Review Article
BibTex RIS Cite

Review on Advances in Bio-based Admixtures for Concrete

Year 2023, Volume: 8 Issue: 4, 344 - 367, 19.12.2023
https://doi.org/10.47481/jscmt.1328915

Abstract

Bio-based admixtures (BBAs) are emerging as a promising class of additives for concrete, of- fering a more sustainable and environmentally friendly alternative to conventional chemical admixtures. Derived from various natural or biological sources, including plants, animals, and microorganisms, BBAs have shown potential in enhancing the performance characteristics of concrete in several key areas. This review article provides an in-depth exploration of BBAs, be- ginning with a detailed classification of the different types of BBAs based on their source mate- rial and production methods. It then delves into the various characterization techniques used to assess the properties and performance of BBAs, providing insights into their impact on the workability, strength, durability, and rheology of concrete. The article also discusses the diverse application areas of BBAs, highlighting their versatility and potential for wide-ranging use in the construction industry. It further identifies and discusses the challenges associated with the use of BBAs, such as issues related to compatibility with different types of cement and concrete, storage and shelf-life considerations, quality control and standardization concerns, and cost-effective- ness. In conclusion, the review emphasizes that while BBAs hold great promise as an alternative to conventional chemical admixtures for concrete, there is a need for more interdisciplinary collaboration and research to overcome the identified challenges and fully realize their poten- tial. The paper calls for further studies focusing on optimizing the production and application processes of BBAs, as well as developing standardized testing and quality control procedures.

References

  • Schrader-King, K. (2022). Urban development overview. https://www.worldbank.org/en/topic/urbandevelopment/overview
  • Ding, Z., Zhu, M., Tam, V. W. Y., Tran, C., & Yi, G. (2018). A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages. J Clean Prod, 176, 676-692.
  • Aigbavboa, C., Ametepey, O., & Ansah, K. (2015). Barriers to successful implementation of sustainable construction in the Ghanaian construction industry. Procedia Manuf, 3, 1682-1689.
  • Abd El-Rehim, H. A., Diaa, D. A., & Hegazy, E-S. A. (2013). Radiation synthesis of eco-friendly water-reducing sulfonated starch/acrylic acid hydrogel designed for the cement industry. Radiat Phys Chem, 85, 139-146.
  • Afroz, S., Anwar Hossain, K. M., & Manzur, T. (2020). Arrowroot as bio-admixture for performance enhancement of concrete. J Build Eng, 30, 101313.
  • Esmatloo, P., & Sabbagh, R. (2019). Life cycle assessment for ordinary and frost-resistant concrete. In IFIP Advances in Information and Communication Technology (pp. 365–370). Springer.
  • Aggarwal, P., Devi, K., & Saini, B. (2019). Admixtures used in self-compacting concrete: A review. Iranian J Sci Technol Trans Civ Eng, 44, 377-403.
  • Ramachandran, V. S. (1996). Admixture interactions in concrete. In Concrete Admixtures Handbook (pp. 95-136). William Andrew.
  • Glaus, M. A., Laube, A., & van Loon, L. R. (2004). A generic procedure for the assessment of the effect of concrete admixtures on the sorption of radionuclides on cement: Concept and selected results. Mater Res Soc Symp Proc, 365–370.
  • Harrison, D. M. (2013). The Foundation. In The Grouting Handbook (pp. 1-24). Elsevier.
  • Constructor. (2019). Concrete admixtures (additives) - types, selection, properties, uses. https://theconstructor.org/concrete/concrete-admixtures-types-and-uses/409/
  • Abbà, A., Carnevale, M. M., Cillari, G., Collivignarelli, M. C., & Paola, R. (2021). A review on alternative binders, admixtures, and water for the production of sustainable concrete. J Clean Prod, 295, 126408.
  • ASTM International. (2019). ASTM C494/C494M-19 standard specification for chemical admixtures for concrete. https://www.astm.org/c0494_c0494m-19e01.html
  • Khan, B., & Muhammad-Ullah, M. U. (2004). Effect of a retarding admixture on the setting time of cement pastes in hot weather. J King Abdulaziz Univ Eng Sci, 15, 63-79.
  • Ma, G., & Wang, L. (2017). A critical review of preparation design and workability measurement of concrete material for large-scale 3D printing. Front Struct Civ Eng, 12(3), 382-400.
  • Al-Baity, A. O., Al-Nowaiser, F. M., & El-Gamal, S. M. A. (2011). Effect of superplasticizers on the hydration kinetic and mechanical properties of Portland cement pastes. J Adv Res, 3, 119-124.
  • Ley, M. T., Scherer, G. W., & Tunstall, L. E. (2021). Air entraining admixtures: Mechanisms, evaluations, and interactions. Cem Concr Res, 150, 106557.
  • Attachaiyawuth, A., Ouchi, M., Rath, S., & Puthipad, N. (2017). Improving the stability of entrained air in self-compacting concrete by optimizing the mix viscosity and air entraining agent dosage. Constr Build Mater, 148, 531-537.
  • Du, L., & Folliard, K. J. (2005). Mechanisms of air entrainment in concrete. Cem Concr Res, 35, 1463-1471.
  • ACI Committee 212. (2016). ACI 212.3R-16 Report on chemical admixtures for concrete. www.concrete.org/committees/errata.asp.
  • Myrdal, R. (2007). Accelerating admixtures for concrete. https://www.researchgate.net/publication/288883755_Accelerating_admixtures_for_concrete.
  • Drilling. (2021). Cement slurry accelerators - PetroWiki. https://www.drillingmanual.com/cement-slurry-accelerators-mechanism-chemistry/#h-cementing-accelerators-calcium-chloride-mechanisms-of-action.
  • Mailvaganam, N. & Rixom, R. (1999). Chemical admixtures for concrete (3rd edition). CRC Press.
  • Eberhardt, A. B., Flatt, R. J., Gelardi, G., Mantellato, S., Marchon, D., & Palacios, M. (2016). Chemistry of chemical admixtures. In Science and Technology of Concrete Admixtures (pp. 149-218).
  • Darweesh, H. H. M. (2016). Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Woodhead.
  • Flatt, R. J., Mantellato, S., & Yahia, A. (2016). Science and Technology of Concrete Admixtures. Woodhead.
  • Vikan, H. V. (2005). Rheology and reactivity of cementitious binders with plasticizers. Doctoral Theses at NTNU, 189.
  • Colombo, A., Geiker, M., Justnes, H., Lauten, R. A., & Weerdt, K. D. (2018). The effect of calcium lignosulfonate on ettringite formation in cement paste. Cem Concr Res, 107, 188-205.
  • Danner, T., Geiker, M., Justnes, H., & Lauten R. A. (2015). Phase changes during the early hydration of Portland cement with Ca-lignosulfonates. Cem Concr Res, 69, 50-60.
  • Addis, A. Secco, M., & Valentini, L. (2018). Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage. Elsevier.
  • Pique, T. M., & Vazquez, A. (2016). Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier.
  • Ivanov, V., & Stabnikov, V. (2020). Bio-based Materials and Biotechnologies for Eco-efficient Construction. Woodhead.
  • Agarwal, M., & Yadav, M. (2021). Biobased building materials for a sustainable future: An overview. Mater Today Proc, 43, 2895-2902.
  • Plank, J. (2004). Applications of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol, 66, 1-9.
  • Pacheco-Torgal, F. (2016). Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier.
  • Mbugua, R., Ndambuki, J., & Salim, R. (2016). Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar. Case Stud Constr Mater, 5, 100-111.
  • Akindahunsi, A. A., & Uzoegbo, H. C. (2015). Strength and durability properties of concrete with starch admixture. Int J Concr Struct Mater, 9, 323-335.
  • Akar, C., & Canbaz, M. (2016). Effect of molasses as an admixture on concrete durability. J Clean Prod, 112, 2374-2380.
  • Bora, S. S., Borah, R. R., Gogoi, M., l., Goutam, P. J., Hazarika, A., Hazarika, I., & Saikia, N. (2018). Use of a plant-based polymeric material as a low-cost chemical admixture in cement mortar and concrete preparations. J Build Eng, 15, 194-202.
  • Dabbagh, H., Mahmood, H. F., & Mohammed, A. A. (2021). Comparative study on using chemical and natural admixtures (grape and mulberry extracts) for concrete. Case Stud Constr Mater, 15.
  • Deo, S. V. & Patel, G. K. (2016). Effect of natural organic materials as admixture on properties of concrete. Indian J Sci Technol, 9.
  • Kühne, H., Mbugua, R., Ngassam, T. I. L., Olonade, K. A., & Schmidt, W. (2018). Plant-based chemical admixtures - potentials and effects on the performance of cementitious materials. RILEM Tech Lett, 3, 124-128.
  • Bartholin, M. C., Biasotti, B., Giudici, M., Govin, A., Grosseau, P., & Langella, V. (2016). Modification of water retention and rheological properties of fresh-state cement-based mortars by guar gum derivatives. Constr Build Mater, 122, 772-780.
  • Otoko, G. R. (2014). Concrete admixture and set retarder potential of palm liquor. Eur Int J Sci Technol, 3(2), 74-80.
  • Kulkarni, P., & Muthadhi, A. (2017). Seaweed as an internal curing agent & strengthening in concrete - A Review. Int J Civ Eng, 4, 95-98.
  • Amaral M. L. D., Fang, Y., Kniffin, H., Qian, X., Reed, M., Wang, J., Wang, L., & Wang, X., (2022). Bio-based admixture (black tea extraction) for better performance of metakaolin blended cement mortars. Mater, 15.
  • He, Z., Li, Y., Lyu, Z., Shen, A., Wang, W., & Wu, H. (2020). Effect of wollastonite microfibers as cement replacement on the properties of cementitious composites: A review. Constr Build Mater, 261, 119920.
  • Chege, J., Mang’uriu, G., & Oyawa, W. (2014). The effects of pine (pinus canariensis) tree bark extract on the properties of fresh and hardened concrete. Civ Env Res, 6, 70-81.
  • Chandrasekar, M., Kavitha, K., Snekha, G., & Vinothini, A. (2016). Experimental investigation on usage of waste cooking oil (WCO) in concrete making and adopting innovative curing method. Int J Eng Res, 5, 146-151.
  • Liu, Y., Lv, C., Meng, F., Yang, Y., Yu, Z. (2020). Preparation of waste cooking oil emulsion as a shrinkage-reducing admixture and its potential use in high-performance concrete: Effect on shrinkage and mechanical properties. J Build Eng, 32(2), 101488.
  • Makomele, D. M., & Okwadha, G. D. O. (2018). Evaluation of water hyacinth extract as an admixture in concrete production. J Build Eng, 16, 129-133.
  • Bhuvaneshwari, P., Niranjan, G., Sathya, A., & Vishveswaran, M. (2014). Influence of bio admixture on mechanical properties of cement and concrete. Asian J Appl Sci, 205-214.
  • Grimoldi, A., Rampazzi, L., Riccardi, M. P., Sansonetti, A., & Zhang, K. (2018). Mortar mixes with oxblood: Historical background, possible recipes, and properties. EGU General Assembly, 20, 4453.
  • Babu, T. S. R., & Neeraja, D. (2017). An experimental study of natural admixture effect on conventional concrete and high volume class F fly ash blended concrete. Case Stud Constr Mater, 6, 43-62.
  • Dheilly, R. M., Laidoudi, B., Quéneudec, M., & Remadnia, A. (2009). Use of animal proteins as a foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Constr Build Mater, 23, 3118-3123.
  • Abdulkareem, M. O., Lim, N. H. A. S., Olukotun, A., Olukotun, N., & Sam, A. R. M. (2020). Biogenic approach for concrete durability and sustainability using effective microorganisms: A review. Constr Build Mater, 261(119664), 1-9.
  • Ivanov, V., & Stabnikov, V. (2017). Construction Biotechnology. Springer Singapore.
  • Woldemariam, A. M., Oyawa, W. O., & Abuodha, S. O. (2014). Cypress tree extract as an eco-friendly admixture in concrete. International Journal of Civil Engineering & Technology (IJCIET), 5, 25–36.
  • Kühne, H., Mbugua, R., Olonade, K. A., Schmidt, W., & Tchetgnia Ngassam, I. L. (2018). Plant-based chemical admixtures – potentials and effects on the performance of cementitious materials. RILEM Tech Lett, 3, 124-128.
  • Chu, J., Ivanov, V., & Stabnikov, V. (2015). Basics of construction microbial biotechnology. Biotechnologies and biomimetics for civil engineering. Springer.
  • Ren, L., Wang, K., & Yang, L. (2018). Effect of sodium gluconate and citrate on the fluidity of alpha-hemihydrate gypsum paste plasticized by polycarboxylate superplasticizer. Cem Wapno Beton, 2018, 144-158.
  • Biswas, M. C., Hoque, M. E., & Tusnim, J. (2020). Biopolymers in building materials. Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier.
  • Ivanov, V., & Stabnikov, V. (2016). Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials. Biopolymers and biotech admixtures for eco-efficient construction materials. Elsevier.
  • Ivanov, V., & Stabnikov, V. (2017). Biotechnological admixtures for cement and mortars. Construction Biotechnology. Springer.
  • Jin, J. (2002). Properties of Mortar for Self-Compacting Concrete [PhD thesis, Department of Civil and Environmental Engineering, University of London].
  • Chang, H. L., Hsu, W. C., Huang, C. K., Hui-lan, C., & Liaw, C. T. (1998). A novel method to reuse paper sludge and co-generation ashes from a paper mill. J Hazard Mater, 58, 93-102.
  • Bielza de Ory, V. (2001). Heritage and sustainable tourism from territorial planning: The case of the Aragonese Pyrenees. Estudios Geográficos, 62, 583-603.
  • Li, W., Li, X., Shen, X., Wang, H., Zhang, Y., & Zhang, Z., (2018). Effect of welan gum on the hydration and hardening of Portland cement. J Therm Anal Calorim, 131, 1277-1286.
  • Chung, I. M., Malathy, R., & Prabakaran, M. (2020). Characteristics of fly ash-based concrete prepared with bio admixtures as internal curing agents. Constr Build Mater, 262.
  • Kiemle, D. J., Silverstein, R. M., & Webster, F. X. (2005). Spectrometric Identification of Organic Compounds (7th ed.). John Wiley & Sons.
  • Khadimallah, M. A., Kumar, Y. P., Ramados, R., & Shanmugavel, D. (2021). Experimental analysis of the performance of egg albumen as a sustainable bio admixture in natural hydraulic lime mortars. J Clean Prod, 320, 128736.
  • Karthik, A., Saravanakumar, S. S., Sudalaimani, K., Vijayakumar, C. T. (2019). Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag-based self-cured geopolymer mortars. J Hazard Mater, 361, 56-63.
  • Ravi, R., Sekar, S. K., & Selvaraj, T. (2016). Characterization of hydraulic lime mortar containing opuntia ficus-indica as a bio-admixture for restoration applications. J American Concr Inst, 10, 714-725.
  • Dubey, R., Ramadoss, R., & Shanmugavel, D. (2020). Use of natural polymer from plant as an admixture in hydraulic lime mortar masonry. J Build Eng, 30, 101252.
  • Ramadoss, R., Raneri, S., Selvaraj, T., & Shanmugavel, D. (2020). Interaction of a viscous biopolymer from cactus extract with cement paste to produce sustainable concrete. Constr Build Mater, 257, 119585.
  • Avenoza, A., Busto, J. H., García-Álvarez, L., Oteo, J. A., & Peregrina, J. M. (2016). Applications of 1H Nuclear Magnetic Resonance Spectroscopy in Clinical Microbiology. Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. InTech.
  • Justnes, H., Meland, I., Bjoergum, J., Krane, J., Skjetne, T. (2015). Nuclear magnetic resonance (NMR) - a powerful tool in cement and concrete research. Adv Cem Res, 3, 105-110.
  • Matschei, T., Mota, B., & Scrivener, K. (2019). Impact of sodium gluconate on white cement-slag systems with Na2SO4. Cem Concr Res, 122, 59-71.
  • Arnold, M., Glasser, G., Hergerth, W., Herschke, L., Rottstegge, J., Spiess, H. W., & Wilhelm, M. (2005). Solid-state NMR and LVSEM studies on the hardening of latex-modified tile mortar systems. Cem Concr Res, 35, 2233-2243.
  • Choi, H. Y., Choi, S. J., Bae, S. H., Bang, E. J., Ko, H. M., & Lee, J. I. (2022). Effect of bio-inspired polymer types on engineering characteristics of cement composites. Polym, 14(9), 1808.
  • Binbin, L., Duan, W., Liu, K., Nan, Z., Quan, X., Wang, S., Wei, T., & Xu, F. (2021). Study on the mechanical properties and microstructure of fiber-reinforced metakaolin-based recycled aggregate concrete. Constr Build Mater, 294, 123554.
  • Bao, J., Lei, D., Tian, Y., Xie, D., Wang, B., Zhang, P., & Zhao, T. (2023). The effects of an organic corrosion inhibitor on concrete properties and frost resistance. J Build Eng, 65, 105762.
  • Clement, R. E., & Karasek, F. W., (1988). Gas chromatography-mass spectrometry. Basic Gas Chromatography – Mass Spectrometry. (1st Ed.). Elsevier.
  • Kaluarachchi, M., Lewis, M. R., & Lindon, J. C. (2016). Standardized protocols for MS-based metabolic phenotyping. Encyclopedia of Spectroscopy and Spectrometry (3rd ed.). Elsevier.
  • Griffiths, M., & van Hille, R. (2016). Application and verification of direct transesterification as a method to quantify fatty acids in cement and concrete. Constr Build Mater, 127, 26-29.
  • Gu, J., Kattiba, S. M., Lupyana, S. D., & Sahini, M. G. (2021). Use of phyto-based polymeric material as a chemical admixture in well cement slurry formulation. Upstream Oil Gas Technol, 7(12), 100060.
  • Khadka, T. B., Lamichhane, A., & Motra, G. B. (2020). Evaluation of water hyacinth extract of nepalese lakes as an admixture in concrete production. Proceedings of 8th IOE Graduate Conference, Nepal.
  • Choi, M. S., Jang, K. P., Kim, Y. J., & Kwon, S. H. (2018). Experimental observation of variation of rheological properties during concrete pumping. Int J Concr Struct Mater, 12, 79.
  • Ji, X., & Struble, L. (2001). Rheology. Encyclopedia of Materials: Science and Technology. Pergamon.
  • Kutchko, B. G., Massoudi, M., Rosenbaum, E., & Tao, C. (2020). A Review of rheological modeling of cement slurry in oil well applications. Energies, 13, 570.
  • Aslani, F., Ghodrat, M., Jahandari, S., Joshaghani, A., Rasekh, H. (2020). Rheology and workability of SCC. Self-Compacting Concrete: Materials, Properties and Applications. Woodhead.
  • de Schutter, G., Feys, D., Khayat, K. H., Verhoeven, R. (2016). Changes in rheology of self-consolidating concrete induced by pumping. Mater Struct, 49, 4657-4677.
  • Cai, X., Cui, J., He, Z., Zhang, G., (2022). Rheological properties of sprayable ultra-high-performance concrete with different viscosity-enhancing agents. Constr Build Mater, 321, 126154.
  • Adam, I. A., Anwar, A. M., & El-Mohsen, M. A. (2015). Mechanical properties of self-consolidating concrete incorporating cement kiln dust. HBRC Journal, 11, 1-6.
  • Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical characteristics of hardened concrete with different mineral admixtures: A review. Sci World J, 2014, 1-15.
  • Hoła, J., Niewiadomski, P., & Stefaniuk, D. (2017). Microstructural analysis of self-compacting concrete modified with the addition of nanoparticles. Procedia Eng, 172, 776-783.
  • Abdulwahab, M. T., & Uche, O. A. U. (2021). Durability properties of self-compacting concrete (SCC) incorporating cassava peel ash (CPA). Nigerian J Technol, 40, 584-590.
  • Bahadur Khadka, T., Lamichhane, A., & Motra, B., & (2021). Evaluation of water hyacinth extract of nepalese lakes as an admixture in concrete production. Izvestiya Atmos Ocean Phys, 8.
  • Abana, E. C., Gacias, J., Orata, H., Perez, J., Ranon, P. J., Talattad, J. D., Vega, W. (2021). Pulverized water hyacinth as an admixture for concrete. Int J Integr Eng, 13, 298-303.
  • Lamichhane, A., Motra, B., & Khadka, T. B. (2020). Evaluation of water hyacinth extract of Nepalese lakes as an admixture in concrete production. 8th IOE Graduate Conference, 8, 983–988.
  • Boban, J. M., Cherian, S. E., Nair, P. V., Shiji, S. T. (2017). Incorporation of water hyacinth in concrete. Int J Eng Res Technol, 6.
  • Ramasamy, V., & Venkatraman, S. (2019). hydration effect of Gum Arabic and guar gum powder on strength parameters of concrete. Caribbean J Sci, 53, 124-133.
  • Hassaballa, A. E., Madkhali, A. A., & Qabban, M. Y. (2021). Characterization of Gum Arabic in concrete mix design. Adv Sci Technol Eng Syst J, 6, 262-266.
  • Anigbogu, N., Olorunmeye, J., & Zakka, W. (2015). Ecological self-compacting concrete using Gum Arabic as a superplasticizer. WABER 2015, Ghana.
  • Abuodha, S. O., Athman, C. M., & Nyomboi, T. (2018). Use of Gum Arabic as a superplasticizer in self-compacting concrete. Int J Innov Sci Mod Eng, 5.
  • Zakka, W. (2019). Suitability of Gum Arabic as a plasticizer in self-compacting concrete: Fresh concrete properties.
  • Abdulbasir, G., Abdulkadir, G., & Elinwa, A. U. (2018). Gum Arabic as an admixture for cement concrete production. Constr Build Mater, 176, 201-212.
  • Abdeljaleel, N. S., Hassaballa, A. E., & Mohamed, A. R. E. (2012). The effect of Gum Arabic powder and liquid on the properties of fresh and hardened concrete. Int J Eng Inv, 1, 57-65.
  • Ahmed, Y. H., Rahamtalla, M. I., & Eldin K. S. (2021). Characterization of Gum Arabic as viscosity modifying agent (VMA) for producing self-compacting concrete (SCC). FES J Eng Sci, 9, 47-52.
  • Benjamin, E. O., & Peter, O. (2015). The use of Gum Arabic as an admixture in concrete. Sch J Eng Technol, 3, 282-292.
  • Agama-Acevedo, E., & Perez, L. A. B., (2017). Starch. Starch-Based Materials in Food Packaging. Elsevier.
  • Chaikasatsin, S., Julnipitawong, P., Tangtermsirikul, S., & Wanishlamlert, C. (2018). Effect of tapioca starch on properties of self-compacting concrete. J Thailand Concr Assoc, 5.
  • Kabubo, C., Mwero, J., & Oni, D. (2020). The effect of cassava starch on the durability characteristics of concrete. Open Civ Eng J, 14, 289-301.
  • Afroz, S., Borno, I. B., Hasanuzzaman, M., Hossain, K. M. A., Manzur, T. (2021). Potential of starch as organic admixture in cementitious composites. J Mater Civ Eng, 33.
  • Akindahunsi, A., & Uzoegbo, H. C. (2015). Starch modifies concretes exposed to aggressive acidic environment. Sci Adv J Civ Constr Eng, 1(1).
  • Akindahunsi, A., Iyuke, S. E., & Uzoegbo, H. (2012). Use of starch-modified concrete as a repair material. 3rd International Conference on Repair, Rehabilitation and Retrofitting, Cape Town.
  • Akindahunsi, A., Iyuke, S. E. Schmidt, W., & Uzoegbo, H. (2013). The Influence of starches on some properties of concrete. International Conference on Advances in Cement and Concrete Technology in Africa, Johannesburg.
  • Abd, S., Ali, Z. H., Hamood, Q., & Sameer, A., (2018). Effect of using corn starch as concrete admixture. Int J Engg Res Sci Tech, 5(3).
  • Indumathi, D., Jothilaakshmi, P., Kumar, N., Srigeethaa, S., & Varshini, S. I. (2019). Performance and study of corrosion inhibitor by using aloe perfoliata. Int J Eng Res Technol, 7.
  • Ahmed, S., & Men, F. A. (2022). Experimental study on aloe vera as a water reducing admixture in concrete. Int Res J Mod Eng Technol Sci, 2796-2800.
  • Pharmacy. (2017). Aloe: Pharmacognosy and phytochemistry. Pharmacognosy, 1-6.
  • Ariyagounder, J. (2013). Strength and corrosion investigation of concrete elements using sisal fibers and aloe perfoliata gel. Int J ChemTech Res, 14, 50-70.
  • Gayathri, M. M., Sathvika, R., Shalini, A. S., & Yokinya, B. E. (2021). Experimental study of aloe vera in concrete. Int J Res Eng Sci, 9, 14-24.
  • Ge, D., Li, W., Ma, S., Shen, X., Yu, J., Zhang, S. (2015). Influence of sodium gluconate on the performance and hydration of Portland cement. Constr Build Mater, 91, 138-144.
  • Li, B., Li, J., Liu, C., Liu, Z., Lu, C., Lv, X., Tan, Y., & Wang, R. (2020). The effect of sodium gluconate on pastes’ performance and hydration behavior of ordinary Portland cement. Adv Mater Sci Eng, 2020.
  • Akbari, Y. V., Panchani, V., & Shah, D. L. (2015). Parametric study on self-compacting concrete by using viscosity modifying agent as "Xanthan Gum." Int J Sci Res Dev, 3, 344-348.
  • Khayat, K. H., & Yahia, A. (1997). Effect of welan gum-high-range water reducer combinations on rheology of cement grout. ACI Mater J, 94, 365-372.
  • Furkan, T., Keskin Ü. S., & Saydan, M. (2022). The effect of different viscosity modifying additives on the mechanical and flow properties of self-compacting mortars. Niğde Ömer Halisdemir Univ J Eng Sci, 11, 752-757.
  • Chen, S., Liu, C., Zhang, Y., Zeng, L., Zhao, Q. (2016). The competitive adsorption characteristics of welan gum and superplasticizer in cement mortar. J Wuhan Univ Technol Mater Sci, 31, 131-138.
  • Jamnu, M. A., Patel, R. B., Purohit, B. M. (2015). Application of Xanthan Gum as a viscosity modifying admixture along with super plasticizer for self-compacting concrete (SCC). Int J Innov Res Technol, 1, 1402-1406.
  • Gias, I. I., Hoque, N., Islam, M., & Islam, M. M. (2022). An experimental study on the strength and crack healing performance of E. Coli bacteria-induced microbial concrete. Adv Civ Eng, 2022.
Year 2023, Volume: 8 Issue: 4, 344 - 367, 19.12.2023
https://doi.org/10.47481/jscmt.1328915

Abstract

References

  • Schrader-King, K. (2022). Urban development overview. https://www.worldbank.org/en/topic/urbandevelopment/overview
  • Ding, Z., Zhu, M., Tam, V. W. Y., Tran, C., & Yi, G. (2018). A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages. J Clean Prod, 176, 676-692.
  • Aigbavboa, C., Ametepey, O., & Ansah, K. (2015). Barriers to successful implementation of sustainable construction in the Ghanaian construction industry. Procedia Manuf, 3, 1682-1689.
  • Abd El-Rehim, H. A., Diaa, D. A., & Hegazy, E-S. A. (2013). Radiation synthesis of eco-friendly water-reducing sulfonated starch/acrylic acid hydrogel designed for the cement industry. Radiat Phys Chem, 85, 139-146.
  • Afroz, S., Anwar Hossain, K. M., & Manzur, T. (2020). Arrowroot as bio-admixture for performance enhancement of concrete. J Build Eng, 30, 101313.
  • Esmatloo, P., & Sabbagh, R. (2019). Life cycle assessment for ordinary and frost-resistant concrete. In IFIP Advances in Information and Communication Technology (pp. 365–370). Springer.
  • Aggarwal, P., Devi, K., & Saini, B. (2019). Admixtures used in self-compacting concrete: A review. Iranian J Sci Technol Trans Civ Eng, 44, 377-403.
  • Ramachandran, V. S. (1996). Admixture interactions in concrete. In Concrete Admixtures Handbook (pp. 95-136). William Andrew.
  • Glaus, M. A., Laube, A., & van Loon, L. R. (2004). A generic procedure for the assessment of the effect of concrete admixtures on the sorption of radionuclides on cement: Concept and selected results. Mater Res Soc Symp Proc, 365–370.
  • Harrison, D. M. (2013). The Foundation. In The Grouting Handbook (pp. 1-24). Elsevier.
  • Constructor. (2019). Concrete admixtures (additives) - types, selection, properties, uses. https://theconstructor.org/concrete/concrete-admixtures-types-and-uses/409/
  • Abbà, A., Carnevale, M. M., Cillari, G., Collivignarelli, M. C., & Paola, R. (2021). A review on alternative binders, admixtures, and water for the production of sustainable concrete. J Clean Prod, 295, 126408.
  • ASTM International. (2019). ASTM C494/C494M-19 standard specification for chemical admixtures for concrete. https://www.astm.org/c0494_c0494m-19e01.html
  • Khan, B., & Muhammad-Ullah, M. U. (2004). Effect of a retarding admixture on the setting time of cement pastes in hot weather. J King Abdulaziz Univ Eng Sci, 15, 63-79.
  • Ma, G., & Wang, L. (2017). A critical review of preparation design and workability measurement of concrete material for large-scale 3D printing. Front Struct Civ Eng, 12(3), 382-400.
  • Al-Baity, A. O., Al-Nowaiser, F. M., & El-Gamal, S. M. A. (2011). Effect of superplasticizers on the hydration kinetic and mechanical properties of Portland cement pastes. J Adv Res, 3, 119-124.
  • Ley, M. T., Scherer, G. W., & Tunstall, L. E. (2021). Air entraining admixtures: Mechanisms, evaluations, and interactions. Cem Concr Res, 150, 106557.
  • Attachaiyawuth, A., Ouchi, M., Rath, S., & Puthipad, N. (2017). Improving the stability of entrained air in self-compacting concrete by optimizing the mix viscosity and air entraining agent dosage. Constr Build Mater, 148, 531-537.
  • Du, L., & Folliard, K. J. (2005). Mechanisms of air entrainment in concrete. Cem Concr Res, 35, 1463-1471.
  • ACI Committee 212. (2016). ACI 212.3R-16 Report on chemical admixtures for concrete. www.concrete.org/committees/errata.asp.
  • Myrdal, R. (2007). Accelerating admixtures for concrete. https://www.researchgate.net/publication/288883755_Accelerating_admixtures_for_concrete.
  • Drilling. (2021). Cement slurry accelerators - PetroWiki. https://www.drillingmanual.com/cement-slurry-accelerators-mechanism-chemistry/#h-cementing-accelerators-calcium-chloride-mechanisms-of-action.
  • Mailvaganam, N. & Rixom, R. (1999). Chemical admixtures for concrete (3rd edition). CRC Press.
  • Eberhardt, A. B., Flatt, R. J., Gelardi, G., Mantellato, S., Marchon, D., & Palacios, M. (2016). Chemistry of chemical admixtures. In Science and Technology of Concrete Admixtures (pp. 149-218).
  • Darweesh, H. H. M. (2016). Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Woodhead.
  • Flatt, R. J., Mantellato, S., & Yahia, A. (2016). Science and Technology of Concrete Admixtures. Woodhead.
  • Vikan, H. V. (2005). Rheology and reactivity of cementitious binders with plasticizers. Doctoral Theses at NTNU, 189.
  • Colombo, A., Geiker, M., Justnes, H., Lauten, R. A., & Weerdt, K. D. (2018). The effect of calcium lignosulfonate on ettringite formation in cement paste. Cem Concr Res, 107, 188-205.
  • Danner, T., Geiker, M., Justnes, H., & Lauten R. A. (2015). Phase changes during the early hydration of Portland cement with Ca-lignosulfonates. Cem Concr Res, 69, 50-60.
  • Addis, A. Secco, M., & Valentini, L. (2018). Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage. Elsevier.
  • Pique, T. M., & Vazquez, A. (2016). Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier.
  • Ivanov, V., & Stabnikov, V. (2020). Bio-based Materials and Biotechnologies for Eco-efficient Construction. Woodhead.
  • Agarwal, M., & Yadav, M. (2021). Biobased building materials for a sustainable future: An overview. Mater Today Proc, 43, 2895-2902.
  • Plank, J. (2004). Applications of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol, 66, 1-9.
  • Pacheco-Torgal, F. (2016). Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier.
  • Mbugua, R., Ndambuki, J., & Salim, R. (2016). Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar. Case Stud Constr Mater, 5, 100-111.
  • Akindahunsi, A. A., & Uzoegbo, H. C. (2015). Strength and durability properties of concrete with starch admixture. Int J Concr Struct Mater, 9, 323-335.
  • Akar, C., & Canbaz, M. (2016). Effect of molasses as an admixture on concrete durability. J Clean Prod, 112, 2374-2380.
  • Bora, S. S., Borah, R. R., Gogoi, M., l., Goutam, P. J., Hazarika, A., Hazarika, I., & Saikia, N. (2018). Use of a plant-based polymeric material as a low-cost chemical admixture in cement mortar and concrete preparations. J Build Eng, 15, 194-202.
  • Dabbagh, H., Mahmood, H. F., & Mohammed, A. A. (2021). Comparative study on using chemical and natural admixtures (grape and mulberry extracts) for concrete. Case Stud Constr Mater, 15.
  • Deo, S. V. & Patel, G. K. (2016). Effect of natural organic materials as admixture on properties of concrete. Indian J Sci Technol, 9.
  • Kühne, H., Mbugua, R., Ngassam, T. I. L., Olonade, K. A., & Schmidt, W. (2018). Plant-based chemical admixtures - potentials and effects on the performance of cementitious materials. RILEM Tech Lett, 3, 124-128.
  • Bartholin, M. C., Biasotti, B., Giudici, M., Govin, A., Grosseau, P., & Langella, V. (2016). Modification of water retention and rheological properties of fresh-state cement-based mortars by guar gum derivatives. Constr Build Mater, 122, 772-780.
  • Otoko, G. R. (2014). Concrete admixture and set retarder potential of palm liquor. Eur Int J Sci Technol, 3(2), 74-80.
  • Kulkarni, P., & Muthadhi, A. (2017). Seaweed as an internal curing agent & strengthening in concrete - A Review. Int J Civ Eng, 4, 95-98.
  • Amaral M. L. D., Fang, Y., Kniffin, H., Qian, X., Reed, M., Wang, J., Wang, L., & Wang, X., (2022). Bio-based admixture (black tea extraction) for better performance of metakaolin blended cement mortars. Mater, 15.
  • He, Z., Li, Y., Lyu, Z., Shen, A., Wang, W., & Wu, H. (2020). Effect of wollastonite microfibers as cement replacement on the properties of cementitious composites: A review. Constr Build Mater, 261, 119920.
  • Chege, J., Mang’uriu, G., & Oyawa, W. (2014). The effects of pine (pinus canariensis) tree bark extract on the properties of fresh and hardened concrete. Civ Env Res, 6, 70-81.
  • Chandrasekar, M., Kavitha, K., Snekha, G., & Vinothini, A. (2016). Experimental investigation on usage of waste cooking oil (WCO) in concrete making and adopting innovative curing method. Int J Eng Res, 5, 146-151.
  • Liu, Y., Lv, C., Meng, F., Yang, Y., Yu, Z. (2020). Preparation of waste cooking oil emulsion as a shrinkage-reducing admixture and its potential use in high-performance concrete: Effect on shrinkage and mechanical properties. J Build Eng, 32(2), 101488.
  • Makomele, D. M., & Okwadha, G. D. O. (2018). Evaluation of water hyacinth extract as an admixture in concrete production. J Build Eng, 16, 129-133.
  • Bhuvaneshwari, P., Niranjan, G., Sathya, A., & Vishveswaran, M. (2014). Influence of bio admixture on mechanical properties of cement and concrete. Asian J Appl Sci, 205-214.
  • Grimoldi, A., Rampazzi, L., Riccardi, M. P., Sansonetti, A., & Zhang, K. (2018). Mortar mixes with oxblood: Historical background, possible recipes, and properties. EGU General Assembly, 20, 4453.
  • Babu, T. S. R., & Neeraja, D. (2017). An experimental study of natural admixture effect on conventional concrete and high volume class F fly ash blended concrete. Case Stud Constr Mater, 6, 43-62.
  • Dheilly, R. M., Laidoudi, B., Quéneudec, M., & Remadnia, A. (2009). Use of animal proteins as a foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Constr Build Mater, 23, 3118-3123.
  • Abdulkareem, M. O., Lim, N. H. A. S., Olukotun, A., Olukotun, N., & Sam, A. R. M. (2020). Biogenic approach for concrete durability and sustainability using effective microorganisms: A review. Constr Build Mater, 261(119664), 1-9.
  • Ivanov, V., & Stabnikov, V. (2017). Construction Biotechnology. Springer Singapore.
  • Woldemariam, A. M., Oyawa, W. O., & Abuodha, S. O. (2014). Cypress tree extract as an eco-friendly admixture in concrete. International Journal of Civil Engineering & Technology (IJCIET), 5, 25–36.
  • Kühne, H., Mbugua, R., Olonade, K. A., Schmidt, W., & Tchetgnia Ngassam, I. L. (2018). Plant-based chemical admixtures – potentials and effects on the performance of cementitious materials. RILEM Tech Lett, 3, 124-128.
  • Chu, J., Ivanov, V., & Stabnikov, V. (2015). Basics of construction microbial biotechnology. Biotechnologies and biomimetics for civil engineering. Springer.
  • Ren, L., Wang, K., & Yang, L. (2018). Effect of sodium gluconate and citrate on the fluidity of alpha-hemihydrate gypsum paste plasticized by polycarboxylate superplasticizer. Cem Wapno Beton, 2018, 144-158.
  • Biswas, M. C., Hoque, M. E., & Tusnim, J. (2020). Biopolymers in building materials. Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier.
  • Ivanov, V., & Stabnikov, V. (2016). Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials. Biopolymers and biotech admixtures for eco-efficient construction materials. Elsevier.
  • Ivanov, V., & Stabnikov, V. (2017). Biotechnological admixtures for cement and mortars. Construction Biotechnology. Springer.
  • Jin, J. (2002). Properties of Mortar for Self-Compacting Concrete [PhD thesis, Department of Civil and Environmental Engineering, University of London].
  • Chang, H. L., Hsu, W. C., Huang, C. K., Hui-lan, C., & Liaw, C. T. (1998). A novel method to reuse paper sludge and co-generation ashes from a paper mill. J Hazard Mater, 58, 93-102.
  • Bielza de Ory, V. (2001). Heritage and sustainable tourism from territorial planning: The case of the Aragonese Pyrenees. Estudios Geográficos, 62, 583-603.
  • Li, W., Li, X., Shen, X., Wang, H., Zhang, Y., & Zhang, Z., (2018). Effect of welan gum on the hydration and hardening of Portland cement. J Therm Anal Calorim, 131, 1277-1286.
  • Chung, I. M., Malathy, R., & Prabakaran, M. (2020). Characteristics of fly ash-based concrete prepared with bio admixtures as internal curing agents. Constr Build Mater, 262.
  • Kiemle, D. J., Silverstein, R. M., & Webster, F. X. (2005). Spectrometric Identification of Organic Compounds (7th ed.). John Wiley & Sons.
  • Khadimallah, M. A., Kumar, Y. P., Ramados, R., & Shanmugavel, D. (2021). Experimental analysis of the performance of egg albumen as a sustainable bio admixture in natural hydraulic lime mortars. J Clean Prod, 320, 128736.
  • Karthik, A., Saravanakumar, S. S., Sudalaimani, K., Vijayakumar, C. T. (2019). Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag-based self-cured geopolymer mortars. J Hazard Mater, 361, 56-63.
  • Ravi, R., Sekar, S. K., & Selvaraj, T. (2016). Characterization of hydraulic lime mortar containing opuntia ficus-indica as a bio-admixture for restoration applications. J American Concr Inst, 10, 714-725.
  • Dubey, R., Ramadoss, R., & Shanmugavel, D. (2020). Use of natural polymer from plant as an admixture in hydraulic lime mortar masonry. J Build Eng, 30, 101252.
  • Ramadoss, R., Raneri, S., Selvaraj, T., & Shanmugavel, D. (2020). Interaction of a viscous biopolymer from cactus extract with cement paste to produce sustainable concrete. Constr Build Mater, 257, 119585.
  • Avenoza, A., Busto, J. H., García-Álvarez, L., Oteo, J. A., & Peregrina, J. M. (2016). Applications of 1H Nuclear Magnetic Resonance Spectroscopy in Clinical Microbiology. Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. InTech.
  • Justnes, H., Meland, I., Bjoergum, J., Krane, J., Skjetne, T. (2015). Nuclear magnetic resonance (NMR) - a powerful tool in cement and concrete research. Adv Cem Res, 3, 105-110.
  • Matschei, T., Mota, B., & Scrivener, K. (2019). Impact of sodium gluconate on white cement-slag systems with Na2SO4. Cem Concr Res, 122, 59-71.
  • Arnold, M., Glasser, G., Hergerth, W., Herschke, L., Rottstegge, J., Spiess, H. W., & Wilhelm, M. (2005). Solid-state NMR and LVSEM studies on the hardening of latex-modified tile mortar systems. Cem Concr Res, 35, 2233-2243.
  • Choi, H. Y., Choi, S. J., Bae, S. H., Bang, E. J., Ko, H. M., & Lee, J. I. (2022). Effect of bio-inspired polymer types on engineering characteristics of cement composites. Polym, 14(9), 1808.
  • Binbin, L., Duan, W., Liu, K., Nan, Z., Quan, X., Wang, S., Wei, T., & Xu, F. (2021). Study on the mechanical properties and microstructure of fiber-reinforced metakaolin-based recycled aggregate concrete. Constr Build Mater, 294, 123554.
  • Bao, J., Lei, D., Tian, Y., Xie, D., Wang, B., Zhang, P., & Zhao, T. (2023). The effects of an organic corrosion inhibitor on concrete properties and frost resistance. J Build Eng, 65, 105762.
  • Clement, R. E., & Karasek, F. W., (1988). Gas chromatography-mass spectrometry. Basic Gas Chromatography – Mass Spectrometry. (1st Ed.). Elsevier.
  • Kaluarachchi, M., Lewis, M. R., & Lindon, J. C. (2016). Standardized protocols for MS-based metabolic phenotyping. Encyclopedia of Spectroscopy and Spectrometry (3rd ed.). Elsevier.
  • Griffiths, M., & van Hille, R. (2016). Application and verification of direct transesterification as a method to quantify fatty acids in cement and concrete. Constr Build Mater, 127, 26-29.
  • Gu, J., Kattiba, S. M., Lupyana, S. D., & Sahini, M. G. (2021). Use of phyto-based polymeric material as a chemical admixture in well cement slurry formulation. Upstream Oil Gas Technol, 7(12), 100060.
  • Khadka, T. B., Lamichhane, A., & Motra, G. B. (2020). Evaluation of water hyacinth extract of nepalese lakes as an admixture in concrete production. Proceedings of 8th IOE Graduate Conference, Nepal.
  • Choi, M. S., Jang, K. P., Kim, Y. J., & Kwon, S. H. (2018). Experimental observation of variation of rheological properties during concrete pumping. Int J Concr Struct Mater, 12, 79.
  • Ji, X., & Struble, L. (2001). Rheology. Encyclopedia of Materials: Science and Technology. Pergamon.
  • Kutchko, B. G., Massoudi, M., Rosenbaum, E., & Tao, C. (2020). A Review of rheological modeling of cement slurry in oil well applications. Energies, 13, 570.
  • Aslani, F., Ghodrat, M., Jahandari, S., Joshaghani, A., Rasekh, H. (2020). Rheology and workability of SCC. Self-Compacting Concrete: Materials, Properties and Applications. Woodhead.
  • de Schutter, G., Feys, D., Khayat, K. H., Verhoeven, R. (2016). Changes in rheology of self-consolidating concrete induced by pumping. Mater Struct, 49, 4657-4677.
  • Cai, X., Cui, J., He, Z., Zhang, G., (2022). Rheological properties of sprayable ultra-high-performance concrete with different viscosity-enhancing agents. Constr Build Mater, 321, 126154.
  • Adam, I. A., Anwar, A. M., & El-Mohsen, M. A. (2015). Mechanical properties of self-consolidating concrete incorporating cement kiln dust. HBRC Journal, 11, 1-6.
  • Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical characteristics of hardened concrete with different mineral admixtures: A review. Sci World J, 2014, 1-15.
  • Hoła, J., Niewiadomski, P., & Stefaniuk, D. (2017). Microstructural analysis of self-compacting concrete modified with the addition of nanoparticles. Procedia Eng, 172, 776-783.
  • Abdulwahab, M. T., & Uche, O. A. U. (2021). Durability properties of self-compacting concrete (SCC) incorporating cassava peel ash (CPA). Nigerian J Technol, 40, 584-590.
  • Bahadur Khadka, T., Lamichhane, A., & Motra, B., & (2021). Evaluation of water hyacinth extract of nepalese lakes as an admixture in concrete production. Izvestiya Atmos Ocean Phys, 8.
  • Abana, E. C., Gacias, J., Orata, H., Perez, J., Ranon, P. J., Talattad, J. D., Vega, W. (2021). Pulverized water hyacinth as an admixture for concrete. Int J Integr Eng, 13, 298-303.
  • Lamichhane, A., Motra, B., & Khadka, T. B. (2020). Evaluation of water hyacinth extract of Nepalese lakes as an admixture in concrete production. 8th IOE Graduate Conference, 8, 983–988.
  • Boban, J. M., Cherian, S. E., Nair, P. V., Shiji, S. T. (2017). Incorporation of water hyacinth in concrete. Int J Eng Res Technol, 6.
  • Ramasamy, V., & Venkatraman, S. (2019). hydration effect of Gum Arabic and guar gum powder on strength parameters of concrete. Caribbean J Sci, 53, 124-133.
  • Hassaballa, A. E., Madkhali, A. A., & Qabban, M. Y. (2021). Characterization of Gum Arabic in concrete mix design. Adv Sci Technol Eng Syst J, 6, 262-266.
  • Anigbogu, N., Olorunmeye, J., & Zakka, W. (2015). Ecological self-compacting concrete using Gum Arabic as a superplasticizer. WABER 2015, Ghana.
  • Abuodha, S. O., Athman, C. M., & Nyomboi, T. (2018). Use of Gum Arabic as a superplasticizer in self-compacting concrete. Int J Innov Sci Mod Eng, 5.
  • Zakka, W. (2019). Suitability of Gum Arabic as a plasticizer in self-compacting concrete: Fresh concrete properties.
  • Abdulbasir, G., Abdulkadir, G., & Elinwa, A. U. (2018). Gum Arabic as an admixture for cement concrete production. Constr Build Mater, 176, 201-212.
  • Abdeljaleel, N. S., Hassaballa, A. E., & Mohamed, A. R. E. (2012). The effect of Gum Arabic powder and liquid on the properties of fresh and hardened concrete. Int J Eng Inv, 1, 57-65.
  • Ahmed, Y. H., Rahamtalla, M. I., & Eldin K. S. (2021). Characterization of Gum Arabic as viscosity modifying agent (VMA) for producing self-compacting concrete (SCC). FES J Eng Sci, 9, 47-52.
  • Benjamin, E. O., & Peter, O. (2015). The use of Gum Arabic as an admixture in concrete. Sch J Eng Technol, 3, 282-292.
  • Agama-Acevedo, E., & Perez, L. A. B., (2017). Starch. Starch-Based Materials in Food Packaging. Elsevier.
  • Chaikasatsin, S., Julnipitawong, P., Tangtermsirikul, S., & Wanishlamlert, C. (2018). Effect of tapioca starch on properties of self-compacting concrete. J Thailand Concr Assoc, 5.
  • Kabubo, C., Mwero, J., & Oni, D. (2020). The effect of cassava starch on the durability characteristics of concrete. Open Civ Eng J, 14, 289-301.
  • Afroz, S., Borno, I. B., Hasanuzzaman, M., Hossain, K. M. A., Manzur, T. (2021). Potential of starch as organic admixture in cementitious composites. J Mater Civ Eng, 33.
  • Akindahunsi, A., & Uzoegbo, H. C. (2015). Starch modifies concretes exposed to aggressive acidic environment. Sci Adv J Civ Constr Eng, 1(1).
  • Akindahunsi, A., Iyuke, S. E., & Uzoegbo, H. (2012). Use of starch-modified concrete as a repair material. 3rd International Conference on Repair, Rehabilitation and Retrofitting, Cape Town.
  • Akindahunsi, A., Iyuke, S. E. Schmidt, W., & Uzoegbo, H. (2013). The Influence of starches on some properties of concrete. International Conference on Advances in Cement and Concrete Technology in Africa, Johannesburg.
  • Abd, S., Ali, Z. H., Hamood, Q., & Sameer, A., (2018). Effect of using corn starch as concrete admixture. Int J Engg Res Sci Tech, 5(3).
  • Indumathi, D., Jothilaakshmi, P., Kumar, N., Srigeethaa, S., & Varshini, S. I. (2019). Performance and study of corrosion inhibitor by using aloe perfoliata. Int J Eng Res Technol, 7.
  • Ahmed, S., & Men, F. A. (2022). Experimental study on aloe vera as a water reducing admixture in concrete. Int Res J Mod Eng Technol Sci, 2796-2800.
  • Pharmacy. (2017). Aloe: Pharmacognosy and phytochemistry. Pharmacognosy, 1-6.
  • Ariyagounder, J. (2013). Strength and corrosion investigation of concrete elements using sisal fibers and aloe perfoliata gel. Int J ChemTech Res, 14, 50-70.
  • Gayathri, M. M., Sathvika, R., Shalini, A. S., & Yokinya, B. E. (2021). Experimental study of aloe vera in concrete. Int J Res Eng Sci, 9, 14-24.
  • Ge, D., Li, W., Ma, S., Shen, X., Yu, J., Zhang, S. (2015). Influence of sodium gluconate on the performance and hydration of Portland cement. Constr Build Mater, 91, 138-144.
  • Li, B., Li, J., Liu, C., Liu, Z., Lu, C., Lv, X., Tan, Y., & Wang, R. (2020). The effect of sodium gluconate on pastes’ performance and hydration behavior of ordinary Portland cement. Adv Mater Sci Eng, 2020.
  • Akbari, Y. V., Panchani, V., & Shah, D. L. (2015). Parametric study on self-compacting concrete by using viscosity modifying agent as "Xanthan Gum." Int J Sci Res Dev, 3, 344-348.
  • Khayat, K. H., & Yahia, A. (1997). Effect of welan gum-high-range water reducer combinations on rheology of cement grout. ACI Mater J, 94, 365-372.
  • Furkan, T., Keskin Ü. S., & Saydan, M. (2022). The effect of different viscosity modifying additives on the mechanical and flow properties of self-compacting mortars. Niğde Ömer Halisdemir Univ J Eng Sci, 11, 752-757.
  • Chen, S., Liu, C., Zhang, Y., Zeng, L., Zhao, Q. (2016). The competitive adsorption characteristics of welan gum and superplasticizer in cement mortar. J Wuhan Univ Technol Mater Sci, 31, 131-138.
  • Jamnu, M. A., Patel, R. B., Purohit, B. M. (2015). Application of Xanthan Gum as a viscosity modifying admixture along with super plasticizer for self-compacting concrete (SCC). Int J Innov Res Technol, 1, 1402-1406.
  • Gias, I. I., Hoque, N., Islam, M., & Islam, M. M. (2022). An experimental study on the strength and crack healing performance of E. Coli bacteria-induced microbial concrete. Adv Civ Eng, 2022.
There are 131 citations in total.

Details

Primary Language English
Subjects Material Production Technologies, Materials Engineering (Other)
Journal Section Review Articles
Authors

Kidist Bedada This is me

Andrew Nyabuto This is me

Ismael Kınotı 0000-0001-6346-3772

Joseph Marangu This is me

Early Pub Date December 19, 2023
Publication Date December 19, 2023
Submission Date July 18, 2023
Acceptance Date October 14, 2023
Published in Issue Year 2023 Volume: 8 Issue: 4

Cite

APA Bedada, K., Nyabuto, A., Kınotı, I., Marangu, J. (2023). Review on Advances in Bio-based Admixtures for Concrete. Journal of Sustainable Construction Materials and Technologies, 8(4), 344-367. https://doi.org/10.47481/jscmt.1328915

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr