Growth of microalgae (chlorella vulgaris) in the presence of olive leaf extract
Year 2020,
Volume: 2 Issue: 2, 92 - 109, 31.12.2020
Şule Ören
Zeynep Yıldız
Merve Deniz Köse
,
Kübra Potuk
Oguz Bayraktar
Abstract
Microalgae has been used for various applications in the literature. Microalgae can produce different biologically active metabolites due to their different morphological, physiological, and genetic traits. In this study, biotransformation of olive leaf extract by microalgae under biotic conditions was investigated. The results showed that incorporating the olive leaf extract into the growth medium changed the microalgae's specific growth rate and the total phenolic content of the medium. The effect of light type (white and red light) on the specific growth rate was also investigated. The obtained data showed that light type directly changed the specific growth rate of the microalgae. With microalgae growth under both white and red light, olive leaf extract amount in the growth medium decreased while the antioxidant capacity of the medium increased. This was attributed to the production of bioactive compounds as a result of the biotransformation of polyphenols by microalgae.
References
- Abdel-Karim, O. H., Gheda, S. F., Ismail, G. A., & Abo-Shady, A. M. (2019). Phytochemical screening and antioxidant activity of Chlorella vulgaris. Drug Invention Today, 11(8), 1803–1806.
- Altıok, E., Bayçın, D., Bayraktar, O., & Ülkü, S. (2008). Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Separation and Purification Technology, 62(2), 342–348.
- Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialisation. In Journal of Applied Phycology (Vol. 25, Issue 3, pp. 743–756). Springer.
- Castro, B. F. M., Fulgêncio, G. de O., Domingos, L. C., Cotta, O. A. L., Silva-Cunha, A., & Fialho, S. L. (2020). Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. Journal of Drug Delivery Science and Technology, 60, 101912. https://doi.org/10.1016/j.jddst.2020.101912
- De Morais, M. G., Vaz, B. D. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International, 2015.
- Della Greca, M., Pinto, G., Pistillo, P., Pollio, A., Previtera, L., & Temussi, F. (2008). Biotransformation of ethinylestradiol by microalgae. Chemosphere, 70(11), 2047–2053.
- Deniz Köse, M., Bayraktar, O., Ak, B., & Atak, E. (2019). Production of Chlorella sp. in a Designed Photobioreactor.Celal Bayar University Journal of Science, 15(4), 377–383.
- Dilek (Yalcin), D., Udoh, U. A., Ozer (Baykal), T., Akbulut, A., Erkaya (Acikgoz), I., Yildiz, K., & Guler, D. (2012). Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 11(16), 3817–3824.
- El-Sheekh, M. M., Ghareib, M. M., & Abou-El-Souod, G. W. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. Journal of Bioremediation and Biodegradation, 3(1).
- Gatamaneni Loganathan, B., Orsat, V., Lefsrud, M., & Wu, B. Sen. (2020). A comprehensive study on the effect of light quality imparted by light-emitting diodes (LEDs) on the physiological and biochemical properties of the microalgal consortia of Chlorella variabilis and Scenedesmus obliquus cultivated in dairy wastewater. Bioprocess and Biosystems Engineering, 43(8), 1445–1455.
- Góral, I., & Wojciechowski, K. (2020). Surface activity and foaming properties of saponin-rich plants extracts. In Advances in Colloid and Interface Science (Vol. 279, p. 102145). Elsevier B.V. https://doi.org/10.1016/j.cis.2020.102145
- Hernández, E., Lobato-Benítez, C., & Hernández, C. (2017). Algal enzymes, biotechnological potential uses: A review Enzimas algales, usos biotecnológicos potenciales: Una revisión. Cymbella, 3, 1–15.
- Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 2017.
- Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. In Microbial Cell Factories (Vol. 17, Issue 1, p. 36). BioMed Central Ltd.
Lee, O. H., & Lee, B. Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101(10), 3751–3754.
- Lindner, A. V., & Pleissner, D. (2019). Utilization of phenolic compounds by microalgae. In Algal Research (Vol. 42, p. 101602). Elsevier B.V.
- Matthijs, H. C. P., Balke, H., Van Hes, U. M., Kroon, B. M. A., Mur, L. R., & Binot, R. A. (1996). Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering, 50(1), 98–107.
- Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T., & Katsoulas, N. (2019). Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants, 8(8). https://doi.org/10.3390/plants8080279
- Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(1), 4.
- Papazi, A., Ioannou, A., Symeonidi, M., Doulis, A. G., & Kotzabasis, K. (2017). Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 72(5–6), 227–236.
- Pinto, G., Pollio, A., Previtera, L., Stanzione, M., & Temussi, F. (2003). Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnology Letters, 25(19), 1657–1659.
- Pistorius, A. M. A., DeGrip, W. J., & Egorova-Zachernyuk, T. A. (2009). Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnology and Bioengineering, 103(1), 123–129.
- Rajurkar, N., Hande, S., & e. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146.
- Reymann, T., Kerner, M., & Kümmerer, K. (2020). Assessment of the biotic and abiotic elimination processes of five micropollutants during cultivation of the green microalgae Acutodesmus obliquus. Bioresource Technology Reports, 11, 100512.
- Şahin, S., Bilgin, M., & Dramur, M. U. (2011). Investigation of Oleuropein Content in Olive Leaf Extract Obtained by Supercritical Fluid Extraction and Soxhlet Methods. Separation Science and Technology, 46(11), 1829–1837.
- Somerville, V., Moore, R., & Braakhuis, A. (2019). The Effect of Olive Leaf Extract on Upper Respiratory Illness in High School Athletes: A Randomised Control Trial. Nutrients, 11(2), 358.
- Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.
- Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology 304, 122997.
- Yan, C., Zhao, Y., Zheng, Z., & Luo, X. (2013). Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. Biodegradation, 24(5), 721–732.
- Yuvraj, Vidyarthi, A. S., & Singh, J. (2016). Enhancement of Chlorella vulgaris cell density: Shake flask and bench-top photobioreactor studies to identify and control limiting factors. Korean Journal of Chemical Engineering, 33(8), 2396–2405.
Growth of microalgae (chlorella vulgaris) in the presence of olive leaf extract
Year 2020,
Volume: 2 Issue: 2, 92 - 109, 31.12.2020
Şule Ören
Zeynep Yıldız
Merve Deniz Köse
,
Kübra Potuk
Oguz Bayraktar
Abstract
Microalgae has been used for various applications in the literature. Microalgae can produce different biologically active metabolites due to their different morphological, physiological, and genetic traits. In this study, biotransformation of olive leaf extract by microalgae under biotic conditions was investigated. The results showed that incorporating the olive leaf extract into the growth medium changed the microalgae's specific growth rate and the total phenolic content of the medium. The effect of light type (white and red light) on the specific growth rate was also investigated. The obtained data showed that light type directly changed the specific growth rate of the microalgae. With microalgae growth under both white and red light, olive leaf extract amount in the growth medium decreased while the antioxidant capacity of the medium increased. This was attributed to the production of bioactive compounds as a result of the biotransformation of polyphenols by microalgae.
References
- Abdel-Karim, O. H., Gheda, S. F., Ismail, G. A., & Abo-Shady, A. M. (2019). Phytochemical screening and antioxidant activity of Chlorella vulgaris. Drug Invention Today, 11(8), 1803–1806.
- Altıok, E., Bayçın, D., Bayraktar, O., & Ülkü, S. (2008). Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Separation and Purification Technology, 62(2), 342–348.
- Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialisation. In Journal of Applied Phycology (Vol. 25, Issue 3, pp. 743–756). Springer.
- Castro, B. F. M., Fulgêncio, G. de O., Domingos, L. C., Cotta, O. A. L., Silva-Cunha, A., & Fialho, S. L. (2020). Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. Journal of Drug Delivery Science and Technology, 60, 101912. https://doi.org/10.1016/j.jddst.2020.101912
- De Morais, M. G., Vaz, B. D. S., De Morais, E. G., & Costa, J. A. V. (2015). Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International, 2015.
- Della Greca, M., Pinto, G., Pistillo, P., Pollio, A., Previtera, L., & Temussi, F. (2008). Biotransformation of ethinylestradiol by microalgae. Chemosphere, 70(11), 2047–2053.
- Deniz Köse, M., Bayraktar, O., Ak, B., & Atak, E. (2019). Production of Chlorella sp. in a Designed Photobioreactor.Celal Bayar University Journal of Science, 15(4), 377–383.
- Dilek (Yalcin), D., Udoh, U. A., Ozer (Baykal), T., Akbulut, A., Erkaya (Acikgoz), I., Yildiz, K., & Guler, D. (2012). Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 11(16), 3817–3824.
- El-Sheekh, M. M., Ghareib, M. M., & Abou-El-Souod, G. W. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. Journal of Bioremediation and Biodegradation, 3(1).
- Gatamaneni Loganathan, B., Orsat, V., Lefsrud, M., & Wu, B. Sen. (2020). A comprehensive study on the effect of light quality imparted by light-emitting diodes (LEDs) on the physiological and biochemical properties of the microalgal consortia of Chlorella variabilis and Scenedesmus obliquus cultivated in dairy wastewater. Bioprocess and Biosystems Engineering, 43(8), 1445–1455.
- Góral, I., & Wojciechowski, K. (2020). Surface activity and foaming properties of saponin-rich plants extracts. In Advances in Colloid and Interface Science (Vol. 279, p. 102145). Elsevier B.V. https://doi.org/10.1016/j.cis.2020.102145
- Hernández, E., Lobato-Benítez, C., & Hernández, C. (2017). Algal enzymes, biotechnological potential uses: A review Enzimas algales, usos biotecnológicos potenciales: Una revisión. Cymbella, 3, 1–15.
- Jerez-Martel, I., García-Poza, S., Rodríguez-Martel, G., Rico, M., Afonso-Olivares, C., & Gómez-Pinchetti, J. L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 2017.
- Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. In Microbial Cell Factories (Vol. 17, Issue 1, p. 36). BioMed Central Ltd.
Lee, O. H., & Lee, B. Y. (2010). Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, 101(10), 3751–3754.
- Lindner, A. V., & Pleissner, D. (2019). Utilization of phenolic compounds by microalgae. In Algal Research (Vol. 42, p. 101602). Elsevier B.V.
- Matthijs, H. C. P., Balke, H., Van Hes, U. M., Kroon, B. M. A., Mur, L. R., & Binot, R. A. (1996). Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering, 50(1), 98–107.
- Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T., & Katsoulas, N. (2019). Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants, 8(8). https://doi.org/10.3390/plants8080279
- Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(1), 4.
- Papazi, A., Ioannou, A., Symeonidi, M., Doulis, A. G., & Kotzabasis, K. (2017). Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 72(5–6), 227–236.
- Pinto, G., Pollio, A., Previtera, L., Stanzione, M., & Temussi, F. (2003). Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnology Letters, 25(19), 1657–1659.
- Pistorius, A. M. A., DeGrip, W. J., & Egorova-Zachernyuk, T. A. (2009). Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnology and Bioengineering, 103(1), 123–129.
- Rajurkar, N., Hande, S., & e. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146.
- Reymann, T., Kerner, M., & Kümmerer, K. (2020). Assessment of the biotic and abiotic elimination processes of five micropollutants during cultivation of the green microalgae Acutodesmus obliquus. Bioresource Technology Reports, 11, 100512.
- Şahin, S., Bilgin, M., & Dramur, M. U. (2011). Investigation of Oleuropein Content in Olive Leaf Extract Obtained by Supercritical Fluid Extraction and Soxhlet Methods. Separation Science and Technology, 46(11), 1829–1837.
- Somerville, V., Moore, R., & Braakhuis, A. (2019). The Effect of Olive Leaf Extract on Upper Respiratory Illness in High School Athletes: A Randomised Control Trial. Nutrients, 11(2), 358.
- Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.
- Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., & Show, P. L. (2020). Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology 304, 122997.
- Yan, C., Zhao, Y., Zheng, Z., & Luo, X. (2013). Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. Biodegradation, 24(5), 721–732.
- Yuvraj, Vidyarthi, A. S., & Singh, J. (2016). Enhancement of Chlorella vulgaris cell density: Shake flask and bench-top photobioreactor studies to identify and control limiting factors. Korean Journal of Chemical Engineering, 33(8), 2396–2405.