Year 2025,
Volume: 10 Issue: 1, 52 - 63, 29.03.2025
Kokıla Arandara
,
G. N. Paranavithana
S. T. Priyadarshana
H. M. T. G. A. Pitawala
R. Dissanayake
References
-
1. Renne, N., Maeijer, P. K. D., Craeye, B., Buyle, M., & Audenaert, A. (2022). Sustainable assessment of concrete repairs through life cycle assessment (LCA) and life cycle cost analysis (LCCA). Infrastructures, 7, 128. [CrossRef]
-
2. Oyenuga, O. A., & Bhamidimarri, R. (2015). Economic viability of construction and demolition waste management in terms of cost savings - A case of UK construction industry. Sci Eng Invest, 4(43), 16-23.
-
3. Ginga, C. P., Ongpeng, J. M. C., & Daly, M. K. M. (2020). Circular economy on construction and demolition waste: A literature review on material recovery and production. Materials, 13, 2970. [CrossRef]
-
4. Arandara, A. K. P., Priyadarshana, S. T., Paranavithana, G. N., & Dissanayake, R. (2022). A review on utilization of C & D waste for road and pavement construction in the international context and applicability of the findings to Sri Lanka. Road and Airfield Pavement Technology Lecture Notes in Civil Engineering, (p. 757-770). Springer. [CrossRef]
-
5. Wijayasundara, M. (2019). Recycled concrete. Elsevier. [CrossRef]
-
6. Junak, J., & Sicakova, A. (2017). Concrete containing recycled concrete aggregate with modified surface. Proc Eng, 180, 1284-1291. [CrossRef]
-
7. Naik, T. R., & Moriconi, G. (2005). Environmentally friendly durable concrete made with recycled materials for sustainable concrete construction. J Struct Eng, 61(1), 237-244.
-
8. Wagih, A. M., Karmoty, H. Z. E., Ebid, M., & Okba, S. H. (2012). Recycled construction and demolition concrete waste as aggregate for structural concrete. J Housing Building Nat Res Center, 9, 193-200. [CrossRef]
-
9. Silva, S. R. D., & Andrade, J. J. O. (2022). A review of mechanical properties and durability of concrete with construction and demolition waste (CDW) and fly ash in the production of new concrete. Sustainability, 14, 6740. [CrossRef]
-
10. Trottier, C., Ziapour, R., Zahedi, A., Sanchez, L., & Locati, F. (2021). Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates. Cement Concr Res, 144, 106426. [CrossRef]
-
11. Santos, M. B., Brito, J. D., & Silva, A. S. (2020). A review on alkali-silica reaction evolution in recycled aggregate concrete. Materials, 13, 2625. [CrossRef]
-
12. Ichikawa, S., & Miura, M. (2007). Modified model of alkali-silica reaction. Cement Concr Res, 37, 1291-1297. [CrossRef]
-
13. Bavasso, I., Costa, U., Mangialadi, T., & Paolini, A. E. (2020). Assessment of alkali-silica reactivity of aggregates by concrete expansion test in alkaline solutions at 38°C. Materials, 13, 288. [CrossRef]
-
14. Sutter, L. L. (2020). Overview of alkali-silica reactivity in concrete pavements. Iowa State University.
-
15. Lehmann, J., & Joseph, S. (2009). Biochar for Environmental Management. Earthscan.
-
16. Nagarajan, V. K., Devi, A., Manohari, S. P., & Santha, M. M. (2014). Experimental study on partial replacement of cement with coconut shell ash. Int J Sci Res, 3(3), 651-661.
-
17. Ajien, A., Idris, J., Sofwan, N. M., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspects, and application. Waste Manag Res, 41(1), 37-51. [CrossRef]
-
18. Karalis, K., Kollias, K., Bartzas, G., Mystrioti, C., & Xenidis, A. (2021). CO₂ sequestration using fly ash from lignite power plants. Mater Proc, 5, 131. [CrossRef]
-
19. Adams, M., Burrows, V., Richardson, S., Drinkwater, J., & Gamboa, C. (2019). Bringing embodied carbon upfront. World Green Building Council.
-
20. Jeyakaran, T., Dilushran, C., Nivoshan, S., & Thamboo, J. A. (2017). An investigation of engineering properties of high-strength concrete containing rice husk ash and recycled aggregates. 8th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka.
-
21. Barissov, T. (2021). Application of biochar as a beneficial additive in concrete [Master’s Thesis], University of Nebraska.
-
22. Khitab, A., Ahmad, S., Khan, R. A., Arshad, M. T., Anwar, W., Tariq, J., Khan, A. S. R., Khan, R. B. N., Jalil, A., & Tariq, Z. (2021). Production of biochar and its potential application in cementitious composites. Crystals, 11, 527. [CrossRef]
-
23. Maljaee, H., Madadi, R., Paiva, H., Tarelho, L., & Ferreira, V. M. (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Constr Build Mater, 283, 122757. [CrossRef]
-
24. Gupta, S., & Kua, H. W. (2019). Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature. Waste Biomass Valor, 11, 2807-2824. [CrossRef]
-
25. Akhtar, A., & Sarmah, A. K. (2018). Strength improvement of recycled aggregate concrete through silicon-rich char derived from organic waste. J Clean Prod, 196, 411-423. [CrossRef]
-
26. Gupta, S., Wei, K. H., & Dai, P. S. (2019). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr Build Mater, 234, 117338. [CrossRef]
-
27. Lei, W., Liang, C., Daniel, T. C., Binglin, G., Jian, Y., Zhengtao, S., Deyi, H., Sik, O. Y., & Sun, P. C. (2020). Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod, 258, 120678. [CrossRef]
-
28. Silica Fume Association. (2022). Silica fume user’s manual - Second edition.
-
29. Thomas, M. D., Fournier, B., & Folliard, K. J. (2013). Alkali-aggregate reactivity (AAR) facts book. Federal Highway Administration.
-
30. Agarwal, R., Vidyarthi, U. S., Gupta, U. C., & Sivakumar, N. (2017). Alkali-silica reaction (ASR) mitigation in concrete by using lithium nitrate. Int J Eng Appl Sci, 4(3), 5-7.
-
31. Arandara, A. K. P., Paranavithana, G. N., Priyadarshana, S. T., Pitawala, H. M. T. G. A., & Dissanayake, R. (2024). Evaluation of coconut shell biochar on recycled aggregate concrete through petrographic studies. Constr Build Mater, 428, 136342. [CrossRef]
-
32. Zhang, Y., Wang, S., Feng, D., Gao, J., Dong, L., Sun, S., Huang, Y., & Qin, Y. (2022). Functional biochar synergistic solid/liquid-phase CO₂ capture: A review. Energy Fuel, 36(6), 2945-2970. [CrossRef]
-
33. Deiyagala, D. A. T. H., Priyadarshani, P. G. N., Perera, M. A. N., Pallewatte, T. M., Samarawickrama, M. N. C., & Tibbatuwawa, D. P. M. B. (2017). Engineering and economic viability of using crushed construction waste in production of concrete and mortar. Engineer, 3, 41-53. [CrossRef]
-
34. Nili, M., Hoseinian, M., & Ahmadi, S. (2012). Mechanical properties of concrete containing high volume of recycled concrete aggregates and waste glass. 10th International Congress on Advances in Civil Engineering, Ankara, Turkiye.
-
35. Poongodi, K., Moorthi, P., Gobinath, R., Srinivas, A., & Sangeetha, G. (2019). Mechanical properties of pavement quality concrete using recycled aggregate. Int J Innov Technol Explor Eng, 9(1), 33-38. [CrossRef]
-
36. Ansary, M. A., & Iyengar, S. R. (2013). Physicochemical characterization of coarse aggregates in Qatar for construction industry. Int J Sustain Built Environ, 2, 27-30. [CrossRef]
-
37. Neil, K. M., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. Int J Concr Struct Mater, 7, 61-69. [CrossRef]
-
38. Safiuddin, M., Alengaram, U. J., Rahaman, M. M., Salam, M. A., & Jumaat, M. Z. (2013). Use of recycled concrete aggregate in concrete: A review. J Civ Eng Manag, 19(6), 796-810. [CrossRef]
-
39. Savitha, R., & Ranatunge, N. B. M. (n.d.). A study on types and quality of aggregates used in building construction.
-
40. Gayani, J. K. U. (2010). Rigid pavement design with recycled concrete aggregate for low volume roads.
-
41. Echeverri, J. L. M., Martinsen, V., Strand, L. T., Zivanovic, V., Cornelissen, G., & Mulder, J. (2018). Cation exchange capacity of biochar: An urgent method modification. Sci Total Environ, 642, 190-197. [CrossRef]
-
42. Paranavithana, G. N., Kawamoto, K., Inoue, Y., Saito, T., Vithanage, M., Kalpage, C. S., & Herath, G. B. B. (2016). Adsorption of Cd²+ and Pb²+ onto coconut shell biochar and biochar-mixed soil. J Environ Earth Sci, 75, 484. [CrossRef]
-
43. Gupta, S., Krishan, P., Kashani, A., & Kua, H. W. (2020). Construction and building materials. Constr Build Mater, 262, 120688. [CrossRef]
-
44. Boehme, L., & Joseph, M. (2016). Assessment of the ASR expansion of concrete made with recycled concrete aggregates. CESB16, Prague.
-
45. Fanijo, E. O., Kolawole, J. T., & Almakrab, A. (2021). Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects, and evolution test methods adopted in the United States. Case Stud Constr Mater, 15, e00563. [CrossRef]
-
46. Godart, B., Rooij, M. R., & Wood, J. M. C. (2013). Guide to diagnosis and appraisal of AAR damage to concrete structures. Springer. [CrossRef]
-
47. Arandara, A. K. P., Paranavithana, G. N., Priyadarshana, S. T., Pitawala, H. M. T. G. A., & Dissanayake, R. (2024). Investigating coconut shell biochar as a sustainable solution for removing iron residues in recycled concrete aggregates. Clean Technol Environ Pol, 2024, s10098-024-03029-0. [CrossRef]
Investigation of coconut shell biochar as an eco-friendly additive to mitigate the alkali-silica reaction in recycled aggregate concrete
Year 2025,
Volume: 10 Issue: 1, 52 - 63, 29.03.2025
Kokıla Arandara
,
G. N. Paranavithana
S. T. Priyadarshana
H. M. T. G. A. Pitawala
R. Dissanayake
Abstract
Alkali-Silica Reaction (ASR) in Recycled Aggregate Concrete (RAC) is one of the main chal-
lenges in using demolished concrete in construction. Several methods are available to mitigate
the impact of ASR, and they have less circular economic potential. This study aims - to investi-
gate the possibility of coconut shell biochar (CSB) as an eco-friendly additive to mitigate ASR
in RAC. In this investigation, the authors have conducted cement mortar bar test experiments
according to the American Society for Testing and Materials (ASTM 1260) standard, Scanning
Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS). Studies have
found a higher rate of ASR in recycled concrete aggregate (RCA) compared with natural con-
crete aggregate (NCA). More importantly, it is found that CSB can adsorb cations (Na+ and
K+) that cause ASR in RAC, thereby reducing ASR while not compromising concrete strength.
Hence, the authors concluded that CSB can effectively mitigate ASR in RAC while sequestrat-
ing carbon into concrete structures.
References
-
1. Renne, N., Maeijer, P. K. D., Craeye, B., Buyle, M., & Audenaert, A. (2022). Sustainable assessment of concrete repairs through life cycle assessment (LCA) and life cycle cost analysis (LCCA). Infrastructures, 7, 128. [CrossRef]
-
2. Oyenuga, O. A., & Bhamidimarri, R. (2015). Economic viability of construction and demolition waste management in terms of cost savings - A case of UK construction industry. Sci Eng Invest, 4(43), 16-23.
-
3. Ginga, C. P., Ongpeng, J. M. C., & Daly, M. K. M. (2020). Circular economy on construction and demolition waste: A literature review on material recovery and production. Materials, 13, 2970. [CrossRef]
-
4. Arandara, A. K. P., Priyadarshana, S. T., Paranavithana, G. N., & Dissanayake, R. (2022). A review on utilization of C & D waste for road and pavement construction in the international context and applicability of the findings to Sri Lanka. Road and Airfield Pavement Technology Lecture Notes in Civil Engineering, (p. 757-770). Springer. [CrossRef]
-
5. Wijayasundara, M. (2019). Recycled concrete. Elsevier. [CrossRef]
-
6. Junak, J., & Sicakova, A. (2017). Concrete containing recycled concrete aggregate with modified surface. Proc Eng, 180, 1284-1291. [CrossRef]
-
7. Naik, T. R., & Moriconi, G. (2005). Environmentally friendly durable concrete made with recycled materials for sustainable concrete construction. J Struct Eng, 61(1), 237-244.
-
8. Wagih, A. M., Karmoty, H. Z. E., Ebid, M., & Okba, S. H. (2012). Recycled construction and demolition concrete waste as aggregate for structural concrete. J Housing Building Nat Res Center, 9, 193-200. [CrossRef]
-
9. Silva, S. R. D., & Andrade, J. J. O. (2022). A review of mechanical properties and durability of concrete with construction and demolition waste (CDW) and fly ash in the production of new concrete. Sustainability, 14, 6740. [CrossRef]
-
10. Trottier, C., Ziapour, R., Zahedi, A., Sanchez, L., & Locati, F. (2021). Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates. Cement Concr Res, 144, 106426. [CrossRef]
-
11. Santos, M. B., Brito, J. D., & Silva, A. S. (2020). A review on alkali-silica reaction evolution in recycled aggregate concrete. Materials, 13, 2625. [CrossRef]
-
12. Ichikawa, S., & Miura, M. (2007). Modified model of alkali-silica reaction. Cement Concr Res, 37, 1291-1297. [CrossRef]
-
13. Bavasso, I., Costa, U., Mangialadi, T., & Paolini, A. E. (2020). Assessment of alkali-silica reactivity of aggregates by concrete expansion test in alkaline solutions at 38°C. Materials, 13, 288. [CrossRef]
-
14. Sutter, L. L. (2020). Overview of alkali-silica reactivity in concrete pavements. Iowa State University.
-
15. Lehmann, J., & Joseph, S. (2009). Biochar for Environmental Management. Earthscan.
-
16. Nagarajan, V. K., Devi, A., Manohari, S. P., & Santha, M. M. (2014). Experimental study on partial replacement of cement with coconut shell ash. Int J Sci Res, 3(3), 651-661.
-
17. Ajien, A., Idris, J., Sofwan, N. M., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspects, and application. Waste Manag Res, 41(1), 37-51. [CrossRef]
-
18. Karalis, K., Kollias, K., Bartzas, G., Mystrioti, C., & Xenidis, A. (2021). CO₂ sequestration using fly ash from lignite power plants. Mater Proc, 5, 131. [CrossRef]
-
19. Adams, M., Burrows, V., Richardson, S., Drinkwater, J., & Gamboa, C. (2019). Bringing embodied carbon upfront. World Green Building Council.
-
20. Jeyakaran, T., Dilushran, C., Nivoshan, S., & Thamboo, J. A. (2017). An investigation of engineering properties of high-strength concrete containing rice husk ash and recycled aggregates. 8th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka.
-
21. Barissov, T. (2021). Application of biochar as a beneficial additive in concrete [Master’s Thesis], University of Nebraska.
-
22. Khitab, A., Ahmad, S., Khan, R. A., Arshad, M. T., Anwar, W., Tariq, J., Khan, A. S. R., Khan, R. B. N., Jalil, A., & Tariq, Z. (2021). Production of biochar and its potential application in cementitious composites. Crystals, 11, 527. [CrossRef]
-
23. Maljaee, H., Madadi, R., Paiva, H., Tarelho, L., & Ferreira, V. M. (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Constr Build Mater, 283, 122757. [CrossRef]
-
24. Gupta, S., & Kua, H. W. (2019). Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature. Waste Biomass Valor, 11, 2807-2824. [CrossRef]
-
25. Akhtar, A., & Sarmah, A. K. (2018). Strength improvement of recycled aggregate concrete through silicon-rich char derived from organic waste. J Clean Prod, 196, 411-423. [CrossRef]
-
26. Gupta, S., Wei, K. H., & Dai, P. S. (2019). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr Build Mater, 234, 117338. [CrossRef]
-
27. Lei, W., Liang, C., Daniel, T. C., Binglin, G., Jian, Y., Zhengtao, S., Deyi, H., Sik, O. Y., & Sun, P. C. (2020). Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod, 258, 120678. [CrossRef]
-
28. Silica Fume Association. (2022). Silica fume user’s manual - Second edition.
-
29. Thomas, M. D., Fournier, B., & Folliard, K. J. (2013). Alkali-aggregate reactivity (AAR) facts book. Federal Highway Administration.
-
30. Agarwal, R., Vidyarthi, U. S., Gupta, U. C., & Sivakumar, N. (2017). Alkali-silica reaction (ASR) mitigation in concrete by using lithium nitrate. Int J Eng Appl Sci, 4(3), 5-7.
-
31. Arandara, A. K. P., Paranavithana, G. N., Priyadarshana, S. T., Pitawala, H. M. T. G. A., & Dissanayake, R. (2024). Evaluation of coconut shell biochar on recycled aggregate concrete through petrographic studies. Constr Build Mater, 428, 136342. [CrossRef]
-
32. Zhang, Y., Wang, S., Feng, D., Gao, J., Dong, L., Sun, S., Huang, Y., & Qin, Y. (2022). Functional biochar synergistic solid/liquid-phase CO₂ capture: A review. Energy Fuel, 36(6), 2945-2970. [CrossRef]
-
33. Deiyagala, D. A. T. H., Priyadarshani, P. G. N., Perera, M. A. N., Pallewatte, T. M., Samarawickrama, M. N. C., & Tibbatuwawa, D. P. M. B. (2017). Engineering and economic viability of using crushed construction waste in production of concrete and mortar. Engineer, 3, 41-53. [CrossRef]
-
34. Nili, M., Hoseinian, M., & Ahmadi, S. (2012). Mechanical properties of concrete containing high volume of recycled concrete aggregates and waste glass. 10th International Congress on Advances in Civil Engineering, Ankara, Turkiye.
-
35. Poongodi, K., Moorthi, P., Gobinath, R., Srinivas, A., & Sangeetha, G. (2019). Mechanical properties of pavement quality concrete using recycled aggregate. Int J Innov Technol Explor Eng, 9(1), 33-38. [CrossRef]
-
36. Ansary, M. A., & Iyengar, S. R. (2013). Physicochemical characterization of coarse aggregates in Qatar for construction industry. Int J Sustain Built Environ, 2, 27-30. [CrossRef]
-
37. Neil, K. M., & Kang, T. H. K. (2013). Recycled concrete aggregates: A review. Int J Concr Struct Mater, 7, 61-69. [CrossRef]
-
38. Safiuddin, M., Alengaram, U. J., Rahaman, M. M., Salam, M. A., & Jumaat, M. Z. (2013). Use of recycled concrete aggregate in concrete: A review. J Civ Eng Manag, 19(6), 796-810. [CrossRef]
-
39. Savitha, R., & Ranatunge, N. B. M. (n.d.). A study on types and quality of aggregates used in building construction.
-
40. Gayani, J. K. U. (2010). Rigid pavement design with recycled concrete aggregate for low volume roads.
-
41. Echeverri, J. L. M., Martinsen, V., Strand, L. T., Zivanovic, V., Cornelissen, G., & Mulder, J. (2018). Cation exchange capacity of biochar: An urgent method modification. Sci Total Environ, 642, 190-197. [CrossRef]
-
42. Paranavithana, G. N., Kawamoto, K., Inoue, Y., Saito, T., Vithanage, M., Kalpage, C. S., & Herath, G. B. B. (2016). Adsorption of Cd²+ and Pb²+ onto coconut shell biochar and biochar-mixed soil. J Environ Earth Sci, 75, 484. [CrossRef]
-
43. Gupta, S., Krishan, P., Kashani, A., & Kua, H. W. (2020). Construction and building materials. Constr Build Mater, 262, 120688. [CrossRef]
-
44. Boehme, L., & Joseph, M. (2016). Assessment of the ASR expansion of concrete made with recycled concrete aggregates. CESB16, Prague.
-
45. Fanijo, E. O., Kolawole, J. T., & Almakrab, A. (2021). Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects, and evolution test methods adopted in the United States. Case Stud Constr Mater, 15, e00563. [CrossRef]
-
46. Godart, B., Rooij, M. R., & Wood, J. M. C. (2013). Guide to diagnosis and appraisal of AAR damage to concrete structures. Springer. [CrossRef]
-
47. Arandara, A. K. P., Paranavithana, G. N., Priyadarshana, S. T., Pitawala, H. M. T. G. A., & Dissanayake, R. (2024). Investigating coconut shell biochar as a sustainable solution for removing iron residues in recycled concrete aggregates. Clean Technol Environ Pol, 2024, s10098-024-03029-0. [CrossRef]