Year 2024,
Volume: 9 Issue: 4, 335 - 345, 31.12.2024
Joseph Bassey Emah
,
Abayomi Edema
,
Sylvester Andrew Ekong
David Adeniran Oyegoke
Ubong Robert
,
Funke Olawumi Fasuyi
References
- 1. Robert, U. W., Etuk, S. E., Emah, J. B., Agbasi, O. E.,
& Iboh, U. A. (2022). Thermophysical and mechan-
ical properties of clay-based composites developed
with hydrothermally calcined waste paper ash nano-
material for building purposes. Int J Thermophys,
43(5), 1-20. [CrossRef]
- 2. Tsega, E., Mosisa, A., & Fuga, F. (2017). Effects of fir-
ing time and temperature on physical properties of
fired clay bricks. Am J Civ Eng, 5(1), 21-26. [CrossRef]
- 3. Rondonane, H. T., Mbeny, J. A., Bayiga, E. C., &
Ndjigui, P. D. (2020). Characterization and applica-
tion tests of kaolinite clays from Aboudeia (South-
eastern Chad) in fired bricks making. Sci Afr, 7,
e00294. [CrossRef]
- 4. Garzõn, E., Cano, M., O'Kelly, B. C., & Sãnchez-So-
to, P. J. (2015). Phyllite clay-cement composites hav-
ing improved engineering properties and material
applications. Appl Clay Sci, 114, 229-233. [CrossRef]
- 5. Santos, L. M. A., Neto, J. A. S., & Azerẽdo, A. F. N.
(2020). Soil characterisation for adobe mixtures
containing Portland cement as a stabiliser. Revista
Matẽria, 25(1), 1-10. [CrossRef]
- 6. Ihuah, P. W. (2015). Building materials costs increas-
es and sustainability in real estate development in Ni-
geria. Afr J Econ Sustain Dev, 4(3), 218-233. [CrossRef]
- 7. Dunuweera, S. P., & Rajapakse, R. M. G. (2018).
Cement types, composition, uses and advantages of
nanocement, environmental impact on cement pro-
duction, and possible solutions. Adv Mater Sci Eng,
2018, 4158682. [CrossRef]
- 8. Etuk, S. E., Robert, U. W., Emah, J. B., & Agbasi, O.
E. (2021). Dielectric properties of eggshell mem-
brane of some select bird species. Arab J Sci Eng, 46,
769-777. [CrossRef]
- 9. Etuk, S. E., Agbasi, O. E., Abdulrazzaq, Z. T., & Rob-
ert, U. W. (2018). Investigation of thermophysical
properties of Alates (swarmers) termites wing as po-
tential raw material for insulation. Int J Sci World,
6(1), 1-7. [CrossRef]
- 9. Binici, H., Gemci, R., Aksogan, O., & Kaplan, H.
(2010). Insulation properties of bricks made with
cotton and textile ash wastes. Int J Mater Res, 101(7),
894-899. [CrossRef]
- 10. Agbede, O., & Joel, M. (2011). Effect of rice husk ash
(RHA) on the properties of Ibaji burnt clay bricks.
Am J Sci Ind Res, 2(4), 674-677. [CrossRef]
- 11. Reddy, K. S., Vivek, P. S., & Chambrelin, K. S. (2017).
Stabilization of expansive soil using bagasse ash. Int
J Civ Eng Technol, 8(4), 1730-1736.
- 12. Sankar, V. S., Raj, P. D. A., & Raman, S. J. (2019).
Stabilization of expansive soil by using agricultural
waste. Int J Eng Adv Technol, 8(3S), 154-157.
- 13. Mandal, S., & Singh, J. P. (2016). Stabilization of soil
using ground granulated blast furnace slag and fly
ash. Int J Innov Res Sci Eng Technol, 5(12), 21121-
21126.
- 14. Nath, B. D., Molla, M. K. A., & Sarkar, G. (2017). Study
on strength behavior of organic soil stabilized with fly
ash. Int Scholarly Res Notices, 2017, 5786541. [CrossRef]
- 15. Dayalan, J. (2016). Comparative study on stabili-
zation of soil with ground granulated blast furnace
slag (GGBS) and fly ash. Int Res J Eng Technol, 3,
2198-2204. [CrossRef]
- 16. Ubi, S. E., Nyak, E. E., & Agbor, R. B. (2022). En-
hancement of soil stability with groundnut shell ash.
J Civ Eng Res, 12(1), 1-7.
- 17. Arthi, A. J. J., Aarthi, G., Kumar, V. V., & Vishnupr-
riya, U. (2023). Stabilization of clay using groundnut
shell ash and sugarcane bagasse ash. Key Eng Mater,
960(1), 197-204. [CrossRef]
- 18. Sathiparan, N., Anburuvel, A., Selvam, V. V., &
Vithurshan, P. A. (2023). Potential use of groundnut
shell ash in sustainable stabilized earth blocks. Con-
str Build Mater, 393, 132058. [CrossRef]
- 19. Sujatha, E. R., Dharini, K., & Bharathi, V. (2016). In-
fluence of groundnut shell ash on strength and du-
rability properties of clay. Geomech Geoeng, 11(1),
20-27. [CrossRef]
- 20. Ajeigbe, H. A., Waliyar, F., Echekwu, C. A., Ayuba,
K., Motagi, B. N., Eniayeju, D., & Inuwa, A. (2014).
A farmer's guide to groundnut production in Nigeri-
an. International Crops Research Institute for the
Semi-Arid Tropics.
- 21. Sakoalia, K. D., Adu-Agyem, J., Amenuke, D. A., &
Deffor, B. (2019). Groundnut shell (powder) as an
alternative sculpture material for fine art: The case of
Salaga Senior High School, Ghana. J Arts Humanit,
8(4), 30-43.
- 22. Udeh, B. A. (2018). Bio-waste transesterification al-
ternative for biodiesel production: A combined ma-
nipulation of lipase enzyme action and lignocellulosic fermented ethanol. Asian J Biotechnol Bioresour Technol, 3(3), 1-9. [CrossRef]
- 23. Sowmya, T. A., Gayavajitha, E., Kanimozhi, R., &
Subalakshmi, R. (2018). Removal of toxic metals
from industrial wastewater using groundnut shell.
Int J Pure Appl Math, 119(15), 629-634.
- 24. Kanokon, N., Andrea, S., & Peter, B. (2018). Influ-
ence of KOH on the carbon nanostructure of peanut
shell. Resol Discov, 3(2), 29-32. [CrossRef]
- 25. ASTM D7928. (2017). Standard test method for
particle-size distribution (gradation) of fine-grained
soils using the sedimentation (hydrometer) analysis.
ASTM International.
- 26.Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie,
U. S., Abdulrazzaq, Z. T., Anonaba, A. U., & Ojo,
27. O. T. (2021). On the hygrothermal properties of
sandcrete blocks produced with sawdust as partial
replacement of sand. J Mech Behav Mater, 30(1),
144-155. [CrossRef]
- 28. Bediako, M., & Amankwah, E. O. (2015). Analysis of
chemical composition of cement in Ghana: A key to
understand the behaviour of cement. Adv Mater Sci
Eng, 2015, 1-5. [CrossRef]
- 29. Inegbenebor, A. I., Inegbenebor, A. O., Mordi, R.
C., Kalada, N., Falomo, A., & Sanyaolu, P. (2016).
Determination of the chemical compositions of
clay deposits from some part of South West Nigeria
for industrial applications. Int J Appl Sci Biotechnol,
4(1), 21-26. [CrossRef]
- 30. Adeniran, A. O., Akankpo, A. O., Etuk, S. E., Robert,
U. W., & Agbasi, O. E. (2022). Comparative study of
electrical resistance of disc-shaped compacts fab-
ricated using calcined clam shell, periwinkle shell,
and oyster shell nanopowder. Kragujevac J Sci, 44,
25-36. [CrossRef]
- 31. Robert, U. W., Etuk, S. E., Agbasi, O. E., Iboh, U. A., &
Ekpo, S. S. (2020). Temperature-dependent electrical
characteristics of disc-shaped compacts fabricated
using calcined eggshell nanopowder and dry cassava
starch. Powder Metall Prog, 20(1), 12-20. [CrossRef]
- 32. Munifah, S. S., Wiendartun, W., & Aminudim, A.
(2018). Design of temperature measuring instru-
ment using NTC thermistor of Fe₂TiO₅ based on
microcontroller ATmega 328. J Phys Conf Ser, 1280,
022052. [CrossRef]
- 33. Ekong, S. A., Oyegoke, D. A., Edema, A. A., & Rob-
ert, U. W. (2022). Density and water absorption co-
efficient of sandcrete blocks produced with waste
paper ash as partial replacement of cement. Adv Ma-
ter Sci, 22(4), 85-97. [CrossRef]
- 34. Robert, U. W., Etuk, S. E., & Agbasi, O. E. (2019). Bulk
volume determination by modified water displace-
ment method. Iraqi J Sci, 60(8), 1704-1710. [CrossRef]
- 35. Ekpenyong, N. E., Ekong, S. A., Nathaniel, E. U.,
Thomas, J. E., Okorie, U. S., Robert, U. W., Akpabio,
I. A., & Ekanem, N. U. (2023). Thermal response and
mechanical properties of groundnut shells' compos-
ite boards. Res J Sci Technol, 3(1), 42-57.
- 36. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi, O. E.,
Akpan, S. S., & Inyang, N. J. (2023). Paper-sawdust
composites: Fabrication and comparison in terms of
heat transfer and strength properties. Struct Envi-
ron, 15(1), 38-48. [CrossRef]
- 37. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Okorie,
U. S. (2021). Quick determination of thermal conductivity of thermal insulators using a modified Lee-Charlton's disc apparatus technique. Int J Ther-
mophys, 42(8), 1-20. [CrossRef]
- 38. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U.
S., Ekpenyong, N. E., & Anonaba, A. U. (2022). On
the modification of Lee-Charlton's disc apparatus
technique for thermal conductivity determination.
Res J Sci Technol, 2(3), 1-17.
- 39. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2020). Design and performance evaluation of a device for determination of specific heat capacity of thermal insula-
tors. Beni-Suef Univ J Basic Appl Sci, 9(1), 1-7. [CrossRef]
- 40. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2022).
Thermophysical properties of oil empty fruit bunch
peduncle for use as a mulching material. J Oil Palm
Res, 35, 448-455. [CrossRef]
- 41. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2021).
Investigation of heat transfer and mechanical properties of Saccharum officinarum leaf boards. Int J Energy Water Resour, 6(1), 95-102. [CrossRef]
- 42. Umoren, G. P., Udo, A. O., & Udo, I. E. (2023). Suit-
ability of Lagenaria breviflora rind-filled plaster of
Paris ceilings for building design. Res J Sci Technol,
3(2), 1-14.
- 43. Etuk, S. E., Robert, U. W., Agbasi, O. E., & Ekpo, S.
S. (2022). A study on thermophysical properties of
clay from Agbani: Its assessment as potential walling material for naturally-cooled building design. Epitoanyag-J Silicate Based Compos Mater, 74(3),
93-96. [CrossRef]
- 44. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S.
A., Nathaniel, E. U., Anonaba, A. U., & Nnana, L.
A. (2021). Valorisation of waste carton paper, melon
seed husks, and groundnut shells to thermal insulation panels for structural applications. Polytechnica, 4, 97-106. [CrossRef]
- 45. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U.S., & Lashin, A. (2021). Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand. J King Saud Univ Eng Sci, 2021,
10.005. [CrossRef]
- 46. Robert, U. W., Etuk, S. E., Iboh, U. A., Umoren, G.
P., Agbasi, O. E., & Abdulrazzaq, Z. T. (2020). Ther-
mal and mechanical properties of fabricated plaster
of Paris filled with groundnut seed coat and waste
newspaper materials for structural application.
Építôanyag-J Silicate Based Compos Mater, 72(2), 72-
78. [CrossRef]
- 47. ASTM C67/67M. (2021). Standard test methods for
sampling and testing brick and structural clay tile.
ASTM International.
- 48. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S.
A., Abdulrazzaq, Z. T., & Anonaba, A. U. (2021).
Investigation of thermal and strength properties of
composite panels fabricated with plaster of Paris
for insulation in buildings. Int J Thermophys, 42(2),
1-18. [CrossRef]
- 49. Lu, H., Guo, X., Liu, Y., & Gong, X. (2015). Effects
of particle size on flow mode and flow characteris-
tics of pulverised coal. Kona Powder Part I, 32, 143-153. [CrossRef]
- 50. USP. (2007). Powder flow. In USP 30-NF 25. United
States Pharmacopeial Convention.
- 51. Velasco, P. M., Ortíz, M. P. M., Giró, M. A. M.,
& Velasco, L. M. (2014). Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr Build Mater, 63,
97-107. [CrossRef]
- 52. ASTM C618. (2023). Standard specification for coal
fly ash and raw or calcined natural pozzolan for use in
concrete. ASTM International.
- 53. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi,
O. E., Ekpenyong, N. E., Akpan, S. S., & Umana,
E. A. (2022). Electrical characteristics of dry cement-based composites modified with coconut husk ash nanomaterial. Adv Mater Sci, 22(2), 65-80. [CrossRef]
- 54. Alssoun, B. M., Hwang, S., & Khayat, K. H. (2015).
Influence of aggregate characteristics on workability
of superworkable concrete. Mater Struct, 49(1), 597-609. [CrossRef]
- 55. Kang, M., & Weibin, L. (2018). Effect of the recycled aggregate concrete. Adv Mater Sci Eng, 2018, 2428576. [CrossRef]
- 56. British Standards Institution. (1975). BS 2028: Precast concrete blocks. London.
- 57. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Ekong,
S. A. (2020). Properties of sandcrete block produced
with coconut husk as partial replacement of sand. J
Build Mater Struct, 7(1), 95-104. [CrossRef]
- 58. Ekpe, S. D., & Akpabio, G. T. (1994). Comparison of
the thermal properties of soil sample for passively
cooled building design. Turk J Phys, 18, 117-122.
- 59 .Robert, U. W., Etuk, S. E., Agbasi, O. E., Umoren,
G. P., Akpan, S. S., & Nnanna, L. A. (2021). Hydrothermally-calcined waste paper ash nanomaterial as an alternative to cement for clay soil modification
for building purposes. Acta Polytechnica, 61(6), 749-761. [CrossRef]
- 60. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Umoren,
G. P. (2020). Comparison of clay soils of different
colors existing under the same conditions in a location. Imam J Appl Sci, 5, 68-73. [CrossRef]
- 61. Afkhami, B., Akbarian, B., Beheshti, N., Kalaee, A.
H., & Shabani, B. (2015). Energy consumption as sessment in a cement production plant. Sustain Energy Technol, 10, 84-89. [CrossRef]
Thermophysical, strength, and electrical properties of clay modified with groundnut shell ash for building purposes
Year 2024,
Volume: 9 Issue: 4, 335 - 345, 31.12.2024
Joseph Bassey Emah
,
Abayomi Edema
,
Sylvester Andrew Ekong
David Adeniran Oyegoke
Ubong Robert
,
Funke Olawumi Fasuyi
Abstract
This study investigated the effects of Groundnut Shell Ash (GSA) on clay samples for making sustainable and low-cost building materials. The clay GSA composites' physical, chemical, thermal, and mechanical properties were evaluated to assess their suitability for construction. The results revealed that the addition of GSA to the clay matrix had a significant impact on various properties of the samples. The physical characterization showed that GSA was finer and lighter than clay, making the composites more flowable. Chemical analysis indicated that clay and GSA were rich in SiO2, Al2O3, and Fe2O3, with the clay exhibiting high SiO2 content suitable for brick manufacturing. The composites had lower electrical resistance and higher conductivity with more GSA, which could enable temperature monitoring. Thermophysical testing demonstrated that the composites had better thermal insulation properties with more GSA, as shown by higher specific heat capacity and lower thermal diffusivity. The composites absorbed more water with more GSA, indicating higher porosity due to finer particles. The composites had similar bulk density to sandcrete blocks, implying adequate load capacity. Mechanical testing revealed lower flexural strength but higher abrasion resistance with more GSA. The optimal GSA content for strength was 10.0%. More GSA resulted in more voids and weaker bonds. The study provided insights for further research and development.
References
- 1. Robert, U. W., Etuk, S. E., Emah, J. B., Agbasi, O. E.,
& Iboh, U. A. (2022). Thermophysical and mechan-
ical properties of clay-based composites developed
with hydrothermally calcined waste paper ash nano-
material for building purposes. Int J Thermophys,
43(5), 1-20. [CrossRef]
- 2. Tsega, E., Mosisa, A., & Fuga, F. (2017). Effects of fir-
ing time and temperature on physical properties of
fired clay bricks. Am J Civ Eng, 5(1), 21-26. [CrossRef]
- 3. Rondonane, H. T., Mbeny, J. A., Bayiga, E. C., &
Ndjigui, P. D. (2020). Characterization and applica-
tion tests of kaolinite clays from Aboudeia (South-
eastern Chad) in fired bricks making. Sci Afr, 7,
e00294. [CrossRef]
- 4. Garzõn, E., Cano, M., O'Kelly, B. C., & Sãnchez-So-
to, P. J. (2015). Phyllite clay-cement composites hav-
ing improved engineering properties and material
applications. Appl Clay Sci, 114, 229-233. [CrossRef]
- 5. Santos, L. M. A., Neto, J. A. S., & Azerẽdo, A. F. N.
(2020). Soil characterisation for adobe mixtures
containing Portland cement as a stabiliser. Revista
Matẽria, 25(1), 1-10. [CrossRef]
- 6. Ihuah, P. W. (2015). Building materials costs increas-
es and sustainability in real estate development in Ni-
geria. Afr J Econ Sustain Dev, 4(3), 218-233. [CrossRef]
- 7. Dunuweera, S. P., & Rajapakse, R. M. G. (2018).
Cement types, composition, uses and advantages of
nanocement, environmental impact on cement pro-
duction, and possible solutions. Adv Mater Sci Eng,
2018, 4158682. [CrossRef]
- 8. Etuk, S. E., Robert, U. W., Emah, J. B., & Agbasi, O.
E. (2021). Dielectric properties of eggshell mem-
brane of some select bird species. Arab J Sci Eng, 46,
769-777. [CrossRef]
- 9. Etuk, S. E., Agbasi, O. E., Abdulrazzaq, Z. T., & Rob-
ert, U. W. (2018). Investigation of thermophysical
properties of Alates (swarmers) termites wing as po-
tential raw material for insulation. Int J Sci World,
6(1), 1-7. [CrossRef]
- 9. Binici, H., Gemci, R., Aksogan, O., & Kaplan, H.
(2010). Insulation properties of bricks made with
cotton and textile ash wastes. Int J Mater Res, 101(7),
894-899. [CrossRef]
- 10. Agbede, O., & Joel, M. (2011). Effect of rice husk ash
(RHA) on the properties of Ibaji burnt clay bricks.
Am J Sci Ind Res, 2(4), 674-677. [CrossRef]
- 11. Reddy, K. S., Vivek, P. S., & Chambrelin, K. S. (2017).
Stabilization of expansive soil using bagasse ash. Int
J Civ Eng Technol, 8(4), 1730-1736.
- 12. Sankar, V. S., Raj, P. D. A., & Raman, S. J. (2019).
Stabilization of expansive soil by using agricultural
waste. Int J Eng Adv Technol, 8(3S), 154-157.
- 13. Mandal, S., & Singh, J. P. (2016). Stabilization of soil
using ground granulated blast furnace slag and fly
ash. Int J Innov Res Sci Eng Technol, 5(12), 21121-
21126.
- 14. Nath, B. D., Molla, M. K. A., & Sarkar, G. (2017). Study
on strength behavior of organic soil stabilized with fly
ash. Int Scholarly Res Notices, 2017, 5786541. [CrossRef]
- 15. Dayalan, J. (2016). Comparative study on stabili-
zation of soil with ground granulated blast furnace
slag (GGBS) and fly ash. Int Res J Eng Technol, 3,
2198-2204. [CrossRef]
- 16. Ubi, S. E., Nyak, E. E., & Agbor, R. B. (2022). En-
hancement of soil stability with groundnut shell ash.
J Civ Eng Res, 12(1), 1-7.
- 17. Arthi, A. J. J., Aarthi, G., Kumar, V. V., & Vishnupr-
riya, U. (2023). Stabilization of clay using groundnut
shell ash and sugarcane bagasse ash. Key Eng Mater,
960(1), 197-204. [CrossRef]
- 18. Sathiparan, N., Anburuvel, A., Selvam, V. V., &
Vithurshan, P. A. (2023). Potential use of groundnut
shell ash in sustainable stabilized earth blocks. Con-
str Build Mater, 393, 132058. [CrossRef]
- 19. Sujatha, E. R., Dharini, K., & Bharathi, V. (2016). In-
fluence of groundnut shell ash on strength and du-
rability properties of clay. Geomech Geoeng, 11(1),
20-27. [CrossRef]
- 20. Ajeigbe, H. A., Waliyar, F., Echekwu, C. A., Ayuba,
K., Motagi, B. N., Eniayeju, D., & Inuwa, A. (2014).
A farmer's guide to groundnut production in Nigeri-
an. International Crops Research Institute for the
Semi-Arid Tropics.
- 21. Sakoalia, K. D., Adu-Agyem, J., Amenuke, D. A., &
Deffor, B. (2019). Groundnut shell (powder) as an
alternative sculpture material for fine art: The case of
Salaga Senior High School, Ghana. J Arts Humanit,
8(4), 30-43.
- 22. Udeh, B. A. (2018). Bio-waste transesterification al-
ternative for biodiesel production: A combined ma-
nipulation of lipase enzyme action and lignocellulosic fermented ethanol. Asian J Biotechnol Bioresour Technol, 3(3), 1-9. [CrossRef]
- 23. Sowmya, T. A., Gayavajitha, E., Kanimozhi, R., &
Subalakshmi, R. (2018). Removal of toxic metals
from industrial wastewater using groundnut shell.
Int J Pure Appl Math, 119(15), 629-634.
- 24. Kanokon, N., Andrea, S., & Peter, B. (2018). Influ-
ence of KOH on the carbon nanostructure of peanut
shell. Resol Discov, 3(2), 29-32. [CrossRef]
- 25. ASTM D7928. (2017). Standard test method for
particle-size distribution (gradation) of fine-grained
soils using the sedimentation (hydrometer) analysis.
ASTM International.
- 26.Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie,
U. S., Abdulrazzaq, Z. T., Anonaba, A. U., & Ojo,
27. O. T. (2021). On the hygrothermal properties of
sandcrete blocks produced with sawdust as partial
replacement of sand. J Mech Behav Mater, 30(1),
144-155. [CrossRef]
- 28. Bediako, M., & Amankwah, E. O. (2015). Analysis of
chemical composition of cement in Ghana: A key to
understand the behaviour of cement. Adv Mater Sci
Eng, 2015, 1-5. [CrossRef]
- 29. Inegbenebor, A. I., Inegbenebor, A. O., Mordi, R.
C., Kalada, N., Falomo, A., & Sanyaolu, P. (2016).
Determination of the chemical compositions of
clay deposits from some part of South West Nigeria
for industrial applications. Int J Appl Sci Biotechnol,
4(1), 21-26. [CrossRef]
- 30. Adeniran, A. O., Akankpo, A. O., Etuk, S. E., Robert,
U. W., & Agbasi, O. E. (2022). Comparative study of
electrical resistance of disc-shaped compacts fab-
ricated using calcined clam shell, periwinkle shell,
and oyster shell nanopowder. Kragujevac J Sci, 44,
25-36. [CrossRef]
- 31. Robert, U. W., Etuk, S. E., Agbasi, O. E., Iboh, U. A., &
Ekpo, S. S. (2020). Temperature-dependent electrical
characteristics of disc-shaped compacts fabricated
using calcined eggshell nanopowder and dry cassava
starch. Powder Metall Prog, 20(1), 12-20. [CrossRef]
- 32. Munifah, S. S., Wiendartun, W., & Aminudim, A.
(2018). Design of temperature measuring instru-
ment using NTC thermistor of Fe₂TiO₅ based on
microcontroller ATmega 328. J Phys Conf Ser, 1280,
022052. [CrossRef]
- 33. Ekong, S. A., Oyegoke, D. A., Edema, A. A., & Rob-
ert, U. W. (2022). Density and water absorption co-
efficient of sandcrete blocks produced with waste
paper ash as partial replacement of cement. Adv Ma-
ter Sci, 22(4), 85-97. [CrossRef]
- 34. Robert, U. W., Etuk, S. E., & Agbasi, O. E. (2019). Bulk
volume determination by modified water displace-
ment method. Iraqi J Sci, 60(8), 1704-1710. [CrossRef]
- 35. Ekpenyong, N. E., Ekong, S. A., Nathaniel, E. U.,
Thomas, J. E., Okorie, U. S., Robert, U. W., Akpabio,
I. A., & Ekanem, N. U. (2023). Thermal response and
mechanical properties of groundnut shells' compos-
ite boards. Res J Sci Technol, 3(1), 42-57.
- 36. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi, O. E.,
Akpan, S. S., & Inyang, N. J. (2023). Paper-sawdust
composites: Fabrication and comparison in terms of
heat transfer and strength properties. Struct Envi-
ron, 15(1), 38-48. [CrossRef]
- 37. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Okorie,
U. S. (2021). Quick determination of thermal conductivity of thermal insulators using a modified Lee-Charlton's disc apparatus technique. Int J Ther-
mophys, 42(8), 1-20. [CrossRef]
- 38. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U.
S., Ekpenyong, N. E., & Anonaba, A. U. (2022). On
the modification of Lee-Charlton's disc apparatus
technique for thermal conductivity determination.
Res J Sci Technol, 2(3), 1-17.
- 39. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2020). Design and performance evaluation of a device for determination of specific heat capacity of thermal insula-
tors. Beni-Suef Univ J Basic Appl Sci, 9(1), 1-7. [CrossRef]
- 40. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2022).
Thermophysical properties of oil empty fruit bunch
peduncle for use as a mulching material. J Oil Palm
Res, 35, 448-455. [CrossRef]
- 41. Etuk, S. E., Robert, U. W., & Agbasi, O. E. (2021).
Investigation of heat transfer and mechanical properties of Saccharum officinarum leaf boards. Int J Energy Water Resour, 6(1), 95-102. [CrossRef]
- 42. Umoren, G. P., Udo, A. O., & Udo, I. E. (2023). Suit-
ability of Lagenaria breviflora rind-filled plaster of
Paris ceilings for building design. Res J Sci Technol,
3(2), 1-14.
- 43. Etuk, S. E., Robert, U. W., Agbasi, O. E., & Ekpo, S.
S. (2022). A study on thermophysical properties of
clay from Agbani: Its assessment as potential walling material for naturally-cooled building design. Epitoanyag-J Silicate Based Compos Mater, 74(3),
93-96. [CrossRef]
- 44. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S.
A., Nathaniel, E. U., Anonaba, A. U., & Nnana, L.
A. (2021). Valorisation of waste carton paper, melon
seed husks, and groundnut shells to thermal insulation panels for structural applications. Polytechnica, 4, 97-106. [CrossRef]
- 45. Robert, U. W., Etuk, S. E., Agbasi, O. E., Okorie, U.S., & Lashin, A. (2021). Hygrothermal properties of sandcrete blocks produced with raw and hydrothermally-treated sawdust as partial substitution materials for sand. J King Saud Univ Eng Sci, 2021,
10.005. [CrossRef]
- 46. Robert, U. W., Etuk, S. E., Iboh, U. A., Umoren, G.
P., Agbasi, O. E., & Abdulrazzaq, Z. T. (2020). Ther-
mal and mechanical properties of fabricated plaster
of Paris filled with groundnut seed coat and waste
newspaper materials for structural application.
Építôanyag-J Silicate Based Compos Mater, 72(2), 72-
78. [CrossRef]
- 47. ASTM C67/67M. (2021). Standard test methods for
sampling and testing brick and structural clay tile.
ASTM International.
- 48. Robert, U. W., Etuk, S. E., Agbasi, O. E., Ekong, S.
A., Abdulrazzaq, Z. T., & Anonaba, A. U. (2021).
Investigation of thermal and strength properties of
composite panels fabricated with plaster of Paris
for insulation in buildings. Int J Thermophys, 42(2),
1-18. [CrossRef]
- 49. Lu, H., Guo, X., Liu, Y., & Gong, X. (2015). Effects
of particle size on flow mode and flow characteris-
tics of pulverised coal. Kona Powder Part I, 32, 143-153. [CrossRef]
- 50. USP. (2007). Powder flow. In USP 30-NF 25. United
States Pharmacopeial Convention.
- 51. Velasco, P. M., Ortíz, M. P. M., Giró, M. A. M.,
& Velasco, L. M. (2014). Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr Build Mater, 63,
97-107. [CrossRef]
- 52. ASTM C618. (2023). Standard specification for coal
fly ash and raw or calcined natural pozzolan for use in
concrete. ASTM International.
- 53. Robert, U. W., Etuk, S. E., Ekong, S. A., Agbasi,
O. E., Ekpenyong, N. E., Akpan, S. S., & Umana,
E. A. (2022). Electrical characteristics of dry cement-based composites modified with coconut husk ash nanomaterial. Adv Mater Sci, 22(2), 65-80. [CrossRef]
- 54. Alssoun, B. M., Hwang, S., & Khayat, K. H. (2015).
Influence of aggregate characteristics on workability
of superworkable concrete. Mater Struct, 49(1), 597-609. [CrossRef]
- 55. Kang, M., & Weibin, L. (2018). Effect of the recycled aggregate concrete. Adv Mater Sci Eng, 2018, 2428576. [CrossRef]
- 56. British Standards Institution. (1975). BS 2028: Precast concrete blocks. London.
- 57. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Ekong,
S. A. (2020). Properties of sandcrete block produced
with coconut husk as partial replacement of sand. J
Build Mater Struct, 7(1), 95-104. [CrossRef]
- 58. Ekpe, S. D., & Akpabio, G. T. (1994). Comparison of
the thermal properties of soil sample for passively
cooled building design. Turk J Phys, 18, 117-122.
- 59 .Robert, U. W., Etuk, S. E., Agbasi, O. E., Umoren,
G. P., Akpan, S. S., & Nnanna, L. A. (2021). Hydrothermally-calcined waste paper ash nanomaterial as an alternative to cement for clay soil modification
for building purposes. Acta Polytechnica, 61(6), 749-761. [CrossRef]
- 60. Robert, U. W., Etuk, S. E., Agbasi, O. E., & Umoren,
G. P. (2020). Comparison of clay soils of different
colors existing under the same conditions in a location. Imam J Appl Sci, 5, 68-73. [CrossRef]
- 61. Afkhami, B., Akbarian, B., Beheshti, N., Kalaee, A.
H., & Shabani, B. (2015). Energy consumption as sessment in a cement production plant. Sustain Energy Technol, 10, 84-89. [CrossRef]