Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 2, 159 - 169, 24.06.2024
https://doi.org/10.47481/jscmt.1500907

Abstract

References

  • 1. Ramanjaneyulu, N., Rao, M. S., & Desai, V. B. (2019). Behavior of self-compacting concrete partial replacement of coarse aggregate with pumice light- weight aggregate. In Proceedings of the Internation- al Conference on Advances in Civil Engineering Vol. 21, pp. 23.
  • 2. Pavithra, A., & De Rose, D. J. (2018). Application of light expanded clay aggregate as replacement of coarse aggregate in concrete pavement. Int J Eng Technol, 7(4.2), 1–4. [CrossRef]
  • 3. Vijayalakshmi, R., & Ramanagopal, S. (2018). Struc- tural concrete using expanded clay aggregate: A re- view. Indian J Sci Technol, 11(16), 121888. [CrossRef]
  • 4. Chaitanya, B. K., Sivakumar, I., Madhavi, Y., Cruze, D., Venkatesh, C., Naga Mahesh, Y., & Sri Durga, C. S. (2024). Microstructural and residual properties of self-compacting concrete containing waste copper slag as fine aggregate exposed to ambient and elevat- ed temperatures. Infrastructures, 9(5), 85. [CrossRef]
  • 5. Chava, V., Rao, S., Munugala, P. K., & Chereddy, S. S. D. (2024). Effect of mineral admixtures and curing regimes on properties of self-compacting concrete. J Sustain Constr Mater Technol, 9(1), 25–35. [CrossRef]
  • 6. Real, S., Bogas, J. A., Gomes, M. G., & Ferrer, B. (2016). Thermal conductivity of structural light- weight aggregate concrete. Mag Concr Res, 68(15), 1–11. [CrossRef ]
  • 7. Ramanjaneyulu, N., Desai, B., & Rao, M. S. (2021). Experimental investigations on lightweight self-compacting concrete produced with sintered fly ash aggregate. Int J Eng Technol Manag Sci, 5(5), 14–19. [CrossRef ]
  • 8. Chava, V., & Chereddy, S. S. D. (2023). Effect of cal- cination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Technol, 8(4), 297–306. [CrossRef]
  • 9. Wegian, F. M. (2012). Strength properties of light- weight concrete made with LECA grading. Aust J Civ Eng, 10(1), 11–22. [CrossRef]
  • 10. Shendy, M. E. (1991). A comparative study of LECA concrete sandwich beams with and without core reinforcement. Cem Concr Compos, 13(2), 143–149. [CrossRef]
  • 11. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R., Rao, B. N. M. (2023). Estimation of durability properties of self-healing concrete influ- enced by different bacillus species. Res Eng Struct Mater, 9(4): 1489–1505. [CrossRef]
  • 12. Youssf, O., Hassanli, R., Mills, J. E., Ma, X., & Zhuge, Y. (2019). Cyclic performance of steel–concrete– steel sandwich beams with rubcrete and LECA con- crete core. J Compos Sci, 3(1), 5. [CrossRef]
  • 13. Mortazavi, M., & Majlessi, M. (2013). Evaluation of silica fume effect on compressive strength of structural lightweight concrete containing LECA as lightweight aggregate. Adv Mater Res, 626, 344–349. [CrossRef]
  • 14. Ramanjaneyulu, N., Srigiri, K., & Rao, N. V. S. (2018). Strength and durability studies on light weight self-compacting concrete with LECA as par- tial replacement of coarse aggregate. CVR J Sci Tech- nol, 15(1), 1–9. [CrossRef]
  • 15. Ashok, K., & Manoj, T. (2018). Study on strength properties of lightweight expanded clay aggregate concrete. J Struct Eng, 7(4), 7.
  • 16. Sravya, Y. L., Manoj, T., & Rao, M. S. (2021). Effect of temperature curing on lightweight expanded clay aggregate concrete. Mater Today Proceed, 38, 3386– 3391. [CrossRef ]
  • 17. Razak, R. A., Abdullah, M. M. A. B., Yahya, Z., & Hamid, M. S. A. (2017). Durability of geopolymer lightweight concrete infilled LECA in seawater ex- posure. In IOP Conference Series: Materials Science and Engineering, vol. 267, no. 1, p. 012012. IOP Pub- lishing. [CrossRef ]
  • 18. Lo, T. Y., & Cui, H. Z. (2004). Effect of porous light- weight aggregate on strength of concrete. Material Letters, 58(6), 916–919. [CrossRef]
  • 19. Lo, T. Y., Cui, H. Z., & Li, Z. G. (2004). Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Manag, 24(4), 333–338. [CrossRef]
  • 20. Kanagaraj, B., Anand, N., Praveen, B., Kandasami, S., Lublóy, E., & Naser, M. Z. (2023). Physical char- acteristics and mechanical properties of a sustain- able lightweight geopolymer based self-compacting concrete with expanded clay aggregates. Dev Built Environ, 13, 100115. [CrossRef]
  • 21. Raju, K., Ramanjaneyulu, N., & Rao, M. S. (2022). Strength and durability studies on lightweight self-compacting concrete partially replacing coarse aggregate with sintered fly ash aggregate. CVR J Sci Technol, 23(1), 7–13.
  • 22. Hwang, C. L., & Hung, M. F. (2005). Durability design and performance of self-consolidating lightweight concrete. Constr Build Mater, 19, 619– 626. [CrossRef ]
  • 23. Caijun, S., & Yanzhong, W. (2005). Mix proportion- ing and properties of self-consolidating lightweight concrete containing glass powder. ACI Mater J, 102(5), 355–363. [CrossRef]
  • 24. Wang, H. Y. (2009). Durability of self-consolidating lightweight aggregate concrete using dredged silt. Constr Build Mater, 23, 2332–2337. [CrossRef]
  • 25. Kumar, T. V., & Ramanjaneyulu, N. (2022). Flexural behavior of self-compacting concrete beams partial- ly replacing conventional aggregate with pumice ag- gregate. CVR J Sci Technol, 22(1), 8–21.
  • 26. Indian Standards. (2013). Specification for 53 grade ordinary Portland cement. IS 12269.
  • 27. Indian Standarts. (1996). Specifications for a method of physical tests for hydraulic cement. IS 4031-I.
  • 28. Indian Standards. (2016). Specification for coarse and fine aggregates from natural sources for concrete. IS 383.
  • 29. Venkateswara Rao, S., Seshagiri Rao, M. V., Ramas- eshu, D., & Rathish Kumar, P. (2012). Durability performance of self-compacting concrete. Mag Con- crete Res, 64(11), 1005–1013. [CrossRef]
  • 30. Pamu, Y., Kumar, V. S. S., Shakir, M. A., & Ubbana, H. (2022). Life cycle assessment of a building using Open-LCA software. Mater Today Proc, 52, 1968– 1978. [CrossRef ]
  • 31. Pamu, Y., & Alugubelli, S. (2023). A comparative study of environmental impacts due to convention- al and sustainable concrete. Mater Today Proc, 92, 112–120. [CrossRef ]
  • 32. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., & Bellum, R. R. (2023). Crack healing and flexur- al behaviour of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 1477–1488. [CrossRef ]
  • 33. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choud- hary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural character- istics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25. [CrossRef]
  • 34. Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of light weight con- crete using geopolymer as binder. Mater Today Proc, 52, 2053–2056. [CrossRef]
  • 35. Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance en- hancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215. [CrossRef]
  • 36. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Inn- ov Infrastruct Solut, 6(1), 13. [CrossRef]
  • 37. Rao, T. M., Mahesh, K., Venkatesh, C., Durga, C. S. S., Reddy, B. R., Tejaswi, P. S., & Charandeepnee- lesh, R. (2023). Influence of water magnetization on mechanical and durability properties of fly ash con- crete. Mater Today Proc, 04.194, 1–7.
  • 38. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174. [CrossRef]
  • 39. Venkatesh, C., Sri Rama Chand, M., Ruben, N., & Sonali Sri Durga, C. (2020). Strength characteristics of red mud and silica fume based concrete. In Smart Technologies for Sustainable Development: Select Pro- ceedings of SMTS 2019 (pp. 387–393). Springer Sin- gapore. [CrossRef ]
  • 40. BIS. (1963). Standard methods for testing lightweight aggregates. IS-2386.
  • 41. ASTM. (2019). Standard specification for chemical admixtures for concrete. ASTM C494.
  • 42. Rao, S. V., Rao, M. S., Ramaseshu, D., & Kumar, P. R. (2013). A rational mix design procedure for self-compacting concrete. Cem Wapno Beton, 18(5), 271–280.
  • 43. BS EN 12390-3. (2019). Testing hardened concrete - Part 3: Compressive strength of test specimens. EN 12390-3:2019.
  • 44. British Standarts. (1983). Methods for determining the flexural strength of concrete. BS 1881-Part 118.
  • 45. British Standarts (1983). Methods for determining the split tensile strength of concrete. 1881-Part 117.
  • 46. Kumar, V. R., Tejaswini, N., Madhavi, Y., & Kanneg- anti, J. B. C. (2022). Experimental study on self-com- pacting concrete with replacement of coarse aggre- gate by light expanded clay aggregate. IOP Conf Ser Earth Environ Sci, 982(1), 012006. [CrossRef]
  • 47. Kavyateja, B. V., Jawahar, J. G., Sashidhar, C., & Pan- ga, N. R. (2021). Moment carrying capacity of RSCC beams incorporating alccofine and fly ash. Pollack Periodica, 16(1), 19–24. [CrossRef]

Flexural and cracking behavior of reinforced lightweight self-compacting concrete beams made with LECA aggregate

Year 2024, Volume: 9 Issue: 2, 159 - 169, 24.06.2024
https://doi.org/10.47481/jscmt.1500907

Abstract

In the current research, an attempt was made to examine the flexural and cracking behavior of reinforced lightweight self-compacting concrete (LWSCC) beams incorporating light-expand- ed clay aggregate (LECA) as a partial replacement for natural coarse aggregate (NCA). Me- chanical properties such as compressive strength, split tensile strength, and flexural strength were evaluated, alongside fresh properties assessed using flow table, V-funnel, J-ring, and L-box tests. The study examined six beams, including a control mix, with LECA replacements of 5%, 10%, 15%, 20%, and 25%. The results indicate that compressive strength decreased with higher LECA content, from 44.56 MPa in the control mix to 32.73 MPa at 25% LECA. Flexural and split tensile strengths showed similar trends. Crack width increased with LECA content, from 1 mm in the control mix to 2 mm at 25% LECA, while density decreased. Flexur- al performance analysis revealed reduced ultimate load capacity and increased deflection with higher LECA proportions. The ductility index improved, suggesting enhanced flexibility. This study concludes that LECA can effectively replace NCA in LWSCC, though with a trade-off in strength and cracking behavior.

References

  • 1. Ramanjaneyulu, N., Rao, M. S., & Desai, V. B. (2019). Behavior of self-compacting concrete partial replacement of coarse aggregate with pumice light- weight aggregate. In Proceedings of the Internation- al Conference on Advances in Civil Engineering Vol. 21, pp. 23.
  • 2. Pavithra, A., & De Rose, D. J. (2018). Application of light expanded clay aggregate as replacement of coarse aggregate in concrete pavement. Int J Eng Technol, 7(4.2), 1–4. [CrossRef]
  • 3. Vijayalakshmi, R., & Ramanagopal, S. (2018). Struc- tural concrete using expanded clay aggregate: A re- view. Indian J Sci Technol, 11(16), 121888. [CrossRef]
  • 4. Chaitanya, B. K., Sivakumar, I., Madhavi, Y., Cruze, D., Venkatesh, C., Naga Mahesh, Y., & Sri Durga, C. S. (2024). Microstructural and residual properties of self-compacting concrete containing waste copper slag as fine aggregate exposed to ambient and elevat- ed temperatures. Infrastructures, 9(5), 85. [CrossRef]
  • 5. Chava, V., Rao, S., Munugala, P. K., & Chereddy, S. S. D. (2024). Effect of mineral admixtures and curing regimes on properties of self-compacting concrete. J Sustain Constr Mater Technol, 9(1), 25–35. [CrossRef]
  • 6. Real, S., Bogas, J. A., Gomes, M. G., & Ferrer, B. (2016). Thermal conductivity of structural light- weight aggregate concrete. Mag Concr Res, 68(15), 1–11. [CrossRef ]
  • 7. Ramanjaneyulu, N., Desai, B., & Rao, M. S. (2021). Experimental investigations on lightweight self-compacting concrete produced with sintered fly ash aggregate. Int J Eng Technol Manag Sci, 5(5), 14–19. [CrossRef ]
  • 8. Chava, V., & Chereddy, S. S. D. (2023). Effect of cal- cination on the physical, chemical, morphological, and cementitious properties of red mud. J Sustain Constr Mater Technol, 8(4), 297–306. [CrossRef]
  • 9. Wegian, F. M. (2012). Strength properties of light- weight concrete made with LECA grading. Aust J Civ Eng, 10(1), 11–22. [CrossRef]
  • 10. Shendy, M. E. (1991). A comparative study of LECA concrete sandwich beams with and without core reinforcement. Cem Concr Compos, 13(2), 143–149. [CrossRef]
  • 11. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., Bellum, R. R., Rao, B. N. M. (2023). Estimation of durability properties of self-healing concrete influ- enced by different bacillus species. Res Eng Struct Mater, 9(4): 1489–1505. [CrossRef]
  • 12. Youssf, O., Hassanli, R., Mills, J. E., Ma, X., & Zhuge, Y. (2019). Cyclic performance of steel–concrete– steel sandwich beams with rubcrete and LECA con- crete core. J Compos Sci, 3(1), 5. [CrossRef]
  • 13. Mortazavi, M., & Majlessi, M. (2013). Evaluation of silica fume effect on compressive strength of structural lightweight concrete containing LECA as lightweight aggregate. Adv Mater Res, 626, 344–349. [CrossRef]
  • 14. Ramanjaneyulu, N., Srigiri, K., & Rao, N. V. S. (2018). Strength and durability studies on light weight self-compacting concrete with LECA as par- tial replacement of coarse aggregate. CVR J Sci Tech- nol, 15(1), 1–9. [CrossRef]
  • 15. Ashok, K., & Manoj, T. (2018). Study on strength properties of lightweight expanded clay aggregate concrete. J Struct Eng, 7(4), 7.
  • 16. Sravya, Y. L., Manoj, T., & Rao, M. S. (2021). Effect of temperature curing on lightweight expanded clay aggregate concrete. Mater Today Proceed, 38, 3386– 3391. [CrossRef ]
  • 17. Razak, R. A., Abdullah, M. M. A. B., Yahya, Z., & Hamid, M. S. A. (2017). Durability of geopolymer lightweight concrete infilled LECA in seawater ex- posure. In IOP Conference Series: Materials Science and Engineering, vol. 267, no. 1, p. 012012. IOP Pub- lishing. [CrossRef ]
  • 18. Lo, T. Y., & Cui, H. Z. (2004). Effect of porous light- weight aggregate on strength of concrete. Material Letters, 58(6), 916–919. [CrossRef]
  • 19. Lo, T. Y., Cui, H. Z., & Li, Z. G. (2004). Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Manag, 24(4), 333–338. [CrossRef]
  • 20. Kanagaraj, B., Anand, N., Praveen, B., Kandasami, S., Lublóy, E., & Naser, M. Z. (2023). Physical char- acteristics and mechanical properties of a sustain- able lightweight geopolymer based self-compacting concrete with expanded clay aggregates. Dev Built Environ, 13, 100115. [CrossRef]
  • 21. Raju, K., Ramanjaneyulu, N., & Rao, M. S. (2022). Strength and durability studies on lightweight self-compacting concrete partially replacing coarse aggregate with sintered fly ash aggregate. CVR J Sci Technol, 23(1), 7–13.
  • 22. Hwang, C. L., & Hung, M. F. (2005). Durability design and performance of self-consolidating lightweight concrete. Constr Build Mater, 19, 619– 626. [CrossRef ]
  • 23. Caijun, S., & Yanzhong, W. (2005). Mix proportion- ing and properties of self-consolidating lightweight concrete containing glass powder. ACI Mater J, 102(5), 355–363. [CrossRef]
  • 24. Wang, H. Y. (2009). Durability of self-consolidating lightweight aggregate concrete using dredged silt. Constr Build Mater, 23, 2332–2337. [CrossRef]
  • 25. Kumar, T. V., & Ramanjaneyulu, N. (2022). Flexural behavior of self-compacting concrete beams partial- ly replacing conventional aggregate with pumice ag- gregate. CVR J Sci Technol, 22(1), 8–21.
  • 26. Indian Standards. (2013). Specification for 53 grade ordinary Portland cement. IS 12269.
  • 27. Indian Standarts. (1996). Specifications for a method of physical tests for hydraulic cement. IS 4031-I.
  • 28. Indian Standards. (2016). Specification for coarse and fine aggregates from natural sources for concrete. IS 383.
  • 29. Venkateswara Rao, S., Seshagiri Rao, M. V., Ramas- eshu, D., & Rathish Kumar, P. (2012). Durability performance of self-compacting concrete. Mag Con- crete Res, 64(11), 1005–1013. [CrossRef]
  • 30. Pamu, Y., Kumar, V. S. S., Shakir, M. A., & Ubbana, H. (2022). Life cycle assessment of a building using Open-LCA software. Mater Today Proc, 52, 1968– 1978. [CrossRef ]
  • 31. Pamu, Y., & Alugubelli, S. (2023). A comparative study of environmental impacts due to convention- al and sustainable concrete. Mater Today Proc, 92, 112–120. [CrossRef ]
  • 32. Durga, C. S. S., Venkatesh, C., Muralidhararao, T., & Bellum, R. R. (2023). Crack healing and flexur- al behaviour of self-healing concrete influenced by different bacillus species. Res Eng Struct Mater, 9(4), 1477–1488. [CrossRef ]
  • 33. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choud- hary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural character- istics of fly ash-based geopolymer concrete. J Build Pathol Rehabil, 7(1), 25. [CrossRef]
  • 34. Mukkala, P., Venkatesh, C., & Habibunnisa, S. (2022). Evaluation of mix ratios of light weight con- crete using geopolymer as binder. Mater Today Proc, 52, 2053–2056. [CrossRef]
  • 35. Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance en- hancement of fly ash-based geopolymer concrete. Innov Infrastruct Solut, 6(4), 215. [CrossRef]
  • 36. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2021). Role of red mud as a cementing material in concrete: A comprehensive study on durability behavior. Inn- ov Infrastruct Solut, 6(1), 13. [CrossRef]
  • 37. Rao, T. M., Mahesh, K., Venkatesh, C., Durga, C. S. S., Reddy, B. R., Tejaswi, P. S., & Charandeepnee- lesh, R. (2023). Influence of water magnetization on mechanical and durability properties of fly ash con- crete. Mater Today Proc, 04.194, 1–7.
  • 38. Venkatesh, C., Nerella, R., & Chand, M. S. R. (2020). Experimental investigation of strength, durability, and microstructure of red-mud concrete. J Korean Ceram Soc, 57(2), 167–174. [CrossRef]
  • 39. Venkatesh, C., Sri Rama Chand, M., Ruben, N., & Sonali Sri Durga, C. (2020). Strength characteristics of red mud and silica fume based concrete. In Smart Technologies for Sustainable Development: Select Pro- ceedings of SMTS 2019 (pp. 387–393). Springer Sin- gapore. [CrossRef ]
  • 40. BIS. (1963). Standard methods for testing lightweight aggregates. IS-2386.
  • 41. ASTM. (2019). Standard specification for chemical admixtures for concrete. ASTM C494.
  • 42. Rao, S. V., Rao, M. S., Ramaseshu, D., & Kumar, P. R. (2013). A rational mix design procedure for self-compacting concrete. Cem Wapno Beton, 18(5), 271–280.
  • 43. BS EN 12390-3. (2019). Testing hardened concrete - Part 3: Compressive strength of test specimens. EN 12390-3:2019.
  • 44. British Standarts. (1983). Methods for determining the flexural strength of concrete. BS 1881-Part 118.
  • 45. British Standarts (1983). Methods for determining the split tensile strength of concrete. 1881-Part 117.
  • 46. Kumar, V. R., Tejaswini, N., Madhavi, Y., & Kanneg- anti, J. B. C. (2022). Experimental study on self-com- pacting concrete with replacement of coarse aggre- gate by light expanded clay aggregate. IOP Conf Ser Earth Environ Sci, 982(1), 012006. [CrossRef]
  • 47. Kavyateja, B. V., Jawahar, J. G., Sashidhar, C., & Pan- ga, N. R. (2021). Moment carrying capacity of RSCC beams incorporating alccofine and fly ash. Pollack Periodica, 16(1), 19–24. [CrossRef]
There are 47 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Ramanjaneyulu Ningampalli 0000-0003-2071-5620

M. V. Seshagiri Rao This is me 0000-0003-4224-6343

V. Bhaskar Desai This is me 0000-0002-5982-8983

Early Pub Date June 15, 2024
Publication Date June 24, 2024
Submission Date February 29, 2024
Acceptance Date June 5, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Ningampalli, R., Rao, M. V. S., & Desai, V. B. (2024). Flexural and cracking behavior of reinforced lightweight self-compacting concrete beams made with LECA aggregate. Journal of Sustainable Construction Materials and Technologies, 9(2), 159-169. https://doi.org/10.47481/jscmt.1500907

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr