Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 4, 391 - 401, 31.12.2024
https://doi.org/10.47481/jscmt.1607828

Abstract

References

  • 1. Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (Eds.), Handbook of Alkali-Activated Cements, Mortars, and Concretes, Pacheco-Torgal, F. Woodhead Publishing Limited. [CrossRef]
  • 2. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2022). Waste clay bricks as a geopolymer binder for pavement construction. Sustainability, 14, 6456. [CrossRef]
  • 3. Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 41-46. [CrossRef]
  • 4. Yang, Y., Lu, P., Shao, R., Zhao, Q., Yang, T., & Wu, C. (2024). A comprehensive review of multisource solid wastes in sustainable concrete: From material properties to engineering application. Construction and Building Materials, 435, 136775. [CrossRef]
  • 5. Kravchenko, E., Lazorenko, G., Jiang, X., & Leng, Z. (2024). Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustainable Materials and Technologies, 39, e00829. [CrossRef]
  • 6. Resmî Gazete. Hafriyat toprağı, inşaat ve yıkıntı atıklarının kontrolü yönetmeliği. https:// w w w. m e v z u a t . g o v. t r / m e v z u a t ? Me v z u a t -No=5401&MevzuatTur=7&MevzuatTertip=5 7. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., & Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368-376. [CrossRef]
  • 8. Rakhimova, N. R., & Rakhimov, R. Z. (2015). Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Materials and Design, 85, 324-331. [CrossRef]
  • 9. Zawrah, M. F., Feltin, N., Docourtieux, S., & Gado, R. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Safety and Environmental Protection, 103(A), 237-251. [CrossRef]
  • 10. Rovnaník, P., Řezník, B., & Rovnaníková, P. (2016). Blended alkali-activated fly ash / brick powder materials. Procedia Engineering, 151, 108-113. [CrossRef]
  • 11. Tuyan, M., Andiç-Çakir, O., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135, 242-252. [CrossRef]
  • 12. Silva, G., Castaneda, D., Kim, S., Castaneda, A., Bertolotti, B., Ortega-San-Martin, L., Nakamatsu, J., & Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, 633-643. [CrossRef]
  • 13. Ulugöl, H., Kul, A., Gurkan, Y., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280(1), 124358. [CrossRef]
  • 14. Alakara, E. H. (2022). İnşaat yıkıntı atıklarından elde edilen atık tuğlaların geopolimer harçlarda kullanımının incelenmesi. Gaziosmanpaşa Bilim Araştırma Dergisi, 11(3), 251-259.
  • 15. Pommer, V., Cerny, R., Keppert, M., & Vejmelkova, E. (2021). Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceramics International, 47(22), 31574-31582. [CrossRef]
  • 16. Liang, G., Luo, L., & Yao, W. (2022). Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resources, Conservation and Recycling, 185, 106523. [CrossRef]
  • 17. Maaze, M. R., & Shrivastava, S. (2024). Development and performance evaluation of recycled brick waste-based geopolymer brick for improved physio-mechanical, brick-bond and durability properties. Journal of Building Engineering, 97, 110701. [CrossRef]
  • 18. Roy, A., & Sadiqul Islam, G. M. (2024). Geopolymer using different size fractions of recycled brick-based mixed demolition waste. Cleaner Materials, 11, 100224. [CrossRef]
  • 19. Wang, F., Zhai, J., Kan, E., Norkulov, B., Ding, Y., Yu, J., & Yu, K. (2024). Value-added recycling of waste brick powder and waste sand to develop eco-friendly engineered geopolymer composite. Case Studies in Construction Materials, 21, e03590. [CrossRef]
  • 20. Borçato, A. G., Meeiros Jr, R. A., & Thiesen, M. (2024). Incorporation of clay brick wastes and calcium hydroxide into geopolymers: Compressive strength, microstructure, and efflorescence. Journal of Building Engineering, 88, 109259. [CrossRef]
  • 21. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2021). Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Construction and Building Materials, 305, 124787. [CrossRef]
  • 22. Reig, L. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106. [CrossRef]
  • 23. Pereira-de-Oliveira, L. A., Castro-Gomes, J. P., & Santos, P. M. S. (2012). The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Construction and Building Materials, 31, 197-203. [CrossRef]
  • 24. Turkish Standard Institution. (2008). Tras, Ankara, Türkiye. TS 25.
  • 25. Turkish Standard Institution. (2010). Methods of Testing Cement - Part 6: Determination of Fineness, Ankara, Türkiye. TS EN 196-6.
  • 26. Firdous, R., Stephan, D., & Djobo, J. N. Y. (2018). Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Construction and Building Materials, 190, 1251-1263. [CrossRef]
  • 27. Turkish Standard Institution. (2009). Methods of Testing Cement - Part 1: Determination of Strength, Ankara, Türkiye. TS EN 196-1.
  • 28. Liew, Y. M., Heah, C. Y., Mustafa, A. B. M., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595-629. [CrossRef]
  • 29. Lahoti, M., Narang, P., Tan, K. H., & Yang, E. H. (2017). Mix design factors and strength prediction of metakaolin-based geopolymer. Ceramics International, 43(14), 11433-11441. [CrossRef]
  • 30. Sun, Z., & Vollpracht, A. (2018). Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cement and Concrete Research, 103, 110-122. [CrossRef]
  • 31. Turkish Standard Institution. (2009). Natural Stone Test Methods - Determination of Sound Speed Propagation, Ankara, Türkiye. TS EN 14579.
  • 32. Bayless, D. (2016). Statistical rejection of “bad” data - Chauvenet’s Criterion. Word Press.
  • 33. Akman, S. (1978). Deney ve Ölçme Tekniğine Giriş. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 34. Robayo-Salazar, R. A., Rivera, J. F., & Mejía de Gutiérrez, R. (2017). Alkali-activated building materials made with recycled construction and demolition wastes. Construction and Building Materials, 149, 130-138. [CrossRef]
  • 35. Tchadjie, L. N., & Ekolu, S. O. (2018). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science, 53, 4709-4733. [CrossRef]
  • 36. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. [CrossRef]
  • 37. Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerization. Cement and Concrete Research, 38(4), 554-564. [CrossRef]
  • 38. Chen, W., Li, Y., Shen, P., & Shui, Z. (2013). Microstructural development of hydrating Portland cement paste at early ages investigated with non-destructive methods and numerical simulation. Journal of Nondestructive Evaluation, 32, 228-237. [CrossRef]
  • 39. Azarsa, P., & Gupta, R. (2017). Electrical resistivity of concrete for durability evaluation: A review. Advances in Materials Science and Engineering, 2017, 8453095. [CrossRef]
  • 40. Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., & Schutter, G. (2022). Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cement and Concrete Composites, 133, 104715. [CrossRef]
  • 41. Postacığlu, B. (1981). Cisimlerin Yapısı ve Özellikleri: İç Yapı ve Mekanik Özellikler. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 42. Haruna, S., Mohammed, B. S., Wahab, M. M. A., Kankia, M. U., Amran, M., & Gora, A. M. (2021). Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160. [CrossRef]

One-part alkali-activated mortars based on clay brick waste, natural pozzolan waste, and marble powder waste

Year 2024, Volume: 9 Issue: 4, 391 - 401, 31.12.2024
https://doi.org/10.47481/jscmt.1607828

Abstract

In Türkiye, waste clay bricks (WCB) comprise significant construction and demolition waste. Most research is based on producing WCB-based two-part alkali-activated materials (AAM). Compared to their conventional, two-part alkali-activated counterparts, one-part AAM offers several advantages, such as being more practical, safe, and easy to use. Thus, they may be an excellent choice for commercial construction applications and on-site casting. However, research data on producing WCB-based one-part alkali-activated mortars is limited. The relatively low reactivity of WCB can be increased by replacing WCB with ground granulated blast-furnace slag (GGBS) and fly ash (FA). Unlike these by-products, Nevşehir pozzolan (NP) and marble powder (MP), which are produced as wastes during the stone-cutting process, may be evaluated to produce AAM. This study aims to assess the production possibilities of WCB-based one-part alkali-activated mortar, determine the optimum substitution ratios with NP and MP o improve the mechanical properties, and determine the effects of the curing period up to 365 days. Results showed that the optimum NP substitution ratio was 50%, which increased reaction development, microstructure compactness, and mechanical properties. The highest CS (UV) (3.70 km/s) and compressive strength (CS) (21.58 MPa) were obtained in 25WC-B:75MP-containing samples. The increase in properties with the curing period was especially high in the first 28 days.

References

  • 1. Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. In Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (Eds.), Handbook of Alkali-Activated Cements, Mortars, and Concretes, Pacheco-Torgal, F. Woodhead Publishing Limited. [CrossRef]
  • 2. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2022). Waste clay bricks as a geopolymer binder for pavement construction. Sustainability, 14, 6456. [CrossRef]
  • 3. Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 41-46. [CrossRef]
  • 4. Yang, Y., Lu, P., Shao, R., Zhao, Q., Yang, T., & Wu, C. (2024). A comprehensive review of multisource solid wastes in sustainable concrete: From material properties to engineering application. Construction and Building Materials, 435, 136775. [CrossRef]
  • 5. Kravchenko, E., Lazorenko, G., Jiang, X., & Leng, Z. (2024). Alkali-activated materials made of construction and demolition waste as precursors: A review. Sustainable Materials and Technologies, 39, e00829. [CrossRef]
  • 6. Resmî Gazete. Hafriyat toprağı, inşaat ve yıkıntı atıklarının kontrolü yönetmeliği. https:// w w w. m e v z u a t . g o v. t r / m e v z u a t ? Me v z u a t -No=5401&MevzuatTur=7&MevzuatTertip=5 7. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., & Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368-376. [CrossRef]
  • 8. Rakhimova, N. R., & Rakhimov, R. Z. (2015). Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Materials and Design, 85, 324-331. [CrossRef]
  • 9. Zawrah, M. F., Feltin, N., Docourtieux, S., & Gado, R. (2016). Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Safety and Environmental Protection, 103(A), 237-251. [CrossRef]
  • 10. Rovnaník, P., Řezník, B., & Rovnaníková, P. (2016). Blended alkali-activated fly ash / brick powder materials. Procedia Engineering, 151, 108-113. [CrossRef]
  • 11. Tuyan, M., Andiç-Çakir, O., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering, 135, 242-252. [CrossRef]
  • 12. Silva, G., Castaneda, D., Kim, S., Castaneda, A., Bertolotti, B., Ortega-San-Martin, L., Nakamatsu, J., & Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, 633-643. [CrossRef]
  • 13. Ulugöl, H., Kul, A., Gurkan, Y., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280(1), 124358. [CrossRef]
  • 14. Alakara, E. H. (2022). İnşaat yıkıntı atıklarından elde edilen atık tuğlaların geopolimer harçlarda kullanımının incelenmesi. Gaziosmanpaşa Bilim Araştırma Dergisi, 11(3), 251-259.
  • 15. Pommer, V., Cerny, R., Keppert, M., & Vejmelkova, E. (2021). Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceramics International, 47(22), 31574-31582. [CrossRef]
  • 16. Liang, G., Luo, L., & Yao, W. (2022). Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resources, Conservation and Recycling, 185, 106523. [CrossRef]
  • 17. Maaze, M. R., & Shrivastava, S. (2024). Development and performance evaluation of recycled brick waste-based geopolymer brick for improved physio-mechanical, brick-bond and durability properties. Journal of Building Engineering, 97, 110701. [CrossRef]
  • 18. Roy, A., & Sadiqul Islam, G. M. (2024). Geopolymer using different size fractions of recycled brick-based mixed demolition waste. Cleaner Materials, 11, 100224. [CrossRef]
  • 19. Wang, F., Zhai, J., Kan, E., Norkulov, B., Ding, Y., Yu, J., & Yu, K. (2024). Value-added recycling of waste brick powder and waste sand to develop eco-friendly engineered geopolymer composite. Case Studies in Construction Materials, 21, e03590. [CrossRef]
  • 20. Borçato, A. G., Meeiros Jr, R. A., & Thiesen, M. (2024). Incorporation of clay brick wastes and calcium hydroxide into geopolymers: Compressive strength, microstructure, and efflorescence. Journal of Building Engineering, 88, 109259. [CrossRef]
  • 21. Migunthanna, J., Rajeev, P., & Sanjayan, J. (2021). Investigation of waste clay brick as partial replacement of geopolymer binders for rigid pavement application. Construction and Building Materials, 305, 124787. [CrossRef]
  • 22. Reig, L. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106. [CrossRef]
  • 23. Pereira-de-Oliveira, L. A., Castro-Gomes, J. P., & Santos, P. M. S. (2012). The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Construction and Building Materials, 31, 197-203. [CrossRef]
  • 24. Turkish Standard Institution. (2008). Tras, Ankara, Türkiye. TS 25.
  • 25. Turkish Standard Institution. (2010). Methods of Testing Cement - Part 6: Determination of Fineness, Ankara, Türkiye. TS EN 196-6.
  • 26. Firdous, R., Stephan, D., & Djobo, J. N. Y. (2018). Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Construction and Building Materials, 190, 1251-1263. [CrossRef]
  • 27. Turkish Standard Institution. (2009). Methods of Testing Cement - Part 1: Determination of Strength, Ankara, Türkiye. TS EN 196-1.
  • 28. Liew, Y. M., Heah, C. Y., Mustafa, A. B. M., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595-629. [CrossRef]
  • 29. Lahoti, M., Narang, P., Tan, K. H., & Yang, E. H. (2017). Mix design factors and strength prediction of metakaolin-based geopolymer. Ceramics International, 43(14), 11433-11441. [CrossRef]
  • 30. Sun, Z., & Vollpracht, A. (2018). Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cement and Concrete Research, 103, 110-122. [CrossRef]
  • 31. Turkish Standard Institution. (2009). Natural Stone Test Methods - Determination of Sound Speed Propagation, Ankara, Türkiye. TS EN 14579.
  • 32. Bayless, D. (2016). Statistical rejection of “bad” data - Chauvenet’s Criterion. Word Press.
  • 33. Akman, S. (1978). Deney ve Ölçme Tekniğine Giriş. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 34. Robayo-Salazar, R. A., Rivera, J. F., & Mejía de Gutiérrez, R. (2017). Alkali-activated building materials made with recycled construction and demolition wastes. Construction and Building Materials, 149, 130-138. [CrossRef]
  • 35. Tchadjie, L. N., & Ekolu, S. O. (2018). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal of Materials Science, 53, 4709-4733. [CrossRef]
  • 36. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. [CrossRef]
  • 37. Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerization. Cement and Concrete Research, 38(4), 554-564. [CrossRef]
  • 38. Chen, W., Li, Y., Shen, P., & Shui, Z. (2013). Microstructural development of hydrating Portland cement paste at early ages investigated with non-destructive methods and numerical simulation. Journal of Nondestructive Evaluation, 32, 228-237. [CrossRef]
  • 39. Azarsa, P., & Gupta, R. (2017). Electrical resistivity of concrete for durability evaluation: A review. Advances in Materials Science and Engineering, 2017, 8453095. [CrossRef]
  • 40. Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., & Schutter, G. (2022). Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cement and Concrete Composites, 133, 104715. [CrossRef]
  • 41. Postacığlu, B. (1981). Cisimlerin Yapısı ve Özellikleri: İç Yapı ve Mekanik Özellikler. 1st Ed., ITU İnşaat Fakültesi Matbaası.
  • 42. Haruna, S., Mohammed, B. S., Wahab, M. M. A., Kankia, M. U., Amran, M., & Gora, A. M. (2021). Long-term strength development of fly ash-based one-part alkali-activated binders. Materials, 14(15), 4160. [CrossRef]
There are 41 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Kübra Ekiz Barış 0000-0002-3830-7185

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 21, 2024
Acceptance Date December 18, 2024
Published in Issue Year 2024 Volume: 9 Issue: 4

Cite

APA Ekiz Barış, K. (2024). One-part alkali-activated mortars based on clay brick waste, natural pozzolan waste, and marble powder waste. Journal of Sustainable Construction Materials and Technologies, 9(4), 391-401. https://doi.org/10.47481/jscmt.1607828

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr