Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 4, 346 - 354, 31.12.2024
https://doi.org/10.47481/jscmt.1606833

Abstract

References

  • 1. Asil, M. B., & Ranjbar, M. M. (2022). Hybrid effect of carbon nanotubes and basalt fibers on mechanical, durability, and microstructure properties of lightweight geopolymer concretes. Construction and Building Materials, 357, 129352. [CrossRef]
  • 2. Cong, P., & Cheng, Y. (2021). Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 283-314. [CrossRef]
  • 3. Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306, 124762. [CrossRef]
  • 4. Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 99, 144-148. [CrossRef]
  • 5. Jindal, B. B. (2019). Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and Building Materials, 227, 116644. [CrossRef]
  • 6. Namitha, S., Nabil, K. M., Rafeeque, N. V. M., Sundhar, R., Raju, T., & Ramaswamy, K. P. (2020). A study on the setting and flow behavior of alkali-activated slag/fly ash composites in ambient condition. IOP Conference Series: Materials Science and Engineering, 989(1), 012004. [CrossRef]
  • 7. Kretzer, M. B., Effting, C., Schwaab, S., & Schackow, A. (2021). Hybrid geopolymer-cement coating mortar optimized based on metakaolin, fly ash, and granulated blast furnace slag. Clean Engineering and Technology, 4, 100153. [CrossRef]
  • 8. Nuaklong, P., Wongsa, A., Boonserm, K., Ngohpok, C., Jongvivatsakul, P., Sata, V., Sukontasukkul, P., & Chindaprasirt, P. (2021). Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. Journal of Building Engineering, 41, 102403. [CrossRef]
  • 9. Bellum, R. R. (2022). Influence of steel and PP fibers on mechanical and microstructural properties of fly ash-GGBFS-based geopolymer composites. Ceramics International, 48(5), 6808-6818. [CrossRef]
  • 10. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete. Journal of Building Pathology and Rehabilitation, 7(1), 25. [CrossRef]
  • 11. Ramezanianpour, A. A., & Moeini, M. A. (2018). Mechanical and durability properties of alkali-activated slag mortars containing nanosilica and silica fume. Construction and Building Materials, 163, 611-621. [CrossRef]
  • 12. Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T. B., & Hadi, A. E. (2021). The effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement. Polymers, 13(13), 2178. [CrossRef]
  • 13. Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and Building Materials, 101, 675-683. [CrossRef]
  • 14. Gultekin, A. (2024). Compressive strength and microstructure of microwave-cured waste brick powder-based geopolymer mortars. Iranian Journal of Science and Technology Transactions of Civil Engineering, 48, 3119-3133. [CrossRef]
  • 15. Aschoff, J., Partschefeld, S., Schneider, J., & Osburg, A. (2024). Effect of microwaves on the rapid curing of metakaolin- and aluminum orthophosphate-based geopolymers. Materials, 17(2), 463. [CrossRef]
  • 16. Chindaprasirt, P., Rattanasak, U., & Sompop, T. (2013). Role of microwave radiation in curing the fly ash geopolymer. Advanced Powder Technology, 24(3), 812-818. [CrossRef]
  • 17. Khaleel, F., Atiş, C. D., Durak, U., İlkentapar, S., & Karahan, O. (2021). The effect of microwave curing on the strength development of Class-F fly ash-based geopolymer mortar. Erciyes University Journal of Institute of Science and Technology, 37(1), 118-128.
  • 18. Sun, Y., Zhang, P., Hu, J., et al. (2021). A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges. Construction and Building Materials, 294, 123491. [CrossRef]
  • 19. Gultekin, A., & Ramyar, K. (2023). Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing. Construction and Building Materials, 365, 130059. [CrossRef]
  • 20. Guan, X., Luo, W., Liu, S., Hernandez, A. G., Do, H., & Li, B. (2023). Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Developments in the Built Environment, 14, 100139. [CrossRef]
  • 21. Mangat, P. S., Grigoriadis, K., & Abubakri, S. (2016). Microwave curing parameters of in-situ concrete repairs. Construction and Building Materials, 112, 856-866. [CrossRef]
  • 22. ASTM International. (2021). Standard test method for density, absorption, and voids in hardened concrete. ASTM C642.
  • 23. ASTM International. (2020). Standard test method for flow of hydraulic cement mortar. ASTM C1437.
  • 24. Turkish Standards Institution. (2019). Concrete-Testing hardened concrete-Part 3: Compressive strength of test specimens. TS EN 12390-3.
  • 25. Turkish Standards Institution. (2019). Concrete-Testing hardened concrete-Part 5: Flexural strength of test specimens. TS EN 12390-5.
  • 26. Hashemi, A., Mousavi, S. S., Nazarpour, H., & Dehestani, M. (2024). Effect of nano-SiO2 and sulfate solutions curing on bond strength of GGBFS-based geopolymer repairing mortar. Construction and Building Materials, 435, 136778. [CrossRef]
  • 27. Chen, K., Wu, D., Chen, H., Zhang, G., Yao, R., Pan, C., & Zhang, Z. (2021). Development of low-calcium fly ash-based geopolymer mortar using nano-silica and hybrid fibers. Ceramics International, 47(15), 21791-21806. [CrossRef]
  • 28. Al Tawaiha, H., Alhomaidat, F., & Eljufout, T. (2023). A review of the effect of nano-silica on the mechanical and durability properties of cementitious composites. Infrastructures, 8, 132. [CrossRef]
  • 29. Adak, D., Sarkar, M., & Mandal, S. (2014). Effect of nano-silica on strength and durability of fly ash-based geopolymer mortar. Construction and Building Materials, 70, 453-459. [CrossRef]
  • 30. Chiranjeevi, K., Abraham, M., Rath, B., & Praveenkumar, T. R. (2023). Enhancing the properties of geopolymer concrete using nano-silica and microstructure assessment: A sustainable approach. Scientific Reports, 13, 17302. [CrossRef]

Accelerated microwave curing of hybrid geopolymers with nano-silica for enhanced physico-mechanical properties

Year 2024, Volume: 9 Issue: 4, 346 - 354, 31.12.2024
https://doi.org/10.47481/jscmt.1606833

Abstract

This paper presents the microwave curing method as an alternative to conventional thermal curing of hybrid (fly ash-slag) geopolymer mortars (GMs) to achieve comparable performance with significantly reduced curing times. This study aimed to ascertain the impact of varying nano-silica contents (0.5%, 0.75%, and 1%) on the geopolymer matrix to identify the optimal dosage for enhancing densification and bond improvement phases. Mixture proportions were designed to achieve high mechanical and durability performances. The activator/binder (A/B) ratio was set at 0.71, the sodium silicate to sodium hydroxide ratio at 1.5, and the sand/binder (S/B) ratio at 2.5. This study considered two curing methods: thermal curing at 80 °C for 24 hours and microwave curing at 119 W for 3 minutes. The latter method produces equivalent thermal effects in a significantly shorter time. Physical properties tested after seven days included water absorption, porosity, and mechanical properties related to compressive and flexural strength. The results demonstrated that incorporating NS markedly enhanced the physical and mechanical characteristics. Moreover, microwave curing has been identified as a
promising approach for producing hybrid geopolymers, offering a low-energy and high-performance alternative.

References

  • 1. Asil, M. B., & Ranjbar, M. M. (2022). Hybrid effect of carbon nanotubes and basalt fibers on mechanical, durability, and microstructure properties of lightweight geopolymer concretes. Construction and Building Materials, 357, 129352. [CrossRef]
  • 2. Cong, P., & Cheng, Y. (2021). Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 283-314. [CrossRef]
  • 3. Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306, 124762. [CrossRef]
  • 4. Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 99, 144-148. [CrossRef]
  • 5. Jindal, B. B. (2019). Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and Building Materials, 227, 116644. [CrossRef]
  • 6. Namitha, S., Nabil, K. M., Rafeeque, N. V. M., Sundhar, R., Raju, T., & Ramaswamy, K. P. (2020). A study on the setting and flow behavior of alkali-activated slag/fly ash composites in ambient condition. IOP Conference Series: Materials Science and Engineering, 989(1), 012004. [CrossRef]
  • 7. Kretzer, M. B., Effting, C., Schwaab, S., & Schackow, A. (2021). Hybrid geopolymer-cement coating mortar optimized based on metakaolin, fly ash, and granulated blast furnace slag. Clean Engineering and Technology, 4, 100153. [CrossRef]
  • 8. Nuaklong, P., Wongsa, A., Boonserm, K., Ngohpok, C., Jongvivatsakul, P., Sata, V., Sukontasukkul, P., & Chindaprasirt, P. (2021). Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. Journal of Building Engineering, 41, 102403. [CrossRef]
  • 9. Bellum, R. R. (2022). Influence of steel and PP fibers on mechanical and microstructural properties of fly ash-GGBFS-based geopolymer composites. Ceramics International, 48(5), 6808-6818. [CrossRef]
  • 10. Bellum, R. R., Al Khazaleh, M., Pilla, R. K., Choudhary, S., & Venkatesh, C. (2022). Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete. Journal of Building Pathology and Rehabilitation, 7(1), 25. [CrossRef]
  • 11. Ramezanianpour, A. A., & Moeini, M. A. (2018). Mechanical and durability properties of alkali-activated slag mortars containing nanosilica and silica fume. Construction and Building Materials, 163, 611-621. [CrossRef]
  • 12. Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T. B., & Hadi, A. E. (2021). The effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement. Polymers, 13(13), 2178. [CrossRef]
  • 13. Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2015). Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and Building Materials, 101, 675-683. [CrossRef]
  • 14. Gultekin, A. (2024). Compressive strength and microstructure of microwave-cured waste brick powder-based geopolymer mortars. Iranian Journal of Science and Technology Transactions of Civil Engineering, 48, 3119-3133. [CrossRef]
  • 15. Aschoff, J., Partschefeld, S., Schneider, J., & Osburg, A. (2024). Effect of microwaves on the rapid curing of metakaolin- and aluminum orthophosphate-based geopolymers. Materials, 17(2), 463. [CrossRef]
  • 16. Chindaprasirt, P., Rattanasak, U., & Sompop, T. (2013). Role of microwave radiation in curing the fly ash geopolymer. Advanced Powder Technology, 24(3), 812-818. [CrossRef]
  • 17. Khaleel, F., Atiş, C. D., Durak, U., İlkentapar, S., & Karahan, O. (2021). The effect of microwave curing on the strength development of Class-F fly ash-based geopolymer mortar. Erciyes University Journal of Institute of Science and Technology, 37(1), 118-128.
  • 18. Sun, Y., Zhang, P., Hu, J., et al. (2021). A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges. Construction and Building Materials, 294, 123491. [CrossRef]
  • 19. Gultekin, A., & Ramyar, K. (2023). Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing. Construction and Building Materials, 365, 130059. [CrossRef]
  • 20. Guan, X., Luo, W., Liu, S., Hernandez, A. G., Do, H., & Li, B. (2023). Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Developments in the Built Environment, 14, 100139. [CrossRef]
  • 21. Mangat, P. S., Grigoriadis, K., & Abubakri, S. (2016). Microwave curing parameters of in-situ concrete repairs. Construction and Building Materials, 112, 856-866. [CrossRef]
  • 22. ASTM International. (2021). Standard test method for density, absorption, and voids in hardened concrete. ASTM C642.
  • 23. ASTM International. (2020). Standard test method for flow of hydraulic cement mortar. ASTM C1437.
  • 24. Turkish Standards Institution. (2019). Concrete-Testing hardened concrete-Part 3: Compressive strength of test specimens. TS EN 12390-3.
  • 25. Turkish Standards Institution. (2019). Concrete-Testing hardened concrete-Part 5: Flexural strength of test specimens. TS EN 12390-5.
  • 26. Hashemi, A., Mousavi, S. S., Nazarpour, H., & Dehestani, M. (2024). Effect of nano-SiO2 and sulfate solutions curing on bond strength of GGBFS-based geopolymer repairing mortar. Construction and Building Materials, 435, 136778. [CrossRef]
  • 27. Chen, K., Wu, D., Chen, H., Zhang, G., Yao, R., Pan, C., & Zhang, Z. (2021). Development of low-calcium fly ash-based geopolymer mortar using nano-silica and hybrid fibers. Ceramics International, 47(15), 21791-21806. [CrossRef]
  • 28. Al Tawaiha, H., Alhomaidat, F., & Eljufout, T. (2023). A review of the effect of nano-silica on the mechanical and durability properties of cementitious composites. Infrastructures, 8, 132. [CrossRef]
  • 29. Adak, D., Sarkar, M., & Mandal, S. (2014). Effect of nano-silica on strength and durability of fly ash-based geopolymer mortar. Construction and Building Materials, 70, 453-459. [CrossRef]
  • 30. Chiranjeevi, K., Abraham, M., Rath, B., & Praveenkumar, T. R. (2023). Enhancing the properties of geopolymer concrete using nano-silica and microstructure assessment: A sustainable approach. Scientific Reports, 13, 17302. [CrossRef]
There are 30 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Bolat Balapanov This is me

Sarsenbek Montayev This is me

Beyza Fahriye Aygün

Mücteba Uysal

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 14, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024 Volume: 9 Issue: 4

Cite

APA Balapanov, B., Montayev, S., Aygün, B. F., Uysal, M. (2024). Accelerated microwave curing of hybrid geopolymers with nano-silica for enhanced physico-mechanical properties. Journal of Sustainable Construction Materials and Technologies, 9(4), 346-354. https://doi.org/10.47481/jscmt.1606833

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr