Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 4, 365 - 373, 31.12.2024
https://doi.org/10.47481/jscmt.1607851

Abstract

References

  • 1. Verma, M., Dev, N., Rahman, I., Nigam, M., Mohd, A., & Mallick, J. (2022). Geopolymer concrete: A material for sustainable development in Indian construction industries. Crystals, 12(4), 514. [CrossRef]
  • 2. Mamatha, B. S., Sujatha, D., Uday, D. N., & Kiran, M. C. (2023). Properties of fly ash-based wood geopolymer composite. Low-Carbon Materials in Green Construction, 1(1), 29. [CrossRef]
  • 3. Zerfu, K., & Ekaputri, J. J. (2016). Review on alkali-activated fly ash-based geopolymer concrete. Materials Science Forum, 841, 162-169. [CrossRef]
  • 4. Chen, P., Li, Y., Yin, L., & Wang, Z. (2024). Review on mechanical properties of fiber-reinforced geopolymer concrete after high-temperature exposure. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48, 3829-3851. [CrossRef]
  • 5. Kaya, M. (2022). Effect of steel fiber additive on high-temperature resistance in geopolymer mortars. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(3), 1949-1967. [CrossRef]
  • 6. Yurt, Ü. (2022). Effect of curing temperature on fracture properties of alkali-activated fiber concrete. Osmaniye Korkut Ata University Journal of Institute of Science and Technology, 5(1), 176-188. [CrossRef]
  • 7. Faris, M. A., Abdullah, M. M. A. B., Muniandy, R., Abu Hashim, M. F., Błoch, K., Jeż, B., Garus, S., Palutkiewicz, P., Mohd Mortar, N. A., & Ghazali, M. F. (2021). Comparison of hook and straight steel fibers addition on Malaysian fly ash-based geopolymer concrete on the slump, density, water absorption, and mechanical properties. Materials, 14(5), 1310. [CrossRef]
  • 8. Wang, Y., Hu, S., & Sun, X. (2022). Experimental investigation on the elastic modulus and fracture properties of basalt fiber-reinforced fly ash geopolymer concrete. Construction and Building Materials, 338, 127570. [CrossRef]
  • 9. Deepa, R. S., Ruby, A., Ganesan, N., & Divya, S. (2013). Fracture properties of fibre reinforced geopolymer concrete. International Conference on Innovations in Civil Engineering, 4(5), 75-80.
  • 10. RILEM (50-FMC) (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(4), 287-290. [CrossRef]
  • 11. Wang, X., Saifullah, H. A., Nishikawa, H., & Nakarai, K. (2020). Effect of water-cement ratio, aggregate type, and curing temperature on the fracture energy of concrete. Construction and Building Materials, 259, 119646. [CrossRef]
  • 12. Xu, P., Ma, J., Ding, Y., & Zhang, M. (2021). Influences of steel fiber content on size effect of the fracture energy of high-strength concrete. KSCE Journal of Civil Engineering, 25(3), 948-959. [CrossRef]
  • 13. Fidi, F., Muin, R. B., & Patty, A. H. (2020). The effect of aggregate gradation on concrete fracture energy using the work of fracture method. IOP Conference Series: Materials Science and Engineering, 830(2), 022061. [CrossRef]
  • 14. Kozłowski, M., Kadela, M., & Kukiełka, A. (2015). Fracture energy of foamed concrete based on three-point bending test on notched beams. Procedia Engineering, 108, 349-354. [CrossRef]
  • 15. Tang, W., Cui, H., & Tahmasbi, S. (2016). Fracture properties of polystyrene aggregate concrete after exposure to high temperatures. Materials, 9(8), 630. [CrossRef]
  • 16. Celik, Z., & Bingol, A. F. (2020). Fracture properties and impact resistance of self-compacting fiber-reinforced concrete (SCFRC). Materials and Structures, 53(3), 50. [CrossRef]
  • 17. Ipek, M., & Aksu, M. (2019). The effect of different types of fiber on flexure strength and fracture toughness in SIFCON. Construction and Building Materials, 214, 207-218. [CrossRef]
  • 18. Ding, Y., Shi, C. J., & Li, N. (2018). Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Construction and Building Materials, 190, 787-795. [CrossRef]
  • 19. Gomes, R. F., Dias, D. P., & Silva, F. D. A. (2020). Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete. Theoretical and Applied Fracture Mechanics, 107, 102568. [CrossRef]
  • 20. Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 112, 103665. [CrossRef]
  • 21. Nurruddin, M. F., Haruna, S., Mohammed, B. S., & Shaaban, I. G. (2018). Methods of curing geopolymer concrete: A review. International Journal of Advanced Applied Sciences, 5(1), 31-36. [CrossRef]
  • 22. Rekha, Y., Suriya, S., & Hamedul Irshad, H. M. (2022). Comparative study on oven curing of geopolymer concrete over conventional concrete. Materials Today: Proceedings, 55, 462-469. [CrossRef]
  • 23. Davidovits, J. (2017). Geopolymers: Ceramic-like inorganic polymers. Journal of Ceramic Science and Technology, 8(3), 335-350.
  • 24. Yilmazer Polat, B. (2023). The influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars. Journal of Sustainable Construction Materials and Technologies, 8(3), 207-215. [CrossRef]
  • 25. Dong, M., Feng, W., Elchalakani, M., Li, K. G., Karrech, A., & May, E. F. (2017). Development of a high strength geopolymer by novel solar curing. Ceramics International, 43(14), 11233-11243. [CrossRef]
  • 26. Giasuddin, H. M., Sanjayan, J. G., & Ranjith, P. G. (2013). Strength of geopolymer cured in saline water in ambient conditions. Fuel, 107, 34-39. [CrossRef]
  • 27. Saludung, A., Azeyanagi, T., Ogawa, Y., & Kawai, K. (2023). Mechanical and microstructural evolutions of fly ash/slag-based geopolymer at high temperatures: Effect of curing conditions. Ceramics International, 49(2), 2091-2101. [CrossRef]
  • 28. Turkish Standards Institution. (2016). Methods of testing cement - Part 1: Determination of strength, Ankara. TS EN 196-1.
  • 29. Turkish Standards Institution. (2021). Building lime - Part 2: Test methods, Ankara. TS EN 459-2.
  • 30. ASTM International. (2018). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure), USA. ASTM C349.
  • 31. ASTM International. (2020). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, USA. ASTM C1585.
  • 32. Kannangara, T., Guerrieri, M., Fragomeni, S., & Joseph, P. (2022). Effects of initial surface evaporation on the performance of fly ash-based geopolymer paste at elevated temperatures. Applied Sciences, 12(1), 364. [CrossRef]
  • 33. Zhang, P., Han, X., Zheng, Y., Wan, J., & Hui, D. (2021). Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Reviews on Advanced Materials Science, 60(1), 418-437. [CrossRef]
  • 34. Manfaluthy, M. L., & Ekaputri, J. J. (2017). The application of PVA fiber to improve the mechanical properties of geopolymer concrete. MATEC Web of Conferences, 138, 01020. [CrossRef]
  • 35. Zhang, P., Feng, Z., Yuan, W., Hu, S., & Yuan, P. (2024). Effect of PVA fiber on properties of geopolymer composites: A comprehensive review. Journal of Materials Research and Technology, 29, 4086-4101. [CrossRef]
  • 36. Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P., & Songpiriyakij, S. (2018). Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construction and Building Materials, 161, 37-44. [CrossRef]
  • 37. Nath, P., & Sarker, P. K. (2017). Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature. Materials and Structures, 50(1), 32. [CrossRef]
  • 38. Wang, T., Fan, X., Gao, C., Qu, C., Liu, J., & Yu, G. (2023). The influence of fiber on the mechanical properties of geopolymer concrete: A review. Polymers, 15(4), 827. [CrossRef]
  • 39. Cai, J., Jiang, J., Gao, X., & Ding, M. (2022). Improving the mechanical properties of fly ash-based geopolymer composites with PVA fiber and powder. Materials, 15(7), 2363. [CrossRef]
  • 40. Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN Journal of Engineering and Applied Sciences, 4(7), 28-32.
  • 41. Shaikh, F. U. A. (2014). Effects of alkali solutions on corrosion durability of geopolymer concrete. Advances in Concrete Construction, 2(2), 109-123. [CrossRef]

Effect of sealed water curing and fiber length on compressive strength and fracture energy of fly ash-based geopolymer mortars

Year 2024, Volume: 9 Issue: 4, 365 - 373, 31.12.2024
https://doi.org/10.47481/jscmt.1607851

Abstract

n this study, the effect of the curing method and polyvinyl alcohol (PVA) fiber inclusion on some engineering properties of fly ash-based geopolymer mortars was examined. In this context, six fly ash-based mortars were produced using sodium hydroxide and sodium silicate solution. The fracture energy values were determined with notched samples of 50×50×240mm dimensions, and a clip-on gage was used to measure the crack mouth opening displacements. The notch width and notch height were 3 mm and 10 mm, respectively. Specimens were cured in hot water (80 °C) for 18 hours. Before curing, one series of samples was sealed with three layers of polyvinyl chloride (PVC) cling film and two layers of duct tape, while the other was not. The results showed that sealing the specimens during curing increased the compressive strength, and these increases were 18% for the reference mortar and 18% and 12%for mortars produced with 6 mm and 12 mm PVA fiber, respectively. Sealed curing enhanced fracture energy and peak loads and reduced the rate of capillary water absorption. With fiber inclusion, increases of up to 1508% in fracture energy values were achieved. The results revealed that sealing samples during curing significantly affects the mechanical properties.

References

  • 1. Verma, M., Dev, N., Rahman, I., Nigam, M., Mohd, A., & Mallick, J. (2022). Geopolymer concrete: A material for sustainable development in Indian construction industries. Crystals, 12(4), 514. [CrossRef]
  • 2. Mamatha, B. S., Sujatha, D., Uday, D. N., & Kiran, M. C. (2023). Properties of fly ash-based wood geopolymer composite. Low-Carbon Materials in Green Construction, 1(1), 29. [CrossRef]
  • 3. Zerfu, K., & Ekaputri, J. J. (2016). Review on alkali-activated fly ash-based geopolymer concrete. Materials Science Forum, 841, 162-169. [CrossRef]
  • 4. Chen, P., Li, Y., Yin, L., & Wang, Z. (2024). Review on mechanical properties of fiber-reinforced geopolymer concrete after high-temperature exposure. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48, 3829-3851. [CrossRef]
  • 5. Kaya, M. (2022). Effect of steel fiber additive on high-temperature resistance in geopolymer mortars. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(3), 1949-1967. [CrossRef]
  • 6. Yurt, Ü. (2022). Effect of curing temperature on fracture properties of alkali-activated fiber concrete. Osmaniye Korkut Ata University Journal of Institute of Science and Technology, 5(1), 176-188. [CrossRef]
  • 7. Faris, M. A., Abdullah, M. M. A. B., Muniandy, R., Abu Hashim, M. F., Błoch, K., Jeż, B., Garus, S., Palutkiewicz, P., Mohd Mortar, N. A., & Ghazali, M. F. (2021). Comparison of hook and straight steel fibers addition on Malaysian fly ash-based geopolymer concrete on the slump, density, water absorption, and mechanical properties. Materials, 14(5), 1310. [CrossRef]
  • 8. Wang, Y., Hu, S., & Sun, X. (2022). Experimental investigation on the elastic modulus and fracture properties of basalt fiber-reinforced fly ash geopolymer concrete. Construction and Building Materials, 338, 127570. [CrossRef]
  • 9. Deepa, R. S., Ruby, A., Ganesan, N., & Divya, S. (2013). Fracture properties of fibre reinforced geopolymer concrete. International Conference on Innovations in Civil Engineering, 4(5), 75-80.
  • 10. RILEM (50-FMC) (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(4), 287-290. [CrossRef]
  • 11. Wang, X., Saifullah, H. A., Nishikawa, H., & Nakarai, K. (2020). Effect of water-cement ratio, aggregate type, and curing temperature on the fracture energy of concrete. Construction and Building Materials, 259, 119646. [CrossRef]
  • 12. Xu, P., Ma, J., Ding, Y., & Zhang, M. (2021). Influences of steel fiber content on size effect of the fracture energy of high-strength concrete. KSCE Journal of Civil Engineering, 25(3), 948-959. [CrossRef]
  • 13. Fidi, F., Muin, R. B., & Patty, A. H. (2020). The effect of aggregate gradation on concrete fracture energy using the work of fracture method. IOP Conference Series: Materials Science and Engineering, 830(2), 022061. [CrossRef]
  • 14. Kozłowski, M., Kadela, M., & Kukiełka, A. (2015). Fracture energy of foamed concrete based on three-point bending test on notched beams. Procedia Engineering, 108, 349-354. [CrossRef]
  • 15. Tang, W., Cui, H., & Tahmasbi, S. (2016). Fracture properties of polystyrene aggregate concrete after exposure to high temperatures. Materials, 9(8), 630. [CrossRef]
  • 16. Celik, Z., & Bingol, A. F. (2020). Fracture properties and impact resistance of self-compacting fiber-reinforced concrete (SCFRC). Materials and Structures, 53(3), 50. [CrossRef]
  • 17. Ipek, M., & Aksu, M. (2019). The effect of different types of fiber on flexure strength and fracture toughness in SIFCON. Construction and Building Materials, 214, 207-218. [CrossRef]
  • 18. Ding, Y., Shi, C. J., & Li, N. (2018). Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Construction and Building Materials, 190, 787-795. [CrossRef]
  • 19. Gomes, R. F., Dias, D. P., & Silva, F. D. A. (2020). Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete. Theoretical and Applied Fracture Mechanics, 107, 102568. [CrossRef]
  • 20. Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 112, 103665. [CrossRef]
  • 21. Nurruddin, M. F., Haruna, S., Mohammed, B. S., & Shaaban, I. G. (2018). Methods of curing geopolymer concrete: A review. International Journal of Advanced Applied Sciences, 5(1), 31-36. [CrossRef]
  • 22. Rekha, Y., Suriya, S., & Hamedul Irshad, H. M. (2022). Comparative study on oven curing of geopolymer concrete over conventional concrete. Materials Today: Proceedings, 55, 462-469. [CrossRef]
  • 23. Davidovits, J. (2017). Geopolymers: Ceramic-like inorganic polymers. Journal of Ceramic Science and Technology, 8(3), 335-350.
  • 24. Yilmazer Polat, B. (2023). The influence of microwave curing on the strength of silica fume-added fly ash-based geopolymer mortars. Journal of Sustainable Construction Materials and Technologies, 8(3), 207-215. [CrossRef]
  • 25. Dong, M., Feng, W., Elchalakani, M., Li, K. G., Karrech, A., & May, E. F. (2017). Development of a high strength geopolymer by novel solar curing. Ceramics International, 43(14), 11233-11243. [CrossRef]
  • 26. Giasuddin, H. M., Sanjayan, J. G., & Ranjith, P. G. (2013). Strength of geopolymer cured in saline water in ambient conditions. Fuel, 107, 34-39. [CrossRef]
  • 27. Saludung, A., Azeyanagi, T., Ogawa, Y., & Kawai, K. (2023). Mechanical and microstructural evolutions of fly ash/slag-based geopolymer at high temperatures: Effect of curing conditions. Ceramics International, 49(2), 2091-2101. [CrossRef]
  • 28. Turkish Standards Institution. (2016). Methods of testing cement - Part 1: Determination of strength, Ankara. TS EN 196-1.
  • 29. Turkish Standards Institution. (2021). Building lime - Part 2: Test methods, Ankara. TS EN 459-2.
  • 30. ASTM International. (2018). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure), USA. ASTM C349.
  • 31. ASTM International. (2020). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, USA. ASTM C1585.
  • 32. Kannangara, T., Guerrieri, M., Fragomeni, S., & Joseph, P. (2022). Effects of initial surface evaporation on the performance of fly ash-based geopolymer paste at elevated temperatures. Applied Sciences, 12(1), 364. [CrossRef]
  • 33. Zhang, P., Han, X., Zheng, Y., Wan, J., & Hui, D. (2021). Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Reviews on Advanced Materials Science, 60(1), 418-437. [CrossRef]
  • 34. Manfaluthy, M. L., & Ekaputri, J. J. (2017). The application of PVA fiber to improve the mechanical properties of geopolymer concrete. MATEC Web of Conferences, 138, 01020. [CrossRef]
  • 35. Zhang, P., Feng, Z., Yuan, W., Hu, S., & Yuan, P. (2024). Effect of PVA fiber on properties of geopolymer composites: A comprehensive review. Journal of Materials Research and Technology, 29, 4086-4101. [CrossRef]
  • 36. Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P., & Songpiriyakij, S. (2018). Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construction and Building Materials, 161, 37-44. [CrossRef]
  • 37. Nath, P., & Sarker, P. K. (2017). Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature. Materials and Structures, 50(1), 32. [CrossRef]
  • 38. Wang, T., Fan, X., Gao, C., Qu, C., Liu, J., & Yu, G. (2023). The influence of fiber on the mechanical properties of geopolymer concrete: A review. Polymers, 15(4), 827. [CrossRef]
  • 39. Cai, J., Jiang, J., Gao, X., & Ding, M. (2022). Improving the mechanical properties of fly ash-based geopolymer composites with PVA fiber and powder. Materials, 15(7), 2363. [CrossRef]
  • 40. Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN Journal of Engineering and Applied Sciences, 4(7), 28-32.
  • 41. Shaikh, F. U. A. (2014). Effects of alkali solutions on corrosion durability of geopolymer concrete. Advances in Concrete Construction, 2(2), 109-123. [CrossRef]
There are 41 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Adil Gültekin 0000-0002-5267-5312

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date July 5, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 9 Issue: 4

Cite

APA Gültekin, A. (2024). Effect of sealed water curing and fiber length on compressive strength and fracture energy of fly ash-based geopolymer mortars. Journal of Sustainable Construction Materials and Technologies, 9(4), 365-373. https://doi.org/10.47481/jscmt.1607851

88x31_3.png

Journal of Sustainable Construction Materials and Technologies is open access journal under the CC BY-NC license  (Creative Commons Attribution 4.0 International License)

Based on a work at https://dergipark.org.tr/en/pub/jscmt

E-mail: jscmt@yildiz.edu.tr