S. A., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: a literature review. Polym.-Plast. Technol. Eng., 37(4), 451-468. https://doi.org/10.1080/03602559808001373
  • Schirp, A., & Stender, J. (2010). Properties of extruded wood-plastic composites based on refiner wood fibres (TMP fibres) and hemp fibres. Eur. J. Wood Prod, 68(2), 219-231. https://doi.org/10.1007/s00107-009-0372-7
  • Niu, P., Liu, B., Wei, X., Wang, X., & Yang, J. (2011). Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. Journal of Reinforced Plastics and Composites, 30(1), 36-44. https://doi.org/10.1177/0731684410383067
  • Merotte, J., Le Duigou, A., Kervoelen, A., Bourmaud, A., Behlouli, K., Sire, O., & Baley, C. (2018). Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polymer Testing, 66, 303-311. https://doi.org/10.1016/j.polymertesting.2018.01.019
  • Yan, Z. L., Wang, H., Lau, K. T., Pather, S., Zhang, J. C., Lin, G., & Ding, Y. (2013). Reinforcement of polypropylene with hemp fibres. Composites Part B: Engineering, 46, 221-226. https://doi.org/10.1016/j.compositesb.2012.09.027
  • Talla, A. F., Mfoumou, E., Jeson, S., Pagé, J. S. Y. D., & Erchiqui, F. (2013). Mechanical and structural properties of a novel melt processed PET–hemp composite: Influence of additives and fibers concentration. Journal of Reinforced Plastics and Composites, 32(20), 1526-1533. https://doi.org/10.1177/0731684413494108
  • Brostow, W., & Hagg Lobland, H. E. (2010). Brittleness of materials: implications for composites and a relation to impact strength. Journal of materials science, 45(1), 242-250. https://doi.org/10.1007/s10853-009-3926-5
  • Glória, G. O., Margem, F. M., Ribeiro, C. G. D., Moraes, Y. M. D., Cruz, R. B. D., Silva, F. D. A., & Monteiro, S. N. "Charpy impact tests of epoxy composites reinforced with giant bamboo fibers." Materials Research 18 (2015): 178-184. https://doi.org/10.1590/1516-1439.360614
  • Assis, F. S., Monteiro, S. N., Margem, F. M., & Loiola, R. L. (2014). Charpy toughness behavior of continuous banana fiber reinforced epoxy matrix composites. Characterization of Minerals, Metals, and Materials 2014, 499-506. https://doi.org/10.1002/9781118888056.ch58
  • Pereira, A. C., Monteiro, S. N., de Assis, F. S., Margem, F. M., da Luz, F. S., & de Oliveira Braga, F. (2017). Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. Journal of Materials Research and Technology, 6(4), 312-316. https://doi.org/10.1016/j.jmrt.2017.08.004
  • Petrucci, R., Santulli, C., Puglia, D., Nisini, E., Sarasini, F., Tirillò, J.,. & Kenny, J. M. (2015). Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Composites Part B: Engineering, 69, 507-515. https://doi.org/10.1016/j.compositesb.2014.10.031
  • Kong, K., Hejda, M., Young, R. J., & Eichhorn, S. J. (2009). Deformation micromechanics of a model cellulose/glass fibre hybrid composite. Composites Science and Technology, 69(13), 2218-2224.https://doi.org/10.1016/j.compscitech.2009.06.006
  • Clark, R. A., & Ansell, M. P. (1986). Jute and glass fibre hybrid laminates. Journal of Materials Science, 21(1), 269-276. https://doi.org/10.1007/BF01144731
  • Sanjay, M. R., & Yogesha, B. (2017). Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2), 2739-2747. https://doi.org/10.1016/j.matpr.2017.02.151
  • Stapulionienė, R., Vaitkus, S., & Vėjelis, S. (2017). Investigation of Mechanical Properties of Composite Made from Hemp and Polylactide. In Key Engineering Materials (Vol. 721, pp. 63-67). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.721.63
  • Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., & Bin, Y. (2013). Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. Journal of Polymers and the Environment, 21(4), 1117-1127. https://doi.org/10.1007/s10924-013-0569-z
  • Mukherjee, T., & Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: a review. Journal of Polymers and the Environment, 19(3), 714. https://doi.org/10.1007/s10924-011-0320-6
  • Shibata, M., Ozawa, K., Teramoto, N., Yosomiya, R., & Takeishi, H. (2003). Biocomposites made from short abaca fiber and biodegradable polyesters. Macromolecular Materials and Engineering, 288(1), 35-43. https://doi.org/10.1002/mame.200290031

Details

Primary Language English
Subjects Materials Science, Multidisciplinary
Published Date September 2022
Journal Section Articles
Authors

Ataberk BAYSAL>
MARMARA UNIVERSITY
0000-0001-6663-2156
Türkiye


Paşa YAYLA> (Primary Author)
MARMARA UNIVERSITY, FACULTY OF ENGINEERING
0000-0002-1787-9475
Türkiye


Halit Süleyman TÜRKMEN>
ISTANBUL TECHNICAL UNIVERSITY
0000-0001-5508-7236
Türkiye

Publication Date September 30, 2022
Application Date June 26, 2022
Published in Issue Year 2022, Volume 7, Issue 3

Cite

APA Baysal, A. , Yayla, P. & Türkmen, H. S. (2022). A review on engineering biocomposites and natural fiber-reinforced materials . Journal of Sustainable Construction Materials and Technologies , 7 (3) , 231-249 . DOI: 10.47481/jscmt.1136018

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr